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Although the bacterial microbiota of various compartments (e.g. vagina, amniotic fluid,

and placenta) have been studied in pregnancy, there has been far less emphasis on

normal and pathological viral communities. Cumulative evidence shows the presence

of a number of apathogenic viruses in various tissues of healthy people, including

pregnant individuals. What role, if any, these viruses play in human physiology is

unknown. Anelloviruses (family Anelloviridae) are circular, single-stranded DNA viruses

commonly detected with high prevalence in vertebrate hosts, including primates.

Humans are nearly always colonized with at least 1 of 3 anellovirus subtypes, namely

Alphatorquevirus (torque teno virus, TTV), Betatorquevirus (torque teno midi virus,

TTMDV), and Gammatorquevirus (torque teno mini virus, TTMV). In healthy pregnant

people, the prototype anellovirus, TTV, has been found in maternal and (variably)

fetal blood, amniotic fluid, cervical and vaginal secretions, breast milk, and saliva.

Nonetheless, the relevance of human anelloviruses in pregnancy and labor is unclear.

There is evidence suggesting a link between anellovirus colonization and preterm birth.

In this review, we discuss what is known about this family of commensal viruses in health

and disease, and specifically the roles they might play during pregnancy and in the timing

of delivery.
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INTRODUCTION

The human body serves as a host to a highly diverse community of microorganisms. These
microorganisms may benefit the host (creating a “mutualistic” relationship), harm the host
(forming a “pathogenic” relationship), or have no apparent effect (a “commensal” relationship).
From time to time, mutualistic or commensal microorganisms may assume a pathogenic character
(for example, in the case of vaginal yeast infections). The genomes that constitute the human
microbiome include bacteria, archaeans, other eukaryotes, and viruses (1). These microbial
communities are highly dynamic and vary based on the individual’s age and health status, the
biology of the anatomical site, diet, and hygiene (2).

While research on the human microbiome has focused mainly on bacterial populations, much
less is known about viral communities residing at different sites in and on the human body and
their roles in health. Advances in sequencing have uncovered myriad novel viruses in humans,
many of which cause no apparent illness (3). Most humans are colonized in almost every tissue
type by members of Anelloviridae, a family of diverse, non-enveloped, circular, single-stranded
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DNA eukaryotic viruses (4, 5). Thus far, anelloviruses have not
been linked definitively to any disease states (6), although there
is some evidence suggesting a link to human disease (7). This
review discusses this novel class of human viruses, including
their prevalence, genome diversity, transmission routes, and
potential association with human health and disease. We focus
on pregnancy, including a possible role in the timing of
delivery. Anelloviruses have been detected in maternal and—to a
lesser and highly variable extent, depending on the study—fetal
tissues (8–10). We discuss the potential mechanisms by which
anelloviruses may interact with and modulate maternal immune
responses and influence pregnancy outcomes.

DISCOVERY AND NOMENCLATURE

In 1997, while searching for a viral agent responsible for non-A to
E hepatitis, Nishizawa et al. found a novel DNA virus in the serum
of a Japanese patient with post-transfusion hepatitis of unknown
etiology (11). The viral clone was designated TT virus (TTV)
after the patient from whom it was recovered. Subsequent studies
revealed TTV as a small, non-enveloped, single-stranded, circular
DNA virus (12). After the discovery of the original TTV isolate,
smaller variants of TTV were identified and subsequently named
torque teno mini virus (TTMV) (13), and torque teno midi virus
(TTMDV) (14), derived from the Latin terms torque meaning
“necklace” and tenuis meaning “thin” (15). Recent changes in
nomenclature have classified the 3 anellovirus genera found
in humans: Alphatorquevirus (TTV), Betatorquevirus (TTMV),
and Gammatorquevirus (TTMDV), which together comprise the
human Anelloviridae family (16).

ANELLOVIRUS AND HUMAN DISEASE

A clear link between anellovirus positivity and human disease
has not been established (6). On the one hand, the fact that
anelloviruses are rarely detected earlier than 3 months of age
and are acquired later in life in healthy individuals (17–19)
suggests that anellovirus acquisition over the lifespan is normal.
On the other hand, recent studies have suggested that certain
anellovirus subtypes are associated with various illness and
diseases such as unexplained fever (20), diabetes (7), cirrhosis
in liver transplant patients (21), respiratory disease (22–26),
cancer (27–30), and autoimmune disorders (31–33). There is
some evidence suggesting a high occurrence of anellovirus with
Epstein-Barr virus (34) and hepatitis B or C (5). Whether this
means that anelloviruses have a role in enabling pathological viral
infections remains to be elucidated. Given the prevalence of TTV
in organ transplant recipients, TTV load has been suggested as a
candidate indicator of immune suppression (35–37).

PREVALENCE OF ANELLOVIRUS BY AGE
AND GENDER

Anelloviruses are reported at a high prevalence in the general
population across the globe (38). TTV, the prototypical

anellovirus, is multitropic, i.e., found in nearly every body site,
fluid, and tissue tested, as summarized in Table 1.

