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Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is the leading cause

of pediatric viral encephalitis in Asia. Japanese encephalitis virus is transmitted by Culex

species mosquitoes that also vector several zoonotic flaviviruses. Despite the knowledge

that mosquito saliva contains molecules that may alter flavivirus pathogenesis, whether or

not the deposition of viruses by infected mosquitoes has an impact on the kinetics and

severity of JEV infection has not been thoroughly examined, especially in mammalian

species involved in the enzootic transmission. Most JEV pathogenesis models were

established using needle inoculation. Mouse models for West Nile (WNV) and dengue

(DENV) viruses have shown that mosquito saliva can potentiate flavivirus infections and

exacerbate disease symptoms. In this study, we determined the impact of mosquito

salivary components on the pathogenesis of JEV in pigs, a species directly involved

in its transmission cycle as an amplifying host. Interestingly, co-injection of JEV and

salivary gland extract (SGE) collected from Culex quinquefasciatus produced milder

febrile illness and shortened duration of nasal shedding but had no demonstrable impact

on viremia and neuroinvasion. Our findings highlight that mosquito salivary components

can differentially modulate the outcomes of flavivirus infections in amplifying hosts and in

mouse models.
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INTRODUCTION

Japanese encephalitis virus (JEV) is a member of the genus Flavivirus of the family Flaviviridae,
which contains several mosquito-borne human pathogens, including dengue (DENV), West Nile
(WNV), and yellow fever viruses (YFV) (1). Currently, JEV is the leading cause of pediatric viral
encephalitis in Asia, with annual estimates of 68,000 cases with a 30% mortality rate (2–4). It
is also an agricultural pathogen, capable of causing non-suppurative encephalitis in piglets (5–7)
and an array of reproductive disease outcomes in mature pigs including abortions, stillbirths, and
transient infertility (7–9). The virus is endemic to the Asia-Pacific region (4), but the detection
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of JEV genome has been reported in Italy (10, 11) and Angola
(12), suggesting the possibility of dispersal and establishment
of enzootic cycles in locations where amplifying hosts and
competent vectors are present.

Japanese encephalitis virus infects a wide variety of vertebrate
hosts in nature including cattle, horses, dogs, and reptiles
(13). Avian and swine species are the principle amplifying
hosts that support the enzootic transmission of JEV. Japanese
encephalitis pathogenesis has been investigated in amplifying
hosts and incidental hosts under laboratory conditions such
as in mice (14–17), non-human primates (18–20), chickens
(21), ducklings (21–23), and pigs (5, 24–27). The majority of
these published studies induced neuroinvasive disease through
needle inoculations, without considering the potential impact of
mosquito saliva, which is known to contain components that
modulate immune responses and alter outcomes of arbovirus
infections in mammalian hosts (28–33).

The objective of this study was to determine the impact
of mosquito salivary components on JEV infection in pigs.
Using the established method of the collection and injection of
mosquito salivary gland extract (SGE) to mimic the delivery of
mosquito saliva when feeding (34–37), we hypothesized that the
simultaneous delivery of mosquito SGE and infectious viruses
might alter the pathological outcomes caused by JEV infection
in pigs. Modulation of arbovirus infections by mosquito salivary
components has been primarily demonstrated in laboratory
mice but requires further evaluation with other animal models.
Enhanced disease symptoms have been reported in mouse
models that received mosquito saliva or SGE and challenged
with alphaviruses (33, 34), bunyaviruses (28, 38), and flaviviruses
(35, 37, 39–41). However, observations in mouse models were
not consistent with other small animal models. For example,
challenge of hamsters (42) and chickens (43) with WNV and
house finches with Western equine encephalitis virus (44)
through the bites of infected mosquitoes had no demonstrable
differences in disease severity nor infection outcomes when
compared with needle injection. Our work established a model
to study the modulation of JEV infections by mosquito salivary
components in pigs. This is also the first study that evaluated
the impact of mosquito saliva on flavivirus pathogenesis in
a mammalian host which develops viremia and can support
enzootic flavivirus transmission in nature. Understanding how
mosquito saliva modulates flavivirus infections in mammalian
amplifying hosts has significant implications because humans
play a similar role in the urban transmission of DENV, YFV, and
Zika virus.

