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The study of RNA modifications, today known as epitranscriptomics, is of growing

interest. The N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications

are abundantly present on mRNA molecules, and impact RNA interactions with other

proteins or molecules, thereby affecting cellular processes, such as RNA splicing,

export, stability, and translation. Recently m6A and m5C marks were found to be

present on human immunodeficiency (HIV) transcripts as well and affect viral replication.

Therefore, the discovery of RNA methylation provides a new layer of regulation of

HIV expression and replication, and thus offers novel array of opportunities to inhibit

replication. However, no study has been performed to date to investigate the impact

of HIV replication on the transcript methylation level in the infected cell. We used

a productive HIV infection model, consisting of the CD4+ SupT1T cell line infected

with a VSV-G pseudotyped HIVeGFP-based vector, to explore the temporal landscape

of m6A and m5C epitranscriptomic marks upon HIV infection, and to compare it to

mock-treated cells. Cells were collected at 12, 24, and 36 h post-infection for mRNA

extraction and FACS analysis. M6A RNA modifications were investigated by methylated

RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-Seq). M5C

RNA modifications were investigated using a bisulfite conversion approach followed by

high-throughput sequencing (BS-Seq). Our data suggest that HIV infection impacted

the methylation landscape of HIV-infected cells, inducing mostly increased methylation

of cellular transcripts upon infection. Indeed, differential methylation (DM) analysis

identified 59 m6A hypermethylated and only 2 hypomethylated transcripts and 14 m5C

hypermethylated transcripts and 7 hypomethylated ones. All data and analyses are also

freely accessible on an interactive web resource (http://sib-pc17.unil.ch/HIVmain.html).

Furthermore, both m6A andm5Cmethylations were detected on viral transcripts and viral

particle RNA genomes, as previously described, but additional patterns were identified.

This work used differential epitranscriptomic analysis to identify novel players involved in

HIV life cycle, thereby providing innovative opportunities for HIV regulation.
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INTRODUCTION

The presence of chemical modifications along RNA molecules
has been known since the 1970s (1). Only recently, however, have
new technologies allowed the identification and investigation
of chemical modifications at the transcriptome-wide level,
allowing mapping of some modifications in mRNA (2, 3).
Similar to epigenetics that focuses on the understanding of DNA
and histone modifications in the regulation of transcription,
epitranscriptomics investigates RNA modifications and offers a
new layer of regulation, impacting, and tuning cellular processes,
including RNA splicing, export, stability, and translation (4).
Among these modifications N6-methyladenosine (m6A) and 5-
methylcytosine (m5C) are found to be particularly abundant
along mRNA molecules (5).

Regulation of RNA modifications is under the control of
specific cellular proteins (6, 7). The methylases METTL3-14
together with adaptors proteins act as m6A writer complexes of
mRNA and catalyze the methylation of adenosine residues within
the consensus motif DRA∗CH (D = G/A/U, R = G/A, H =

U/A/C, and A∗
=modified A). RNA binding proteins act as m6A

readers; they bind methylated residues, thereby modulating the
fate and metabolism of marked mRNA, i.e., secondary structure,
nuclear export, stability, splicing, and degradation. Demethylases
such as ALKBH5 act as erasers of m6A, removing the chemical
modification from transcripts.

The role and identity of proteins involved in m5C turnover
is less clear. The addition of m5C residues on mRNA molecules
is carried out by the methylase NSUN2. M5C binding proteins
seem to play a role in export and degradation, while to date no
m5C-specific demethylase has been described yet.

The role of RNA modifications is not limited to cellular RNA
molecules. Indeed, recent studies highlighted the importance of
RNA methylation on viral transcripts as well, including human
immunodeficiency virus type 1 (HIV-1, hereafter abbreviated
HIV) RNA, and its impact in regulating viral replication and
gene expression.

Lichinchi et al. reported 14 peaks of m6A modification in
HIV RNA, including a m6A peak in the Rev response-element
(RRE) region (8). They showed that RRE methylation increased
Rev binding and facilitated nuclear export of viral RNA, thereby
enhancing HIV replication. Kennedy et al. found four clusters of
m6A modifications in the 3’ Untranslated region (UTR) of HIV
RNA and suggested that the overexpression of the m6A readers
YTDHF1-3 likely stabilize viral mRNAs, thereby increasing viral
replication (9). In contrast, Tirumuru et al. and Lu et al. showed
that HIV RNA has m6Amodifications in both 5

′

and 3
′

UTRs, as
well as in gag and rev genes, and that overexpression of YTDHF1-
3 proteins in cells inhibits HIV infection by decreasing viral
genomic RNA (gRNA) and early reverse transcription products
(10, 11).

A recent study from Courtney et al. investigated the role of
m5C in HIV replication (12). Using an antibody-based capture
approach, they identifiedm5C-methylated residues inHIV gRNA
from CEMT cell-derived virions and on cellular HIV transcripts.
They identified the m5C mRNA writer NSUN2 as the writer
responsible for HIV RNA m5C methylation and demonstrated

a role of m5C in favoring alternative splicing and increasing HIV
mRNA translation.

Furthermore, it has been reported that upon HIV infection,
the global cellular rate of m6A and m5C methylation increased
(12, 13). However, an in-depth exploration of the differentially
methylated genes upon HIV infection is missing.

The discovery of HIV RNA methylation provides a new layer
of regulation of HIV expression and replication, and thus a novel
array of opportunities to inhibit replication. Investigating the
epitranscriptomic landscape of HIV-infected cells will lead to a
deeper understanding of HIV-induced RNA modifications and
may help to identify novel host cells factors, HIV dependency
factors (HDF), or restriction factors (HRF) involved in HIV
replication. Indeed, HIV may modulate HDF and HRF to impact
viral replication efficiency not only at the level of transcription
but also at the level of methylation.

Here we used the SupT1 CD4+ T cellular model infected
with a VSV.G pseudotyped HIV-based vector encoding a GFP
reporter (HIVeGFP) to explore the m6A and m5C modification
pattern of cellular and viral transcripts in HIV-infected cells, as
well as the virion genomic RNA, over time. We found that HIV
infection impacted the methylation landscape of HIV-infected
cells by inducing an increased proportion of methylated cellular
transcripts. Differential methylation (DM) analysis allowed
identifying a few genes that may act as HDF or HRF and thus
impact viral replication success. Furthermore, both m6A and
m5C methylation was detected on viral transcripts and on viral
particle packaged RNA genome, as previously described, but
additional patterns were also detected. All data, at transcriptome,
m6A, and m5C epitranscriptome levels, are freely accessible
in an interactive mode through HI-TEAM (HIV-Infected cell
Transcriptome and EpitrAnscriptoMe), a user-friendly querying
platform using an iSee-derived interface (14) available at http://
sib-pc17.unil.ch/HIVmain.html.

RESULTS

Dynamic Analysis of HIV-Infected Cells
To explore the transcriptomic and epitranscriptomic landscape
of HIV-infected cells, we infected SupT1 cells (a CD4+ T-
cell-line) with an HIV_GFP-based vector. At 12, 24, and 36 h
post-infection, we (i) assessed the percentage of infected cells,
monitoring GFP expression by FACS analysis; (ii) measured
the amount of viral particles released in the supernatant;
and (iii) extracted the total RNA, purified polyA RNA and
explored the m6A and m5C landscapes, by either methylated
RNA immunoprecipitation sequencing (MeRIP-Seq) or Bisulfite
sequencing (BS-Seq), respectively (Figures 1A,B).