A plethora of evidence suggests that anelloviruses are detected
by PCR in all age groups. A study analyzed fecal specimens
collected longitudinally from day of life 1–4 (month 0) and at
3, 6, 12, 18, and 24 months of age from 4 healthy twin pairs
(18). Anelloviruses were rarely detected earlier than 3 months of
age. Thereafter the prevalence increased significantly, peaking at
6–12 months of age, and began to decline at 18 and 24 months
of age. Among 8 infants enrolled in the study, 1 infant harbored
no less than 47 anellovirus species at 12 months of age. In
some infants, the same anelloviruses could be detected from fecal
samples collected up to 12 months apart, suggesting persistence
and expansion of anellovirus richness in the gut of infants.
Another study of 20 twin pairs (0–30 months of age) showed the
abundance of anellovirus species increased until 15–18months of
age, after which time abundance diminished (66). A prospective
single-center study of 98 clinically healthy breastfeeding infants
(1–12 months of age) demonstrated a significant increase in
whole blood anellovirus load during the first year of life, reaching
a plateau after 6 months of age (17).

A study investigated the epidemiology of anellovirus in blood
samples derived from healthy children (1–14 years) and healthy
blood donors (18–59 years) (67). Among 208 children, 141 were

TABLE 1 | Tissues tested for anellovirus.

Citations

Tissues with detectable anellovirus

Whole blood, plasma, or serum* (3, 39–48)

Peripheral blood mononuclear cells (PBMCs) (43, 49–51)

Exosomes-enriched vesicles from plasma (52)

Bone marrow, lymphoid tissue, thyroid gland, muscle,

pancreas, spleen, kidney, lung

(48)

Bronchoalveolar lavage (53)

Nasal or throat swabs (24, 53)

Saliva* (10, 40–42, 54)

Liver (43, 55)

Bile (56)

Feces (41, 42, 46, 49, 56–59)

Urine (60, 61)

Skin, hair follicle (62)

Tears (42)

Semen (42, 54)

Amniotic fluid* (9)

Cervix* (63, 64)

Vaginal secretions* (65)

Umbilical cord blood* (9, 10)

Breast milk* (9, 45, 47)

Tissues without detectable anellovirus

RBCs (50, 51)

Platelets (50, 51)

Sweat (42)

*Tissues tested in pregnant or post-partum people.
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TTV-positive. TTV prevalence was highest in 1–2-year-olds,
lower for 8-year-olds, and higher again in 14-year-old children.
Among 196 healthy blood donors representing the normal
population, 103 were TTV-positive; there was no difference in the
TTV DNA prevalence with age. However, other studies (68–70)
with larger sample sizes have consistently demonstrated positive
correlations between anellovirus prevalence and age in healthy
populations. Phylogenetic analyses did not find associations
between anellovirus genotypes and particular age groups (67) or
geographic locations (68, 71). One study (68) noted viral loads
were highest in blood donors more than 50 years old, but a
longitudinal analysis of plasma TTV loads after 2 years showed
minimal changes in TTV viremia (70). The findings suggest that
although anelloviruses are acquired over the lifetime, healthy
aging causes only minimal increases in TTV viremia.

Anellovirus prevalence and viral load may be gender-specific.
One study found TTV prevalence was significantly higher in
males than in females (70). A separate study found that young
women (20–30 years) had lower plasma loads of anellovirus than
men in the same age group (19).

Substantial evidence suggests that anellovirus load is governed
by the immune system (72). Although the mechanisms by
which the immune system reacts to anellovirus colonization are
unknown, studies have shown that people receiving a solid organ
transplant (73–77), and those with cancer (47), HIV infection
(78), and sepsis (79) have higher plasma anellovirus loads than
healthy donors. Other studies have shown an inverse correlation
between levels of TTV and CD4+ lymphocytes in HIV-positive
patients (80) and pediatric lung transplantation patients (81). The
latter study findings revealed that patients with low anellovirus
genome copies are at risk of transplant rejection or death. There
is also evidence of increased anellovirus DNA concentrations
after antiviral therapy (6). Thus, it appears that anellovirus load
is inversely correlated to and may serve as a marker of general
immune status.

ANELLOVIRUS GENOME

Despite their nucleotide sequence diversity, anelloviruses share
virion structure and genomic organization (13). Electron
microscopy of the prototype anellovirus, TTV, isolated from
serum specimens (82) and a TTV-infected HEK293 cell line (83)
demonstrate TTV as an unenveloped icosahedral virus with a
diameter between 30 and 50 nm. As indicated by their names,
the human anelloviruses differ in genome size: 3.9 kb for TTV,
3.2 kb for TTMDV, and 2.8–2.9 kb for TTMV. The TTV genome
consists of an untranslated region (UTR) of ∼1.2 kb and a
potential coding region of ∼2.6 kb. The non-coding UTR of the
TTV genome contains a GC-rich segment (>60% GC) flanked
by a TATA box upstream of the coding region and a poly-A
sequence downstream (84), and multiple stem-loop structures
that facilitate virus replication (71). The coding region consists
of 3–5 overlapping open reading frames (ORF1-5) which encode
at least 6 proteins with structural (85), host immune suppression
(86, 87), cell cycle regulation, and apoptosis-inducing properties,
respectively (88). ORF1 also contains hypervariable regions

where mutations occur more frequently than in other regions.
These hypervariable regions help the virus evade the immune
system (89).