In this study, the co-injection of SGE derived from Culex
quinquefasciatus and JEV through the intradermal route altered
the kinetics of JEV infection in 3-week-old white-line crossbreed
domestic pigs. In contrast to the enhancement of diseases caused
by mosquito saliva reported in mouse models, SGE reduced the
severity of diseases caused by JEV infection as demonstrated by
the development of milder febrile illness and shortened period
of viral nasal shedding. Interestingly, the viral loads among the
tissues collected from the central nervous system (CNS) did
not differ significantly and no demonstrable effect on viremic
titers were observed with the co-inoculation of SGE and JEV.

The findings suggest that the modulation of flavivirus infection
by mosquito saliva may result in different infection outcomes
depending on the vertebrate host species.

MATERIALS AND METHODS

Virus and Cells
Japanese encephalitis virus strain JE-91 was propagated using
Aedes albopictus C6/36 cells maintained in Leibovitz (L-15)
medium and stored at −80◦C (26, 45). JE-91 strain (GenBank
accession: GQ415355) was originally isolated from mosquitoes
in Korea in 1991. It was passaged once in Vero cells and
once in C6/36 cells prior to this study. The strain was selected
as a representative strain for genotype Ib of JEV, which is
the dominantly circulating genotype in the endemic region.
African green monkey kidney Vero76 cells maintained in L-
15 media were used to determine infectious virus titers of
virus stocks via median tissue culture infectious dose (TCID50)
method (26, 46, 47).

Preparation of Mosquito Salivary Gland
Extract
Salivary glands were dissected from a colony of Cx.
quinquefasciatus (F > 30) originally obtained from Vero
Beach, FL (48, 49). The colony tested negative for known
flaviviruses using the pan-flavivirus EMF1-VD8 primer set (50).
Seven- to 10-day-old female mosquitoes were surface sterilized
with 70% ethanol and dissected in phosphate buffer saline (PBS)
to obtain salivary glands. Fifty pairs of salivary glands were
placed in approximately 1ml of PBS, sonicated, and centrifuged
at 13,000 rpm for 10min at 4◦C to release proteins and pellet
cellular debris (51). Supernatant was collected and stored at
−80◦C until the challenge experiment.

Study Design and Sample Collection
The study was designed to investigate the impact of mosquito
salivary proteins on the tropism of JEV and tissue viral loads
of experimentally challenged domestic pigs, and of disease
progression. A total of 28 three-week-old white-line crossbreed
domestic pigs were randomly assigned into four groups (n =

4 or 10), as summarized in Table 1. Animals were co-injected
with either 100 µl equal volume mixtures of SGE and JEV stock
containing 107 TCID50 of JE-91 strain (SGE+JEV, n = 10) or
100 µl equal volume mixtures of SGE and sterile saline (SGE-
only, n = 4). Other groups of animals were injected with a
mixture of 50 µl of sterile PBS and 50 µl of JEV stock (JEV-
only, n = 10) or 100 µl of sterile saline only (mock, n = 4) to
characterize JEV pathological outcomes by needle inoculation.
The dosage used in our study was comparable with the dosages
described in previous studies (5, 25, 26, 52), which successfully
established JEV infection in domestic pigs. All animals were
intradermally inoculated through a single injection at the base
of the left ear. Half of the animals in each treatment group (n
= 14) were sacrificed at 3 days or 28 days post-infection (DPI)
for the investigation of tissue tropism and viral loads during
the acute and convalescent phases of JEV infection, respectively.
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TABLE 1 | Summary of the study experimental groups.

Group Intradermal inoculum Total n Necropsy at 3 DPI Necropsy at 28 DPI

Mock 100 µl sterile PBS n = 4 n = 2 n = 2

JEV-only 50 µl sterile PBS + 50 µl 107 TCID50 JEV n = 10 n = 5 n = 5

SGE-only 50 µl SGE + 50 µl sterile PBS n = 4 n = 2 n = 2

SGE+JEV 50 µl SGE + 50 µl 107 TCID50 JEV n = 10 n = 5 n = 5

DPI, day post-infection; PBS, phosphate buffer saline; SGE, salivary gland extract; JEV, Japanese encephalitis virus; TCID50, 50% tissue culture infectious dose.