Infection success was monitored over time, following the
accumulation of the virally encoded GFP protein. At 12 h post-
infection (p.i.), as expected, the GFP expression was not yet
detectable, while at 24 h p.i. 37.3% of the cells were expressing
detectable levels of GFP and 83.7% of the cells were GFP+ at
36h p.i., close to universal infection (Figure 1C). These results
were consistent with viral particle production assessed by p24
measurement, which showed increasing viral production over
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FIGURE 1 | Dynamic analysis of HIV-infected cells. (A) Infection setting overview. SupT1 cells were either infected with 1 µg/106 cells p24 equivalent of HIV_GFP

virus or left uninfected, divided into aliquots of 5*106 cells/ tube and spinoculated for 90min at 1,500 g and 20◦C to allow nearly universal infection. Cells were then

resuspended at a concentration of 106 cells/ml and further incubated. (B) Experimental design overview. At 12, 24, and 36 h post–infection, viral supernatant was

collected to assess viral production by p24 ELISA; 300,000 cells were fixed and HIV infection success was assessed by evaluating HIV-encoded GFP expression by

FACS analysis; the rest of the cells were used for RNA extraction and further analyses on m6A and m5C epitranscriptomic marks. (C) Example of FACS analysis at 12,

24, and 36 h post-infection to evaluate HIV infection success. Left: Histogram plots of FACS analyses showing the GFP intensity (x-axis) on the different samples,

non-infected (NI) and infected (12 h, 24 h, 36 h) samples. Right: Graphical representation of the proportion of infected cells (%GFP-positive cells). (D) Example of p24

ELISA to monitor viral particle production. Results are expressed as pg of p24 per ml of supernatant over time.

time, with 0.064 × 106 pg/ml at 12 h p.i., 0.150 × 106 pg/ml at
24 h p.i. and 1.572× 106 pg/ml at 36 h p.i. (Figure 1D).

HIV Infection Induced Changes at Gene
Expression Level
Transcriptome analysis was performed by RNA-Seq on polyA-
selected RNAs over time on infected (HIV) and non-infected
mock (NI) SupT1 cells. A total of 17,676 genes out of 58,136
were detected across all time points (12 h NI: 11,908; 12 h HIV:
10,980; 24 h NI: 13,516; 24 h HIV: 12,327; 36 h NI: 15,004; 36 h
HIV: 11,827). In order to increase the specificity of our study, we
applied a supplemental filter to retain genes above 3 counts per

million (CPM). This filter was applied to each condition (infected
or non-infected) individually in order to avoid the introduction
of bias upon differential gene expression analyses. Upon quality
control and filtering, a total of 13,103 genes was retained for
further analysis (Supplementary Table 1).

Principal component (PC) analyses separated samples in
2 distinct clusters according to infection condition and time
progression, with the PC1 and PC2 representing respectively
67 and 21% of the variance (Supplementary Figure 1A). Such
clustering was not due to the presence of HIV transcripts,
as upon their removal, sample distribution was maintained
(Supplementary Figure 1B). Among the 13,103 detected genes,
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FIGURE 2 | HIV infection induced changes at gene expression level. (A) PCA representing 1,971 differentially expressed genes upon HIV infection only. HIV-infected

samples (HIV) are represented as green filled circles, non-infected samples (NI) as gray filled squares. Timepoints are depicted by the shade of the color. Time effect

has been removed, HIV transcripts are not included. (B) Heatmaps of the top 100 (out of 813) downregulated (left) or top 100 (out of 1,158) upregulated (right) genes

upon HIV infection. The first column (purple) represents the average gene expression of each gene in the 3 normalized NI samples together, i.e., the darker the color,

the higher the expression in the time-averaged NI samples. The log fold change of each gene compared to the average NI gene expression is depicted in shades of

blue to red.

1,654 (13%) were overexpressed over time while 2,142 (16%)
were downregulated. Analysis over time of NI samples only
revealed that some genes were differentially expressed, likely due
to cell culture conditions and cell growth, but independently
from HIV infection (Supplementary Table 1). In order to refine
the analysis and to observe the bona fide impact of HIV
infection, the time effect was modeled in a linear model and
subtracted to the HIV effect, resulting in improved defined
variance (Supplementary Figure 1C). Thus, upon removal of
the time effect, HIV infection alone modulated a total of
1,971 genes, upregulating 813 genes (6.2%) and downregulating
1,158 genes (8.8%) (Supplementary Table 1 and Figure 2). Gene
ontology analysis shows that the 1,971 differentially expressed
genes were enriched in the negative regulation of biological and
cellular pathways (data not shown). These data are consistent
with our previous study, performed using similar experimental
conditions, revealing >75% concordance, and arguing for some
degree of reproducibility and confidence (data not shown) (15).

Overall, these data confirmed that HIV induced numerous
changes at transcriptome level upon infection that need to
be taken into account for an accurate exploration of the
epitranscriptomic landscape. Indeed, methylated genes that
are strongly impacted by HIV in term of gene expression
may introduce a bias to the analysis, i.e., methylated genes
overexpressed upon infection may be considered also as
differentially methylated if no correction is applied.

Hence, in order to explore the m6A and m5C
epitranscriptomic landscape of HIV-infected cells independently
from their expression level upon infection, all data were
normalized to the corresponding gene expression.

HIV Infection Induced Changes in Cellular
m6A Profile
We examined the landscape of the m6A RNA methylome during
HIV infection at 12, 24, and 36 h post-infection by MeRIP-
Seq using either an m6A specific antibody or a non-specific
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IgG antibody as control (16). After pull down and elution,
quality and quantity of samples were verified on a fragment
analyzer (Supplementary Figure 2A). The immunoprecipitated
RNA was used for library preparation and sequencing; of note,
the amount of RNA retrieved from the control condition was too
low to perform library preparation and sequencing, as expected,
suggesting that antibody-mediated capture and enrichment is
highly specific.

We obtained a range of 26–72 million reads per condition
(Supplementary Figure 2). After quality control and filtering, 8
to 46 million clean reads were kept and further mapped to the
HIV and hg38 human genomes, with alignment success typically
exceeding 99%.

M6A modified regions were identified using the peak
calling package MACS2. A total of 17,657 peaks mapping
on 7,724 genes across all samples were retrieved representing
59% of the overall detected genes (13,101) (Figure 3A and
Supplementary Table 2). We looked for the presence of the
m6A consensus motif DRACH previously identified and detected
it in 17,527 peaks out of 17,657 (99.3% of the peaks)
(Figure 3B) (5). We further analyzed the 17,527 m6A peaks to
identify, independently, additional consensus sequences for m6A
methylation. For this, 20 nucleotides surrounding the center of
each m6A peak were examined for motif retrieval, and revealed
2 additional highly enriched motifs, WGGAM and GSAGGAGG
(Supplementary Figure 3A); these motifs have been previously
described as m6A binding motif from Zhang et al. (17). As
described previously, m6A peaks were globally enriched toward
the 3’ end of transcripts, and this distribution is not altered upon
HIV infection (Figure 3C and Supplementary Figure 3B) (6).
M6A modifications were reported to be enriched in long exons
(>140 nt); however, upon normalization for exon width, we
could not observe significant changes in m6A distribution with
only a slight enrichment in m6A peak frequency in exons >500
nt (Supplementary Figure 3C) (6). Upon PC analysis of the m6A
peaks retrieved in all samples, we could observe a separation
according to time and infection condition, suggesting an impact
of HIV infection on the m6A methylation profile (Figure 3C).