All experimental procedures were approved by Kansas State
University’s Institutional Animal Care and Use Committee.

All animals were monitored daily for clinical signs, including
fever (≥40◦C),mentation changes, and neurologic abnormalities.
Serum and nasal swab samples were collected to characterize the
kinetics of viremia and nasal shedding, respectively, as previously
described (26). Blood was obtained daily until 7 DPI and then
weekly until 28 DPI. Nasal swab samples were obtained daily
from alternating nares until 14 DPI and then weekly until 28 DPI
and processed for analysis as previously described (26).

At 3 or 28 DPI, the animals were euthanized by intramuscular
injection with xylazine (2–3 mg/kg) and ketamine (10–20 mg/kg)
followed by intravenous injection of sodium pentobarbital
(390 mg/ml). Approximately 5 mm3 blocks of the following
CNS and lymphoid tissues were collected in 1ml of L-15
media for the quantification of infectious viruses and viral
loads: brain (olfactory bulb, olfactory peduncle, piriform cortex,
midbrain, pons, thalamus, frontal lobe, parietal lobe, temporal
lobe, occipital lobe, and caudate nucleus), spinal cord, nasal
epithelium, olfactory neuroepithelium, medial retropharyngeal
lymph node, mesenteric lymph node, medial iliac lymph node,
Peyer’s patches, thymus, and tonsil. All of the samples were stored
at−80◦C prior to analysis as described previously (26).

Detection of Infectious Virus and Viral
Genome
Standard plaque assay with Vero76 cells was used to detect
and quantify infectious viruses in the serum and nasal swab
suspensions, as previously described (26, 53). Infectious viral
titers were calculated in plaque forming units (PFU)/ml.
Infectious viral titers in PFU/g were also calculated for the
homogenized tissue samples, as previously described (26). Tissue
samples were first weighed, homogenized via the TissueLyser II
system (Qiagen) for 4min at 26Hz, and centrifuged at 10,000 ×
g for 10min prior to analysis.

A previously published and validated TaqMan one-step
reverse-transcriptase quantitative polymerase chain reaction
(RT-qPCR) assay was used to quantify JEV genomes in the serum,
nasal swab suspensions, and tissue samples (54). Reactions were
performed using the iTaq Universal Probe One-step kit (Bio-
Rad) on a CFX96 Real-Time PCR Detection System (Bio-Rad)
following procedures as previously described (26, 54, 55). Tissue
samples were first weighed, homogenized via the TissueLyser
II system (Qiagen) for 4min at 26Hz, and centrifuged at
10,000 × g for 10min. Viral RNA was extracted from the
serum and nasal swab suspensions with the QIAamp viral RNA

extraction kit (Qiagen). Total RNA was extracted from the
homogenized tissues with Trizol LS (Invitrogen). A standard
curve was constructed using serially diluted RNA extract derived
from a JEV stock at 8.52 logTCID50/ml. Samples with Ct values
lower than 34 were considered positive. Results were reported
as genome equivalent to logTCID50/ml (geq-TCID50/ml) or
logTCID50/g (geq-TCID50/g).

Plaque Reduction Neutralization Test
Neutralizing antibody titers were determined by plaque
reduction neutralization test, as previously described (26, 56).
Heat inactivated serum samples were serially diluted two-fold
starting at 1:10 to 1:640 and incubated with approximately 50
PFU of JE-91 strain for 1 h at 37◦C. Mixtures of antibodies
and viruses were inoculated onto monolayers of Vero76
cells and overlaid with L-15 media supplemented with 1%
methylcellulose. Plaques were counted after 5 days of incubation
at 37◦C. Neutralizing antibody titers were calculated based on a
50% or greater reduction in plaque counts (PRNT50).

Statistical Analysis
Viral loads in tissue samples collected from the groups of animals
at 3 and 28 DPI were evaluated by non-parametric Kruskal-
Wallis tests for the four groups (mock, JEV-only, SGE-only, and
SGE+JEV) and post-hoc Mann-Whitney U-tests using the SAS
software (version 9.4, SAS Institute, Cary, NC). Owing to the
violation of normality assumption and considering time as a
factor, non-parametric Kruskal-Wallis tests and post-hoc Dunn’s
multiple pairwise comparison tests with Bonferroni correction
[Dunn-Bonferroni test (DBT)] were performed to compare
temperature, viremia levels, and nasal shedding levels between
the JEV-only and SGE+JEV groups. For the differences in the
duration of nasal shedding between the SGE+JEV and JEV-
only groups, Student’s t-test was used for such an evaluation.
Fisher’s exact tests were used to analyze the difference in ataxia
incidence between the groups. The R software (version 4.1.0, The
R Foundation) was used for data graphical display.

RESULTS

All animals were healthy and had no detectable neutralizing
antibodies against JEV at the start of the study. Inoculation
of co-injection of JEV and SGE or JEV alone, both led to the
onset of symptoms including fever and lethargy. Clinical signs
of acute infections subsided near to the defervescence stage
followed by the development of abnormal gait changes indicating
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FIGURE 1 | Average body temperatures of pigs after intradermal challenge with sterile saline (control), 107 TCID50 of JE-91 strain (JEV-only), salivary gland extract

(SGE-only), and 107 TCID50 of JE-91 strain mixed with salivary gland extract (SGE+JEV). DPI, day post-infection. Asterisk (*) indicates the significant difference when

JEV and SGE+JEV groups were compared to each other considering time as a factor and using non-parametric Kruskal-Walls test and post-hoc Dunn’s multiple

pairwise comparison test adjusted with Bonferroni correction.

neurological damage. The onset of clinical signs and tissue viral
loads were compared to assess the impact of SGE on the kinetics
and severity of JEV infection in pigs.

Injection of SGE and JEV Modulated the
Kinetics of Fever but Not Titers of Viremia
or Nasal Shedding
The development of fever has been consistently observed in pigs
challenged with JEV (25–27, 52). We hypothesized that the anti-
inflammatory properties of mosquito saliva could potentially
modulate the onset and severity of clinical diseases induced by
JEV as reflected by the observed development of febrile illness
(29, 33, 34). Elevated body temperatures were detected in both
SGE+JEV and JEV-only groups. One notable difference between
the SGE+JEV and JEV-only groups was the time of fever onset
and percentage of animals with elevated temperature (Figure 1;
Supplementary Figure 1). Injection with JEV-only led to the
development of fever in 10% of animals (1/10) at 1 DPI followed
by the highest incidence of fever (80%, 4/5) observed at 4 DPI.
The animals that received the co-injection of JEV and SGE
showed delayed onset of fever and did not reach the highest
incidence until 6 DPI (40%, 2/5). The average body temperatures
of animals in the SGE+JEV group were only significantly lower
than those in the JEV-only group at 1 DPI (DBT, p = 0.017) but
remained lower on 2, 3, and 4 DPI although the comparisons
were not statistically significant (DBT, 0.155 ≥ p ≥ 0.999). The
observations suggest that the co-injection of SGE and JEV has a
significant but transient impact on the dynamics of febrile illness
in infected pigs.

Differential kinetics in the development of febrile illness in
response to the needle inoculation of JEV and the simultaneous

delivery of SGE and JEV warranted the comparison of viremic
and nasal shedding profiles, two important manifestations caused
by JEV infection in pigs (26, 52, 57). All virus-challenged animals
developed transient viremia, as shown in Figures 2A,B. The
average viremic titers and serum viral loads among the SGE+JEV
animals appeared slightly lower than the JEV-only group, but the
differences were not statistically significant at any DPI (DBT, p≥
0.999). The highest average viremic titer observed in both groups
were comparable to each other (SGE+JEV at 2 DPI: 2.2 × 104

± 3.3 × 104 PFU/ml; JEV-only at 3 DPI: 1.1 × 105 ± 2.9 × 105

PFU/ml; DBT, p = 0.396) followed by the clearance of viremia
at either 4 or 5 DPI. Additionally, the serum viral loads also
peaked in SGE+JEV and JEV-only groups at 2 (4.7 × 104 geq-
TCID50/ml) and 3 DPI (4.4 × 105 geq-TCID50/ml), respectively.
No difference was found in the serum viral loads between the two
groups of animals at 2 or 3 DPI (DBT, p ≥ 0.999).