As m6A methylation can occur at different sites along
the mRNA molecule, analysis was performed on differentially
methylated peaks. A total of 5,957 peaks corresponding to 3,615
transcripts were found as being hypermethylated upon HIV
infection, with 713 peaks at 12 h, 4,696 at 24 h, and 1,342 at 36 h
post infection (corresponding to 558, 2,718, and 814 transcripts
at 12, 24, and 36 h, respectively). Only 777 hypomethylated peaks
(532 transcripts) were identified, with 147, 247, and 432 peaks
at 12, 24, 36 h post infection, corresponding respectively to 109
transcripts at 12 h, 181 at 24 h, and 279 at 36 h post infection
(Supplementary Table 3 and Figures 3D,G).

We identified 87 m6A peaks, representing 59 different
transcripts that were commonly hypermethylated in infected
cells at 12, 24, and 36 h post-infection. However, only 2
peaks, identified as the stromal antigen 1 (STAG1) and the
solute carrier family 6 member 19 (SLC6A19) respectively,
were found to be commonly hypomethylated upon infection
at the 3 timepoints (Supplementary Table 2 and Figures 3E,F).
Gene ontology analysis of the 61 commonly differentially

methylated mRNAs did not reveal any statistically significant
enrichment in biological process (data not shown). However,
we noticed the presence of 4 out of the 7 GTPase Immuno-
Associated Proteins (GIMAP)within the commonly differentially
methylated transcripts and overall 6 GIMAPs among the totality
of the differentially methylated transcripts (GIMAP1, GIMAP2,
GIMAP4, GIMAP5, GIMAP6, GIMAP7). GIMAPs are involved
in response to pathogens and have a prominent role in T cell
survival and differentiation, consistent with a putative role of
these genes on HIV replication (18).

HIV Infection Induced Changes in Cellular
m5C Profile
To obtain a transcriptome-wide landscape of m5C profiles,
we performed BS-Seq on RNA samples purified from HIV-
GFP infected and non-infected SupT1 cells (19). Compared
to antibody-based techniques, bisulfite conversion allows
higher resolution and higher sensitivity, identifying converted
and non-converted cytosines at single nucleotide resolution,
and providing estimations of the methylation rate of each
C residue. However, bisulfite conversion does not allow
further discriminating between methylcytosine (m5C) and
hydroxymethylcytosine (hm5C), therefore note that in this
manuscript m5C refers to both modifications. To assess
efficiency of bisulfite conversion treatment, we used the human
28S rRNA as positive control. Indeed, the C4447 residue of this
rRNA is known to be methylated with a frequency of 100%.

Therefore, we spiked-in polyA-depleted RNA in each sample
to ensure rRNA representation and presence of 28S rRNA in
particular. After bisulfite conversion, a sample aliquot was used
for RT-PCR and Sanger sequencing of the C4447 encompassing
region of the 28S rRNA (Supplementary Figure 4A). For all
samples we observed a complete C-T conversion along the
fragment suggesting the absence of methylation on these C
residues, except for the C4447 residue that remains unchanged,
confirming the methylation status of this specific C residue
(Supplementary Figure 4B).

After library preparation and high-throughput sequencing
we obtained a range of 23–43 million reads/sample
(Supplementary Figure 4C) with a low representation
of C and an over-representation of T, consistent with
successful unmethylated C-to-T bisulfite conversion
(Supplementary Figure 4D). Reads were processed with
the meRan-TK package, specific for RNA bisulfite conversion,
taking into account the converted reads to allow genome
alignment and mapping (20).

To further assess the conversion rate in each sample, we
also included a commercially available pool of non-methylated
RNA sequences (ERCC spike-in control) in each sample.
ERCC sequence analysis showed an average conversion rate
of 99.47%, suggesting that bisulfite treatment was efficient
(Supplementary Figure 4E). Due to the lower quality of bisulfite
converted reads with respect to non-converted ones, only
transcripts covered with more than 30 reads were retained
for further analysis. We could observe different methylation
rates among transcripts; hence, to improve the quality of the

Frontiers in Virology | www.frontiersin.org 5 July 2021 | Volume 1 | Article 714475

https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
https://www.frontiersin.org/journals/virology#articles


Cristinelli et al. Exploring the Epitranscriptome of HIV-Infected Cells

FIGURE 3 | HIV infection induced changes in cellular m6A profile. (A) Pie chart representing the proportion of m6A methylated transcripts among the totality of

detected transcripts (13,103). (B) Representation of the enriched m6A DRACH motif among the samples. (C) Histogram plots showing on the x-axis genes

normalized for their length and divided into 30 bins, and for each bin fraction of the gene, the number of m6A residues. (D) PCA of the variance of m6A peaks among

all samples. HIV-infected samples are represented as green filled circles, non-infected samples as gray filled squares. Timepoints are depicted by the shade of the

color. HIV transcripts are not included. (E) Venn diagrams showing hypermethylated (upper panel) or hypomethylated (lower panel) m6A peaks upon infection. Values

in black represent the number of m6A methylated peaks, values in gray into brackets represent the number of corresponding transcripts. (F) Heatmap of the

commonly hyper/hypo methylated transcripts upon infection at the three timepoints. The 61 differentially methylated genes are shown. The average methylation level

of the non-infected cells is represented in violet in the first column and was used for normalization. Differential methylation was then normalized to the average

methylation intensity of each transcript. (G) Examples of an hypermethylated (upper panel) and an hypomethylated (lower panel) transcript showing m6A peak intensity

and distribution across samples using IGV viewer.
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differential methylation analysis, only cytosines displaying a
methylation rate > 20% were used (Supplementary Table 4).
Overall, we identified 2,267C residues, corresponding to 947
transcripts, present across all the non-infected timepoints with
a methylation rate higher than 20% (7% of overall detected
transcripts), 567 m5C with a methylation rate higher than 50%
and 79 with methylation rate >80% (Figure 4A). To date,
no consensus was described for m5C methylation. We thus
analyzed 10 nucleotides surrounding m5C residues displaying a
methylation rate greater than 80% and we identified a putative
consensus sequence in 500 out of 788 highly methylated m5C,
representing 63.4% of total hits (Figure 4B).

Consistent with previous studies, m5C residues were

enriched toward transcript ends and this distribution was

not globally affected by HIV infection (Figure 4C and

Supplementary Figure 6) (21).
Principal component analysis performed on the totality of

m5C shows a separation according to time and infection with

32.3% and 24.8% of the variance explained by PC1 and PC2
respectively (Figure 4D). This data remained unchanged upon
analysis with a more stringent filter for methylated cytosine
proportion (conversion rate >50% and conversion rate >80%)
(Supplementary Figure 7). Altogether, our data suggest that
HIV affected the m5C profile of cellular transcripts. Upon
analysis of differentially methylated m5C between infected and
non-infected cells, we could identify 1,759 hypermethylated m5C
in infected cells at 12 h, 822 at 24 h, and 1,251 at 36 h post
infection (corresponding to 622, 377, and 434 hypermethylated
transcripts, respectively) (Supplementary Table 4). Among them
26 m5C mapping on 13 different transcripts (and one
unidentified transcript) were commonly hypermethylated in
infected cells (Figure 4E). We could also identify 675 m5C
positions hypomethylated in infected cells at 12 h, 1,233 at
24 h, and 1,041 at 36 h post infection (corresponding to 348,
438, and 459 hypomethylated transcripts, respectively) with 8
m5C mapping on 7 transcripts commonly hypomethylated upon
infection (Figure 4E). The hypermethylated and hypomethylated
genes common at the three timepoints are displayed in
the heatmap (Supplementary Table 5 and Figure 4F) and
one representative m5C hypermethylated and hypomethylated
transcript is shown as IGV track (Figure 4G).