Infectious viruses were isolated in nasal swabs collected from

a random subset of experimentally challenged pigs (Figure 3A).

Forty percent (4/10) of animals in the SGE+JEV group began to
secrete infectious viruses as early as 2 DPI. Similarly, infectious

virus was detected in nasal secretions collected from 60% (6/10)

of pigs in the JEV-only group. Detection of infectious viruses
persisted in both the SGE+JEV and JEV-only groups for up to

6 and 5 DPI, respectively. Detection of viral RNA demonstrated

that 80% (8/10) of SGE+JEV pigs and 100% (10/10) of JEV-only
pigs developed nasal shedding (Figure 3B). The duration of nasal

shedding was prolonged in comparison with the durations of
fever and viremia. By RT-qPCR, viral RNA was detected from 2
DPI to 7 DPI in the SGE+JEV group whereas nasal shedding was
detected up to 10 DPI in the JEV-only group. Nasal secretions
had no demonstrable difference in infectious titers and viral
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FIGURE 2 | Viremic profiles of individual animals following intradermal JEV

challenge with or without SGE quantified by plaque assay (A) and RT-qPCR

(B). DPI, day post-infection; PFU, plaque forming units; Geq-TCID50, genome

equivalent-50% tissue culture infectious dose.

RNA loads at any DPI between SGE+JEV and JEV-only groups
(Kruskal-Wallis test, p = 0.113 in infectious titer and DBT, p
≥ 0.999 for viral RNA loads). However, the average duration of
nasal shedding was significantly shorter among SGE+JEV pigs
(1.8 ± 1.3 days) than those challenged with JEV only (3.8 ± 1.6
days) (one-tailed t-test, t = 1.925, p= 0.045).

The delayed onset of fever and shortened periods of nasal
shedding suggest that the inclusion of SGE in the inocula altered
the kinetics of acute disease signs caused by JEV infection.
However, the addition of SGE did not have a demonstrable
impact in quantities of infectious viruses and viral genomes in
serum and nasal secretions.

SGE Altered the Viral Burden in Peripheral
Nervous Tissues but Had No Demonstrable
Impact on the Infection Outcomes of
Lymphoid and Central Nervous Tissues
Detectable viremia led to the dispersal of JEV to lymphoid
and nervous tissues through the hematogenous route in both
SGE+JEV and JEV-only groups at 3 DPI (Figure 4). Consistent
with the comparable viremia titers, the systemic spread of JEV
was not impacted by the co-administration of SGE and JEV
because the infectious titers and viral RNA loads of homogenized
lymphoid tissues (peripheral lymphoid nodes, thymus, and
tonsil) did not show demonstrable differences (DBT, p ≥ 0.999
for infectious titer and Kruskal-Wallis test, p = 0.363 for viral

RNA load) (Figure 4; Supplementary Data 1). The co-injection
of JEV and SGE did, however, lead to different outcomes of JEV
infection in one of the two peripheral nervous tissues examined
in this study (Figure 5). Homogenized sciatic nerves obtained
from SGE+JEV animals (2.2 × 101 ± 4.4 × 101 PFU/g) had
significantly lower amounts of infectious viruses than those
that were injected with JEV alone (2.5 × 103 ± 4.7 × 103

PFU/g, Mann-Whitney U test, p = 0.032). However, there was
no demonstrable statistical difference in the viral RNA load of
the sciatic nerve samples (Mann-Whitney U test, p = 0.548)
(Figure 4). Albeit the lack of statistical significance (Mann-
Whitney U test, 0.222 ≤ p ≤ 0.999), the average viral RNA loads
in the CNS collected from the SGE+JEV groupwere overall lower
than those from the animals that were injected with JEV alone
(Figure 4).