Although no statistically significant enrichment was
identified by gene ontology analysis, 23.8%, i.e., 5 out of
the 21 genes (ENO1, SF3B2, PPP2R1B, CD300A, and VHL)
identified as differentially methylated were already described
as interacting with HIV or contributing to its replication
(Supplementary Table 5).

HIV RNA Is Both m6A and m5C Methylated
Although m6A and m5C methylation marks were previously
reported along the HIV RNA molecule, these analyses
were performed at a unique time point post-infection and
did not consider the putative dynamics of methylation
throughout HIV life cycle progression (8–12). We thus
took advantage of our temporal design to assess the dynamics
of m6A and m5C epitranscriptomic marks in HIV-infected

cells. Furthermore, we compared the methylation profile
between intracellular HIV transcripts and vRNA isolated from
viral particles.

Upon m6A analysis of intracellular HIV RNA molecules, we
identified 7 peaks that were conserved at all timepoints, with
enrichment of m6A peaks toward the 3’ end of the viral sequence
(Supplementary Table 6 and Figure 5A). Increased methylation
at the 3’ region was consistent with previous studies identifying
the 3’ end as a methylation hotspot and as a binding site for
cellular m6A readers (9). We also confirmed the presence of
two previously reported m6A regions in Pol (8). However, we
identified 2 additional methylated regions, respectively located
between Pol and Vif on one hand, and in Vpu on the other hand.

Finally, we detected at 36 h post-infection a unique peak at the 5
′

end of theHIV genome, on the packaging signal sequence psi (ψ),
that is also present in the viral particles (Supplementary Table 7

and Supplementary Figure 8A).
The methylation pattern identified on HIV RNA extracted

from viral particles revealed the presence of a reduced number
of total m6A peaks compared to intracellular HIV transcripts,
with only three m6A-enriched regions (Figure 5A, lower panel,
and Supplementary Table 7), suggesting that a putative selective
packaging of viral RNA in the viral particle might take place.

Using a bisulfite conversion approach, we confirmed that
cellular HIV RNAs were indeed methylated, however with
minimal overlap with methylation hotspots described by
Courtney et al. (Supplementary Table 6 and Figure 5B) (12).
Upon filtering of low coverage regions and statistical analysis
we identified 26 m5C at 12 h post-infection, 30 m5C at 24 h
post-infection, and 7 highly methylated m5C residues at 36 h
post-infection covered by at least 100 reads.

Overall, we identified 7 m5C residues, common to the 3
timepoints, and clustering all in the vicinity of the HIV gag-
pol ribosomal frameshift signal with a methylation rate >50%.
These highly methylated cytosine are present in viral particles
as well as at all timepoints (Supplementary Figure 8B and
Supplementary Table 7). The mechanism and the role of this
time-dependent effect of m5C methylation on the HIV RNA
sequence needs further investigation.

DISCUSSION

Epitranscriptomics is a fast growing field of biology which

highlighted the role of m6A and m5C modifications as specific

mRNA marks mostly involved in RNA structural changes and
gene expression regulation. In the present study, we explored (i)

the cellular m6A- and m5C-marked transcriptome landscape, (ii)

the HIV-induced modifications of the cellular epitranscriptome,

and (iii) the position of these specific epitranscriptomic marks on

HIV RNA molecule.
Using a SupT1T cell line infected with a VSV-G pseudotyped

HIV-based virus, we detected globally 22.5% transcripts with
high confidence (13,103/58,136 genes), among which 15%
(1,971/13,103) were differentially expressed, with 813 genes
being upregulated and 1,158 downregulated genes in HIV-
infected cells compared to mock-treated cells. The analysis of
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FIGURE 4 | HIV infection induces changes in cellular m5C profile. (A) Pie chart representing the proportion of m5C methylated transcripts among the totality of

detected transcripts (13,103). (B) Identification of a putative consensus motif for C methylation. Logo representation of the predicted m5C motif surrounding C

residues displaying a methylation rate >80%. (C) Histogram plots showing on the x-axis genes normalized for their length and divided into 30 bins, and for each bin

fraction of the gene, the number of m5C residues. Only genes containing a C-T conversion rate >50% were used. (D) PCA of the variance of m5C peaks among all

samples. HIV-infected samples (HIV) are shown as green filled circles, non-infected samples (NI) as gray filled squares. Timepoint progression is depicted by the shade

of the color. HIV transcripts are not included. (E) Venn diagrams showing hypermethylated (upper panel) or hypomethylated (lower panel) m5C residues upon infection.

Values in black represent the number of m5C residues, values in gray into brackets represent the number of corresponding transcripts. (F) Heatmap of the commonly

hyper/hypo methylated transcripts upon infection at the three timepoints. The 21 differentially methylated genes are shown. The average methylation level of the

non-infected cells is represented in violet on the left, and was used for normalization. Differential methylation was then normalized to the average methylation intensity

of each transcript. (G) Examples of a m5C hypermethylated (upper panel) and a m5C hypomethylated (lower panel) transcript upon infection using IGV viewer. Each C

residue in the sequence is indicated as a red bar and the proportion of methylated C is shown in blue (exact proportion values are indicated for the statistically

significant residues). The significant methylated C residues are highlighted by a pink arrow in the sequence displayed above the tracks.
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FIGURE 5 | HIV RNA is both m6A and m5C methylated. Methylation pattern of HIV RNA molecules, isolated from infected cells over time (Cells RNA) or from viral

particles (Virions RNA) at 36 h post-infection. HIV genome organization is depicted on top of the panels and methylation marks are indicated as green color rectangles

(A) or pink triangles (B) above the genome, respectively. Detailed read coverage is displayed for each individual sample as tracks below the genome. (A) Identification

of m6A peaks on HIV RNA. Input (gray) and m6A immunoprecipitated samples (green) are shown. Putative m6A peak calling was performed with MACS2 package

after subtraction of the input background (overlay). Statistically significant peaks are highlighted by a red box, with color shading proportional to the q value (m6A peak

track). (B) Identification of m5C on HIV RNA. Coverage of HIV genome upon conversion (gray) and detection of m5C (pink) are shown. M5C are presented as

proportion of converted C. Bar height is proportional to the percentage of methylated C in the reads covering the position. The track height is set to 100%. M5C

calling was performed with MACS2 package. Statistically significant residues are highlighted by a red box, with color shading proportional to the q value.
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the epitranscriptome, with the tools available today, revealed
that 58.9% of genes carried m6A methylation (7,724/13,103)
(Figure 3B), while m5C marks were present on 7% (942/13,103)
of transcripts (Figure 4B). These epitranscriptomic marks
were mostly enriched toward 3

′

ends of transcripts, as
shown previously, and this distribution was not affected
by HIV infection. Furthermore, our data recapitulated the
lower abundance of m5C methylation compared to m6A
modification on mRNA molecules (4). In contrast, when
we focused on methylated transcripts and compared non-
infected cells and HIV-infected cells, we observed that in
the presence of HIV, methylation level globally increased,
and we identified 62 differentially m6A-methylated transcripts
(59 hypermethylated and 2 hypomethylated) as well as 21
differentially m5C-methylated transcripts (14 hypermethylated
and 7 hypomethylated), common at the three analyzed
timepoints. Our data are partially consistent with Tirumuru et
al., who observed a 4–7 fold-increase of m6A methylation in
cells infected with aWT virus, but not upon VSV-G-pseudotyped
virus infection, suggesting an Env-mediated signaling increase in
methylation (13). The basis of this discrepancy is likely due to
differences in the experimental design as Tirumuru et al. used
a global approach, assessing the level of methylation by m6A
dot-plot on Jurkat T-cell line, while we used the MeRIP-Seq
antibody-based technique on SupT1 cells.

Further analysis of the 64 m6A-DM transcripts did not
reveal any particular enrichment upon gene ontology analysis.
Nevertheless, we detected 4 out of 7 GIMAPs in the common
list of DM transcripts, and two additional hypermethylated
GIMAPmembers in individual timpoints. GIMAPs are immune-
associated proteins displaying a GTPase activity. They have been
involved in response to pathogens and have a prominent role
in T cell survival and differentiation. The role of GIMAPs in
HIV life cycle has never been reported so far and remains to be
further characterized.

The analysis of the 21 m5C-DM transcripts identified a few
genes whose products were previously described as interacting
with HIV proteins and affecting the viral life cycle. These
include Enolase 1 (ENO1), previously described as hampering
HIV reverse transcription (22); the splicing factor 3b subunit 2
(SF3B2), shown to interact with Vpr, thereby impairing splicing
of some cellular pre-mRNA and impacting Vpr-mediated G2

cell cycle arrest (23–25); the protein phosphatase 2 scaffold
subunit A beta (PPP2R1B), associating with Tat and involved
in Tat-mediated apoptosis (26); CD300A, a surface glycoprotein

involved in immune response signaling shown to be associated

with HIV disease progression markers (27, 28), and shown
to be downregulated by Vif (29); and von Hippel Lindau

tumor suppressor (VHL), a protein involved in the degradation
of hypoxia-inducible-factor and predisposing to cancer when
impaired, also known to mediate HIV integrase degradation,
thereby affecting HIV expression at post-integration steps (30).
The role of these methylations on protein expression remains
to be investigated, as well as the impact on HIV replication.
Nevertheless, these data provide a first roadmap of the impact
of HIV on cellular m5C-transcriptome.

These findings suggest that HIV modulates the host
methylation profile of the transcriptome, and we can thus
hypothesize that the modified transcripts are likely to affect
the viral life cycle, either promoting it or inhibiting it.
Differentially methylated transcripts may thus represent novel
HIV-interacting candidate proteins that should be further
investigated and characterized.

Of note, although epitransriptomic metabolism was not
significantly enriched in gene ontology analysis, we noticed
that some transcripts involved in methylation turnover were
themselves methylated and differentially methylated for some of
them (such as the YTHDF1 and YTHDF3 at 12 h post-infection).

Similar to cellular transcripts, the HIV virion RNA molecule
is methylated. We identified 7 m6A peaks that were conserved
over time, suggesting a rather stable methylation profile. We

observed an enrichment of m6A at the 3
′

of the HIV genome,
confirming data from previous studies (8, 9, 11). Our data did
not retrieve the two m6A peaks previously described to be
located in the RRE region, and implicated in enhanced Rev-
RRE binding and nuclear export (8). Overall, the studies aiming
at investigating m6A modifications display minimal overlaps,
likely due to protocol differences as mentioned above, and poor
resolution of the m6A identification approach. Upon comparison
between intracellular HIV transcripts and virion RNA we could
observe that the m6A peak present onVpu and in close proximity

of the HIV major 5
′

splicing donor (SD) was found only in viral
transcripts. Maintenance of the SD hairpin secondary structure
is essential to ensure correct splicing of viral transcripts by

controlling accessibility of the 5
′

splicing site for the splicing
machinery (31). Destabilization of the hairpin loop results in an
increase of splicing while its stabilization has the opposite effect.
We could speculate that the presence of m6A in proximity of the
site may induce a change in secondary structure allowing easier
access to the splicing machinery, while absence of methylation
favors the unspliced HIV RNA form. Moreover, the m6A peak
present in the 3

′

UTR region in all intracellular viral transcripts
is weak or absent in the viral particle genomic RNA, and
could suggest a signal contributing to selective packaging of
unmethylated HIV RNA genome (Supplementary Figure 8).

Furthermore, we identified 2 m6A peaks, present both on
intracellular HIV transcripts and on packagedHIVRNA genome,
encompassing the 2 major polypurine tracts (PPT). Although
PPT are known for being more resistant to RNAseH-mediated
degradation during reverse transcription, the identification
of PPT methylation may suggest an additional mechanism
providing the observed increased resistance (32).

No data were available on m5C methylation of HIV
transcripts until very recently. Using an immunoprecipitation-
based approach to investigate the m5C epitranscriptomic
mark, Courtney et al. identified 18 m5C peaks along HIV

RNA with an enrichment toward the 3
′

end of the genome
(12). Using a bisulfite conversion (BS-Seq) approach, we
confirmed the presence of this modification on intracellular
and packaged genomic viral RNAs and identified 7 conserved,
highly methylated m5C residues, but with only minimal overlap
regarding the exact positions of the epitranscriptomic marks.
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Using a temporal design, we could describe a C cluster at
the beginning of gag and surrounding the HIV ribosomal
frameshift signal that regulates Gag and Gag-Pol precursor
protein synthesis. This signal is indeed essential to maintain a
tight regulation of the 20:1 Gag/Gag-Pol translation ratio and
ensure successful HIV replication (33). The identification of an
m5C hotspot close to the frameshift signal may thus point to
an additional mechanism involved in the post-transcriptional
regulation of Gag and Gag-Pol production.

Although m6A and m5C methylations are considered as the
most abundant modifications on mRNA molecules, additional
epitransciptomic marks may be present and impact HIV-

host interactions, such as 2
′

-O-methylations (12, 34). Indeed,
Ringeard et al. recently showed that HIV transcripts can be

methylated at the 2
′

hydroxyl of ribose, hence 2
′

-O-methylation,
via a specific methyltransferase, FTSJ3, specifically recruited
by TAR-RNA binding protein (TRBP) (34). They identified
17A or U residues containing this specific methylation on the

viral RNAs. They demonstrated that 2
′

-O-methylations were
important for viral transcripts to be recognized as endogenous
RNA mimics and thus escape innate immune sensing and

degradation. Differential analysis of 2
′

-O-methylation marks
upon HIV infection may provide additional insights in HIV life
cycle (12, 34).

Overall, this study provided an overview of m6A and m5C
modifications on both viral and cellular transcriptomes over
time, identifying the dynamic impact of HIV infection on cellular
RNA modifications, and identifying novel candidates as putative
factors involved inHIV replication. Further investigation of these
candidates, using overexpression or knock-out assays, may reveal
a role as HIV dependency factor or inhibitory factor.