JEV Infection Caused Neurologic Signs
and Persistent Infection in Pigs
Development of trembling, paralysis, and/or ataxia of the
hind limbs has been previously reported in JEV-infected swine
(5, 6, 26, 58, 59). Animals in the SGE+JEV and JEV-only
groups had a comparable incidence of ataxia (SGE+JEV: 80%
(4/5); JEV-only: 40% (2/5); Fisher’s exact test, p = 0.110)
(Supplementary Data 2). The development of ataxia in both
groups was stochastic. In the SGE+JEV group, two animals
became ataxic as early as 6 DPI and persisted until the end of the
study. Two additional pigs developed bilateral hind limb ataxia:
one at 11 DPI that lasted a week and the other at 25 DPI that was
persistent until 28 DPI. In the JEV-only group, one pig developed
gait abnormality at 15 DPI until the end of the study, while
another exhibited only a 2-day period of mild rear limb ataxia
between 22 and 23 DPI. Despite the apparent signs of neurologic
abnormalities, all animals survived the experimental challenge
and developed neutralizing antibody responses. Geometric mean
PRNT50 titers were similar between the SGE+JEV (105.6) and
JEV-only (91.9) groups (Mann-Whitney U test, p= 0.841).

Neurological signs observed during the convalescent phase of
JEV infection were consistent with the presence of viral RNA
in CNS and lymphoid tissues in both groups of animals. Viral
RNA was detected in at least one CNS tissue in two animals in
the SGE+JEV group and one animal in the JEV-only group at
28 DPI (Figure 6). In addition to the detection of viral RNA in
CNS tissues at 28 DPI, thymus and tonsil were potential sites
of persistent infection. Viral loads in the thymus collected from
infected pigs ranged between 3.6 × 101 and 8.12 × 101 geq-
TID50/g in the SGE+JEV group (n = 3) and between 3.85 × 101

and 4.23 × 101 geq-TCID50/g in the JEV-only group (n = 2).
Tonsils had a higher level of viral loads as shown with average
viral titers of 5.8 × 103 ± 2.6 × 103 geq-TCID50/g from two
SGE+JEV pigs and 1.6 × 103 ± 1.4 × 103 geq-TCID50/g from
three JEV-only pigs. However, there was no statistical difference
across tissue samples collected at 28 DPI between the groups
(Kruskal-Wallis test, p = 0.378), suggesting that SGE had no
impact on the persistence of JEV infection in pigs.

In summary, the impact of mosquito salivary proteins on the
kinetics and severity of diseases was limited to the acute phase of
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FIGURE 3 | Nasal shedding kinetics of individual animals following intradermal JEV challenge with or without SGE quantified by plaque assay (A) and RT-qPCR (B).

PFU, plaque forming units; DPI, day post-infection; Geq-TCID50, genome equivalent-50% tissue culture infectious dose.

FIGURE 4 | Average viral loads of several tissues collected at three DPI following intradermal JEV challenge with or without SGE. DPI, days post-infection;

Geq-TCID50, genome equivalent-50% tissue culture infectious dose.

JEV infection. In comparison with pigs inoculated with JEV only,
the co-injection of SGE with JEV led to milder disease based on
the delayed onset of fever, shortened nasal shedding, and reduced
CNS viral loads. However, the reduced severity of acute JEV
infection in the SGE+JEV group had no demonstrable impact on
the frequency of neurological diseases and persistent infection.

DISCUSSION

Mosquitoes play an integral role in the transmission of

arboviruses. Mosquito salivary components have been

increasingly recognized as an important factor that modulates

vertebrate immune responses and, as a consequence, disease
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FIGURE 5 | Infectious viral titers of (A) sciatic nerve and (B) facial nerve

samples collected from the infected animals. Asterisk (*) indicates the

significant difference when JEV and SGE+JEV groups were compared to each

other using non-parametric Mann-Whitney U test.