To ensure bona fide HIV-induced m6A and m5C
epitranscriptomic modifications, similar analyses may be
repeated using (i) fully replication-competent HIV virus to
discard any bias induced by the HIV_eGFP/VSV-G pseudotyped
vector and (ii) other cell lines or primary CD4+T cells to identify
conserved or cell-specific epitranscriptomic patterns.

The existence of RNA modifications and their potential
modulation by HIV proteins offer a new layer of opportunities
to hijack the host cellular machinery to promote viral replication
and evade the innate immune response. Therefore, identifying
all types of differentially methylated or modified transcripts
upon HIV infection may lead to the uncovering of novel host
factors involved in the HIV-host interplay. Finally, it is likely
that differential methylation induced upon HIV infection may be
shared with other viruses. Modifications of the epitranscriptomic
landscape upon pathogen invasion certainly deserves further
investigation and will likely become a new state-of-the-art tool
in exploring host-pathogen interactions.

METHODS

Cells and Plasmids
Human Embryonic Kidney 293T (HEK293T) cells were cultured
in D10 (Dulbecco’s modified Eagle medium (DMEM) containing
1x glutamax (#61965-026, Invitrogen), supplemented with

10% heat-inactivated Fetal Bovine Serum (FBS) and 50µg/ml
Gentamicin and maintained at a maximal confluence of 80%.

SupT1 cells are human T cell lymphoblasts. They were
cultured in R10 (RPMI 1640 with 1x glutamax (#61870-010,
Invitrogen) containing 10% heat-inactivated FBS and 25µg/ml
Gentamicin and split twice a week at 0.5x106 cells/ml to maintain
a maximal concentration of 1× 106 cells/ml.

The following DNA constructs were used in this study: For
viral infection, we used pNL4-31Env-GFP (NIH AIDS Research
and Reference Reagent program, Cat. #11100) that encodes the
HIV vector segment with a 903 bp deletion in the env ORF
in which the gfp ORF was introduced. For pseudotyping, the
plasmid pMD.G coding for the vesicular stomatitis virus G
envelope (VSV-G) was used (35).

HIV Production and Infection
For production of HIV-based vector NL4-3-1Env-GFP/VSV-
G (named hereafter HIV-eGFP), 2.5 million of HEK293T cells
were seeded in 10 cm dishes and incubated overnight at 37◦C/5%
CO2. The next day, cells reached about 60% confluence and
were transfected with a total of 10 µg of DNA, i.e., 7.5 µg of
pNL4-3-1Env-GFP and 2.5 µg pMD2.G coding for the VSV-
G envelope, using the jetPRIME kit (Polyplus transfection)
and according to manufacturer’s instructions. Briefly, DNA was
diluted into 500 µl of supplied buffer, mixed with 30 µl of
jetPRIME reagent and incubated 10min at room temperature.
Transfectionmixture was then added to the cell dropwise. Fifteen
hours after transfection, cells were washed once with D10 and
incubated for 33 h in 293SFM medium (#11686029, Thermo
Fisher Scientific). HIV-GFP particles were harvested 48 h after
transfection, filtered through 0.45µm, and concentrated on
Centricon units (Centricon Plus-70/100K, Millipore). Viral titers
were measured by HIV p24 Enzyme-linked immunosorbent
assay (ELISA) kit (Innogenetics).

SupT1 cells (5×106 cells) were either mock-treated or infected
with 5 µg p24 equivalent of HIV-GFP by spinoculation at
1,500 g for 30min at 20◦C, in presence of 4µg/ml polybrene
(Sigma), in 400 µl final volume in 14ml round bottom
polypropylene tubes—a total of 50 tubes were used for mock
condition and 50 tubes for infected condition to obtain a
total of 250 million cells for each condition. Cells were then
pooled, washed three times with culture medium, resuspended
at 106 cells/ml in R-10, and further incubated in T75
flasks (8× 31 ml).

At 12, 24, and 36 h post-infection, cellular SupT1 samples
(∼50 × 106 cells in 50ml) were collected for viral and
cellular measurements. Briefly, 0.5ml of the cell cultures were
used for cell counting and viability assessment by trypan
blue exclusion, using a ViCell Coulter Counter (Beckman
Coulter). Remaining cells were centrifuged at 300 g for 10min.
Viral supernatant produced from infected SupT1 cells was
collected at 36 h post-infection: 950 µl were mixed with
50 µl NP-40 (0.5%) and stored at −80◦C until particle
concentration assessment by p24 ELISA (Innogenetics) while
the rest of the supernatant was concentrated by filtration
on Centricon units (Centricon Plus-70/100K, Millipore) and
frozen at −80◦C for RNA extraction. Cells were washed
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with R10 once, centrifuged again, resuspended in 5ml R10
(∼107 cells/ml), and separated as follows: (i) 50 µl of
cell suspension were resuspended in Cell Fix 1× (Becton
Dickinson) for assessment of GFP expression and infection
success by FACS analysis (Accuri C6 FACS, Becton Dickinson),
(ii) aliquots of 1ml of cell suspension (∼107 cells) were
centrifuged, resuspended in 1ml of Trizol reagent (#15596026,
Invitrogen), and stored at−80◦C for further RNA extraction and
transcriptome analyses.

RNA Extraction
Total RNA was extracted from both concentrated viral particles
and cells using Trizol Reagent (#15596026 Invitrogen) according
to suppliers’ instructions. Briefly, samples were thawed at room
temperature and 200 µl chloroform were added to the mixture.
Samples were centrifuged for 30min at 10.000 g, at 4◦C, and
the RNA–containing, aqueous (upper) phase was transferred
to a fresh tube and subjected to precipitation with 0.5ml of
isopropanol for 1 h at −80◦C. Samples where then centrifuged
for 10min at 12,000 g, washed once in 1ml of 75% ethanol, and
resuspended in 50 µl H2O.

For poly(A) RNA purification, 200 µl Dynabeads Oligo(dT)25
(#61005, Life Technologies) were washed twice with 1ml of
binding buffer (20mM Tris-HCl, pH 7.5, 1.0M LiCl, 2mM
EDTA) and incubated with aliquots of 75 µg RNA in 100 µl
final volume for 15min at room temperature on a wheel. Samples
were then washed twice with 500 µl washing buffer (10mM
Tris-HCl, pH 7.5, 0.15M LiCl, 1mM EDTA 10mM Tris-HCl,
pH 7.5) and subjected to a second incubation with the same
RNA sample. Poly(A) selected mRNA was recovered through
elution by a 2min incubation with 20 µl Tris-HCl (10mM)
at 80◦C. PolyA depleted RNA from the 36 h NI samples was
purified and kept as a spike-in control for bisulfite conversion
experiments. RNA was purified and concentrated using a
column-based kit (#RNA1013, Zymo Research), fragmented
during 15min at 70◦C using Ambion RNA Fragmentation
Reagents (#AM8740, Life Technologies), in order to obtain
fragment of 100–200 nt and purified again as above. An aliquot
of fragmented RNA (100 ng) was retained as a control for
RNA sequencing (input) while the rest was used for MeRIP-
Seq and bisulfite conversion allowing m6A and m5C analysis,
respectively. At every step, integrity and peak size of the
RNA was assessed on a Fragment Analyser (AATI #DNF-
472).