FIGURE 6 | Viral RNA detected by RT-qPCR in several central nervous and

lymphoid tissues collected at 28 DPI following intradermal JEV challenge with

or without SGE. DPI, days post-infection; Geq-TCID50, genome

equivalent-50% tissue culture infectious dose.

pathogenesis caused by arbovirus infections. Several studies
suggested that mosquito salivary components delivered
through feeding or injection suppress antiviral immunity
and enhance pathological outcomes in mouse models. The
immunosuppressive effects of mosquito saliva include the
stimulation of anti-inflammatory cytokines (34, 51, 60),
polarization from a Th1 to Th2 immune response (30, 34), and
suppression of the host innate immune responses (29, 30, 33).
However, the enhancement of pathological outcomes caused by
arbovirus infections has not been consistently observed in all
vertebrate species (42–44). Our study investigated the impact
of mosquito SGE on the kinetics and severity of JEV infection
in pigs, an amplifying host that is directly relevant to JEV
transmission in nature. This model system is unique from the
majority of previously published studies because it assesses the
impact of mosquito salivary components on flavivirus infections
in a mammalian amplifying host.

The co-injection of SGE and JEV, an established approach
developed to mimic the bite of infected mosquitoes (34–37),
showed that mosquito salivary components can modulate JEV
infection in pigs, resulting in reduced fever and decreased
nasal shedding duration. Consistent with the hypothesis that

mosquito saliva suppresses the pro-inflammatory responses in
the vertebrate host, the simultaneous delivery of SGE and JEV
led to a low incidence and delayed onset of fever (Figure 1).
This effect has also been demonstrated after mosquito bite
infection of a humanized DENV mouse model, which was
partially reconstituted with human immune cells to recapitulate
DENV pathogenesis in humans (40). It is also consistent
with the anti-inflammatory properties of Cx. pipiens and Cx.
quinquefasciatus saliva reported in human keratinocytes (61, 62).
Although the mechanism of how mosquito saliva caused the
observed shortened duration of JEV shedding remains unclear
(Figures 3A,B), lower levels of viral shedding of WNV has also
been documented in two independent studies that compared
chickens challenged via needle inoculation with those infected
by mosquito bites (43, 63). Cloacal shedding of WNV was
less frequently detected in chickens inoculated by infected Cx.
tritaeniorhynchus bites than chickens infected by subcutaneous
injection (43). More efficient viral clearance and shortened
periods of oral shedding was also reported in chicks exposed to
WNV from infected Cx. pipiens than those infected parenterally
(63). However, this trend was only documented among chickens
within a specific range of age (63), suggesting that reduced
shedding of flaviviruses in avian hosts is also likely to be age-
specific. Nevertheless, the shortened period of nasal shedding
challenges the epidemiologic importance of vector-free JEV
transmission (52). To date, infectious viruses and JEV genome
in nasal secretions has only been detected under laboratory
conditions. To the best of our knowledge, there has been no virus
isolate or detection of viral genome reported in naturally infected
animals, urging further investigation in understanding the degree
of importance of nasal shedding of JEV among domestic pigs and
whether or not it can serve as a mechanism for viral maintenance
in nature.