m6A-Modified RNA Immunoprecipitation
Sequencing (MeRIP-Seq)
For MeRIP (#17-10499, Millipore), 5 µg of fragmented mRNA
was incubated with 5 µg of anti-m6A antibody or anti-IgG
antibody (negative control) previously coupled with 25 µl
of A/G-coated magnetic beads in 500 µl IP Buffer for 2 h
at 4◦C following manufacturer’s recommendations. Samples
were placed on a magnetic stand for 5min and the unbound
RNA was discarded. The beads were then washed three times
with 500 µl IP buffer and bound RNA was released by
two rounds of elution of 1 hour each with 20mM of free
m6A peptides (7mM N6-Methyladenosine. 5

′

-monophosphate

sodium salt). RNA was purified and concentrated in 20 µl of
water, using a column-based kit (# RNA 1013, Zymo Research).
We recovered normally between 15 and 25 ng of associated
RNA from samples immunoprecipitated with a specific anti-
m6A antibody. Libraries for sequencing (input RNA-Seq and
MeRIP-Seq) were prepared using Illumina TruSeq Stranded
mRNA kits (#20020594, Illumina), starting the protocol at the
Elute-Prime-Fragment step, and with a protocol modification
consisting in incubating the samples at 80◦C for 2min to only
prime but not further fragment the samples. Samples were
sequenced on a HiSeq 2500 Illumina on 4 lanes, using single end
reads of 125 nt (Genomic Technology Facility [GTF], University
of Lausanne).

RNA-Seq data were aligned to a combined hg38 (chr 1-22,
X, Y) and HIV genome FASTA using the STAR aligner, and
keeping only uniquely mapping reads. Data were analyzed in
collaboration with the Swiss Institute of Bioinformatics (SIB) and
the Genomic Technology Facility (GTF), University of Lausanne.

RNA Bisulfite Conversion Sequencing
(BS-Seq)
Bisulfite treatment was performed using the EZ RNAmethylation
Kit (#R5001, Zymo Research). Briefly, 500 ng of poly(A)-
selected RNA were spiked-in with 500 pg of polyA-depleted
RNA (to ensure rRNA representation) as a control for
bisulfite conversion. mRNA was mixed with 130 µl of RNA
conversion solution and converted using three cycles of
10min denaturation at 70◦C followed by 45min at 64◦C
in a final volume of 200 µl. After conversion, mRNA was
bound to a RNA purification column and desulfonated by
addition of 200 µl RNA Desulfonation Buffer during 30min
at room temperature. Purification was performed using the
kit according to the manufacturer’s recommendations. RNA
quantity and quality was determined by analysis on a Fragment
analyser (AATI) using the High sensitivity RNA kit (#DNF-
472, AATI).

The efficiency of bisulfite treatment was tested by RT-PCR-
mediated bisulfite analysis of spiked-in rRNA (C4447 in 28S
rRNA is 100% methylated). Briefly, 4 µl of bisulfite converted
RNA were subjected to RT with High Capacity cDNA reverse
transcription kit (Applied Biosystems #4368814) according to
manufacturer procedure and incubated with the following
program: 25◦C – 10min; 37◦C – 120min; 85◦C 5min. PCR
was performed on 6 µl of cDNA using the AccuPrimeTM Pfx
SuperMix (Thermo Fisher Scientific # 12344-040) with primers
annealing on the 28S ribosomal RNA (primerH28SF, H28SR
table 1). PCR products were sequenced by Next Generation
Sequencing, and resulting sequences aligned to the Human 28S.
Cytosine in position 4447 was used as control of non-converted
cytosine, while surrounding cytosines were used as a control of
C-T conversion.

Libraries for sequencing were prepared using the Illumina
TruSeq Stranded mRNA kit as described above (i.e., entering
the protocol at the Elute-Prime-Fragment step and with the
modification) and sequenced on two lanes of Illumina HiSeq
2500 as described above.
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FACS Analysis
FACS analysis of infected cells was performed on a BD Accuri C6
machine. About 2x105 cells were washed twice in Robosep buffer
(#20104, Stemcell Technologies) and fixed in 300 µl CellFix
buffer 1X (#340181, BD) for at least 3 h at 4◦C. The GFP was then
monitored by FACS in the FL-1 channel to monitor infection
success. Analysis was carried out using FlowJo software.

Bioinformatic Analyses
The analyses described in this section apply to both intracellular
transcripts (host mRNAs and vRNAs) and virion-incorporated
RNA data.

m6A and Gene Expression Quantification
The m6A modification and input libraries underwent a first
quality check with FASTQC [http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/]. FASTQ files were trimmed
with Atropos (36). The adapter sequences AGATCGGAAGAG,
CTCTTCCGATCT, AACACTCTTTCCCT, AGATCGGAAG
AGCG, AGGGAAAGAGTGTT, CGCTCTTCCGATCT were
removed after trimming of low-quality ends (a Phred quality
cutoff of 5 has been applied) as specified by the manufacturer
(https://support.illumina.com/downloads/illumina-adapter-
sequences-document-1000000002694.html). Only reads with a
minimum length of 25 base pairs after trimming were retained.

Trimmed reads were aligned to an assembly of the Hg38
human genome and HIV [Integrated linear pNL4-31Env-GFP]
genome. The software used for the alignment was HISAT2 (37).
Aligned reads were indexed and sorted with SAMtools (38).

Post-alignment quality of the reads was performed with
SAMtools stat and Qualimap 2 (39). Quality measures have been
collected and summarized with multiQC (40).

HIV genome has homologous 634 bp sequences in the 5
′

LTR

and 3
′

LTR.Multimapping reads from 5
′

LTR have been realigned

to the corresponding 3
′

LTR region with SAMtools.
Abundance quantification of transcripts on input libraries

has been performed with Salmon (41). HIV expression level
has been quantified by directly counting reads mapping to the
viral genome.

m6A peaks were identified with the peak calling software
MACS2 (v 2.1.2) (42). Caution was applied in the choice of
MACS2 running parameters, to allow the toll to correctly work
on RNAseq data. In RNA-Seq data the peak calling can be affected
by the gene expression level, and short exons may potentially be
miscalled as peaks. Hence, signal from input must be subtracted
from m6A signal, without the smoothing routinely applied by
MACS2 to DNA based data.

The “callpeak” sub-command from MACS2 was run with
the following parameters: –keep-dup auto (controls the MACS2
behavior toward duplicate reads, ‘auto’ allows MACS to calculate
the maximum number of reads at the exact same location based
on binomial distribution using 1e-5 as p-value cutoff), -g 2.7e9
(size of human genome in bp), -q 0.01 (minimum FDR cutoff to
call significant peaks), –nomodel (to bypass building the shifting
model, which is tailored for ChIP-Seq experiments), –slocal 0
–llocal 0 (setting these 2 parameters to 0 allows MACS2 to
directly subtract, without smoothing, the input reads from the

m6A reads), –extsize 100 (average length of fragments in bp),
-B -SPMR (to generate library size normalized bedGraph track
for visualization).

In order to compare infected vs. non-infected samples, the
differential peak calling sub-command of MACS2, “bdgdiff,” was
used, and “bdgdiff” takes as inputs the bedGraph files generated
by “callpeak.” First, we run “callpeak” with the same parameters
as above, but without the -SPMR option (output unnormalized
tracks), which is not compatible with “bdgdiff.” Then, for each
time point we run the comparison of infected vs. non-infected
samples with “bdgdiff,” subtracting the respective input signal
from the m6A signal and providing the additional parameters -g
60 -l 120.