Our results are comparable with published studies that
showed that acute diseases caused by flavivirus infections can
be modulated by mosquito salivary components (35, 37, 40),
but how the disease was impacted and altered was different.
Feeding by infected mosquitoes or simultaneous injection of
mosquito SGE with infectious viruses was implicated to enhance
systemic diseases caused by flavivirus infections as observed
previously, such as with inbred mouse strains challenged with
WNV (35, 37) and humanized mice challenged with DENV
serotype 2 (40). Intriguingly, the enhancement of viremia and
systemic disease was not observed in our model, presumably
due to the differences in the choice of vertebrate species. The
seemingly contradictory outcomes may reflect the different roles
of incidental and amplifying hosts in flavivirus transmission.
Although a useful laboratory model, mice (Mus musculus) and
other rodent species have no known role in the transmission
or maintenance of flaviviruses in nature. The development
of neurotropic diseases is an important pathological outcome
for most mouse models after experimental challenges with
flaviviruses, a hallmark that resembles the incidental hosts
for JEV and other flaviviruses. On the other hand, as an
amplifying host species, domestic pigs develop viremia to
sustain the transmission of JEV. Although the incidence and
severity of febrile illness was reduced among animals that
received the intradermal injection of SGE and JEV, viremic
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titers and serum viral loads between the SGE+JEV and JEV-
only groups remained comparable (Figures 2A,B). The lack
of differences in viremic titers and serum viral loads indicate
that the modulation of disease severity by mosquito saliva in
amplification hosts potentially does not significantly affect the
likelihood of transmission via the bite of infected mosquitoes.
Amplifying hosts that develop viremia, but experience no
apparent signs of disease, are indeed known to be advantageous
for the transmission and maintenance of flaviviruses, as observed
with DENV (64) and ZIKV infections in humans (65). Therefore,
we speculate that the modulation of flavivirus infections by
mosquito salivary components can be fundamentally different in
amplifying hosts, especiallymammalian species, and in incidental
hosts. Additionally, consistent with the hematogenous route of
neuroinvasion by JEV (19, 66–68), the unaltered viremia was
coupled with viral burdens in the central nervous tissues that
were comparable between the animals in the SGE+JEV and
JEV-only groups (Figure 4). Despite the limited numbers of
amplifying hosts that can be studied under laboratory conditions,
understanding the differential immunomodulatory outcomes by
salivary components of mosquitoes may provide an opportunity
to investigate how saliva of hematophagous arthropods can
affect the transmission efficiency of flaviviruses in nature. Our
findings demonstrated that mosquito salivary components can
modulate the kinetics of JEV infection in pigs when infectious
viruses are administered at a high dosage. As the quantities
of infectious viruses delivered by mosquito bites can vary
significantly in natural transmission and different amount of
infectious viruses present in mosquito saliva could change the
outcomes of arbovirus infections (36), it is also important to
determine if the modulation of arbovirus infections by mosquito
saliva can be influenced by the amount of infectious viruses in an
amplifying host system.

In addition to the potential variation based on the vertebrate
host, the effect of mosquito saliva in the animal models may
be virus-specific. Our understanding of how mosquito saliva
modulates encephalitic flavivirus infections has been largely
derived from WNV mouse models (35, 37, 39, 51, 69). In the
available WNV infection models, it has been implicated that
mosquito saliva enhances the systemic infection followed by the
development of more severe neuroinvasive diseases. However,
our work and that of others suggest that mosquito saliva may
play a different role inmodulating the outcomes of JEV infections
in mammalian species. For example, the co-injection of salivary
glands dissected from Cx. pipiens or Ae. albopictus and JEV
had no demonstrable impact in the mortality of BALB/c mice
in comparison with intradermal inoculation of JEV alone (70).
Similarly, there was no difference in the mortality rates among
BALB/c mice that receive the intradermal injection of JEV-
positive saliva collected from infected mosquitoes and JEV stocks
derived from cell culture (70). In contrast, high viremia and high
mortality from viral encephalitis with apparent neurological signs
were induced by bites from JEV-infected Cx. pipiens in newborn
ducklings (71), which normally do not demonstrate such clinical
outcomes to JEV by needle inoculation (23). These variations in
infection outcomes are most likely due to the differences in the
disease pathogenesis of JEV in vertebrate species.

Differences in our and others’ observations highlight
the complexity of interactions among mosquitoes, JEV, and
vertebrate hosts. Another factor that can contribute to the
differential outcomes is the choice of mosquito species used to
determine the impact of saliva or salivary components on the
kinetics and severity of JEV infections. While the modulation
of arbovirus infections has been reported using saliva collected
from mosquito species with no or low vector competence
(38, 39, 51), the use of Culex species mosquito that are involved
in natural transmission of JEV ensures the biological relevance
of models developed to study the modulation of JEV infections
by mosquito saliva in our and others’ studies (72).

Collectively, our study demonstrates for the first time the
utility of pigs to study the modulation of JEV infection by
mosquito saliva. Our findings further highlight the complex and
unique differences involved in mosquito-virus-host interactions.
Investigating the mechanisms responsible for these differences
is important to improve our understanding of the ecology and
pathogenesis of arboviruses.
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