Bisulfite Conversion Analyses
Cutadapt (43) was applied for read trimming, using
parameters of –minimum-length=25 and the adapter
“AGATCGGAAGAGCACACGTCTGAAC.” Trimmed reads
were subsequently reverse complemented using seqkit (44).

Quality control was performed by employing FastQC to
examine samples for (a) poor read quality and (b) contamination
of which there was no supporting evidence.

The application meRanGh from the meRanTK package (20)
was leveraged to make an index file for alignment consisting
of the hg38 reference genome supplemented with the HIV
genome. Aligning again employed meRanGh with parameters
enabling unmapped reads (-UN), multi-mapped reads (-MM)
to be written to output files. Additionally, the output bedGraph
(-bg) was produced.

Reported Regions were filtered by those with at least a 10 read
coverage (-mbgc 10). To account for HIV LTR regions being
multi-mapped, and not thus not being present in the alignment
output file, Sambamba (45) merge was employed to filter reads
in the HIV genome upstream of the 8,500 bp locus and append
them to the final alignment.

FeatureCounts (46) was employed at the exon and CDS level
for the hg38 and HIV genomes, respectively.

Methylation calling was completed via the meRanCall tool,
provided by meRanTK, with a read length (-rl) parameter of
126, an error interval of 0.1 used for the methylation rate p-
value calculation (-ei), an expected conversion rate of 0.99 (-cr).
MeRanCompare was employed with a significance value of 0.01
as the minimal threshold for reporting. For its size factors
parameter, MeRanTK’s included utility estimateSizeFactors.pl
was employed on each of the time points and produced values
of (0.8102, 1.2342), (1.1894, 0.8408), (0.6562, 1.5240) for (not
infected, infected) across time points 12, 24, and 36 h respectively.

Differential Gene Expression (DGE)
Analysis
Transcript abundance and counts estimated by Salmon for the
input samples were imported into an R session (version 3.5.1)
using the package tximport (47). The same package was used to
summarize transcript level expression at the gene level.

Low count genes have been removed with the method
“filtered.data” from the package NOISeq (48); “filtered.data”
method 1 removes those genes that have an average expression
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per condition <3 CPM (Counts Per Millions) and a coefficient
of variation per condition higher than cv.cutoff = 100 (in
percentage) in all the conditions.

The filtered gene table was the processed with the package
for differential gene expression analysis (49). First, exploratory
PCA plots were generated with the PCA plot function on counts
transformed with the rlog method in DESeq2. Then, differential
expressed genes were called with an adjusted (Benjamini-
Hochberg method) p-value threshold of 0.01. To take into
account the effect of cell culture time together with that of HIV
infection, we asked DESeq2 to fit a Generalize Linear Model
(GLM) which included both effects: design = ∼ infection +

time. Two lists of differentially expressed (DE) genes according
to infection and time were thus obtained. To further separate the
effect of the HIV infection from the time one, we produced a list
of “HIV only” DE genes, by removing from the list of infection
related DE genes those in common with the list of time-related
DE genes.

A PCA plot with this “HIV only” DE gene list was produced in
order to highlight the effect of HIV infection, and heatmaps with
the gene expression level of these genes were also drawn.

m6A Differential Peak Calling Analysis
MACS2 “callpeak” generated a list of peaks for each time
point and each infection status (infected and non-infected).
MACS2 “bdgdiff” generated 3 lists (common peaks, up and down
regulated upon HIV infection) for each time point comparison.
These lists of peaks were further processed and analyzed with the
R package diffbind (50), and annotation with overlapping genes
was provided by the package ChIPpeakAnno (51).

To reduce the number of false positives, only the peaks
called by both MACS2 methods (“callpeak” and “bdgdiff”) were
retained in the following analyses. For purpose, for each time
point and infection status, we intersected the list produced by
“callpeak” with the corresponding lists produced by “bdgdiff”
(the common peaks and condition specific peaks). We thus
obtained a high confidence peak list for each time point
and condition.

We defined a measure for peak intensity based on the
number of reads overlapping with each peak. For counting
the overlapping reads, the function dba.count from DiffBind
was used. First, we created a consensus peak set with the
union of the high confidence peak lists. Reads overlapping
with a span of 100 bp around the summit of the peaks
in the consensus were counted, normalization factors were
computed using edgeR TMM method (52), and the reads
in the m6a input were subtracted to separate methylation
from expression level effects. The normalized counts at each
peak, which we will call peak scores, were used to generate
the PCA plot, the peak distribution along gene length,
and heatmaps.

The presence of the m6A binding motif (“DRACH”) was
assessed using the function scan_sequences from the package
“universalmotif ” (53) over the consensus list of peaks.

An unsupervised motif search was also performed. From the
consensus peak set, we extracted the nucleotide sequence (from
the reference genome Hg38) of an interval of 10 bp upstream and

10 bp downstream from the center of each peak. The list of 17,657
sequences was used as input for the tool DREME (54), from
MEME suite (5.1.0) (55), which performed the motif discovery.

Peak distributions along genes were computed by dividing
each gene in 30 intervals and adding up the scores of peaks
belonging to each interval for all genes (in other words,
computing the sum of the peaks in each interval weighed by
the scores). The distributions were plotted at each time point
and condition.

In order to compare the modification of m6A RNA
methylation specific to HIV infection, we intersected the up
(down) regulated peak lists of all 3 time points, and, for
late infection response, at 24 and 36 h time point only. We
summarized these results at the gene level (obtaining a “gene
methylation score”) by adding up the scores of the peaks in each
gene. The methylation score of up and down methylated genes
upon HIV infection were plotted as heatmaps.

m5C Differential Methylation Calling
Analysis
The m5C data analysis follows the line of the m6A one described
above. The lists of methylated C generated by meRanCall tool
were further processed and analyzed with the R package DiffBind
and annotation for overlapping genes was provided by the
package ChIPpeakAnno.

In order to reduce the number of false positives in m5C called
bases, beside the adjusted p-value threshold of 0.01 applied by
meRanCall, we introduced an extra threshold on coverage, asking
that the retained m5C bases having at least 30 read coverage. This
number was adjusted by the total number of reads in each library
to have an even filter across samples.

Furthermore, a consensus set of m5C sites was created by the
union of the m5C called bases from all samples, asking that a
methylated site appears in at least 2 samples. The methylation
rate (number of methylated C over total number of C) at each
base was used as methylation intensity score to generate the PCA
plot, the m5C distribution along gene length, and heatmaps.

A motif discovery was performed with MEME (5.1.0) (55).
A list of 788 sequences of 10 bp surrounding both sides of
methylated bases was input to MEME. This list is a high
confidence list of methylated sites made by joining (union) the
bases with a methylation rate >0.8 from all samples.

m5C distributions along genes were computed by dividing
each gene in 30 intervals and adding up the methylation rate
of m5C belonging to each interval for all genes (in other words,
computing the sum of the m5C sites in each interval weighed by
the methylation rate). The distributions were plotted at each time
point and condition.

In order to compare the modification of m5C RNA
methylation specific to HIV infection, we intersected the up
(down) regulated peak lists of all 3 time points, and, for
late infection response, at 24 and 36 h time point only. We
summarized these results at the gene level (obtaining a “gene
methylation score”), by adding up the methylation rates of the
bases in each gene. The methylation scores of up and down
methylated genes upon HIV infection were plotted as heatmaps.
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