Genetic Heterogeneity
In addition to size, the 3 Anelloviridae genera can be grouped
according to their degree of genetic similarity in the ORF1 region.
TTV, TTMV, and TTMDV have at least 105, 68, and 34 species,
respectively. Phylogenetic analysis of TTV isolates recovered
from disparate locations have identified 7 major clusters, with
genomic sequence differences of up to 35% (90). It has been
hypothesized that in a given individual, genetic variability within
a viral group is high, and that coinfection by distinct viral
strains in blood and other tissues is common (91, 92). A
study investigated possible relationships between the number of
genogroups carried and the total TTV load present in 239 TTV-
positive subjects (93). Individuals with high viral loads tended to
possess more TTV genogroups than those with low viral loads.
TTV genogroups 1 and 3 were the most prevalent, followed by
genogroups 4 and 5, while genogroup 2 was rather infrequent.

DETECTION AND QUANTITATION OF
ANELLOVIRUSES

To date, polymerase chain reaction (PCR) is the most prominent
method used to detect anellovirus. Because of the extensive
heterogeneity among the genomes of anelloviruses, detection of
the entire spectrum of the anellovirus variants is impossible using
a single set of primers. For genotyping, primer pairs designed
either in the ORF1 region or the sequences spanning 5’ or 3’
UTRs are widely used (93, 94). Taking advantage of these regions,
nested and semi-nested PCR assays are developed in which the
genomic DNA of all anelloviruses is amplified by first-round
PCR with universal primers, and then species-specific DNA are
amplified by using a second set of primers (7). In a number of
studies, sequences spanning N22-ORF1 regions are utilized for
the detection of anellovirus DNA (11, 92). However, this strategy
allows detection of only some genotypes of TTV, a genus with
more than 30 genotypes (95). For example, N22 primers can
efficiently amplify genotypes in group 1, but amplifies certain
genotypes in group 2 less efficiently (96) and fails to amplify
many genotypes in groups 2, 3, and 4 at all. Over time, studies
have increasingly focused on utilizing degenerate primers and
highly conserved regions located just downstream of the TATA
box to potentially detect all known genetic forms of anelloviruses
(97–99). The results are validated across multiple iterations
followed by phylogenetic analysis (94, 100, 101). In recent studies
5’UTR primer sets are often used, but these primers differ in
their abilities to detect TTV and related genotypes by PCR (95).
Therefore, differences in primer selection could explain some of
the considerable variation in estimates of anellovirus prevalence
between studies. Even within a single healthy cohort, TTV
detection ranged from 53% (251/471) to 90% (90/100) depending
on which primers were used (68). In addition, measuring
prevalence of detectable TTV is highly dependent on the type of
specimen analyzed—for example, TTV titer is higher in whole
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blood than in plasma (70). Therefore, TTV negativity in a sample
could be a laboratory artifact due to sub-optimal sensitivity of
the detection methods. A study validated the commonly used
PCR primer sequences to detect TTV and TTV-like virus in
different populations (102). Primer alignment and PCR product
characterization consistently indicated that a minimum of five
primer sets (NG, TT, TLMV-S, TLMV-L, and a genotype 21-
specific set of primers) are required to detect all known genotypes
of TTV and TTV-like viruses in healthy individuals.

In addition to the PCR method, antibody-based detection of
TTV has also been developed and used for the diagnosis of TTV
colonization (103).

SITES OF ANELLOVIRUS REPLICATION

Despite decades of research, the main site of anellovirus
replication remains unknown. Studies have indicated the
association of TTV with peripheral blood mononuclear cells
(PBMCs) and distinct distribution of TTV subtypes between
plasma and PBMCs (104, 105). Research has also shown that
TTV is abundant in granulocytes compared with other peripheral
blood cell types in healthy individuals (51). Given the reported
evidence of elevated TTV titers with immunosuppression and
transplant-related complications (6, 106), a study investigated
TTV levels in plasma samples and potential sites of TTV
replication in individual blood cell types derived from pediatric
allogeneic hematopoietic stem cell transplant (HSCT) recipients
(107). Among 43 HSCT patients enrolled in the study, 34
had detectable TTV in plasma before transplantation, and all
patients tested positive for TTV by day+50 post-transplant. TTV
copies reached peak titer around day+100, and then gradually
declined to pre-transplantation levels over a period of about
2 years. TTV DNA was not present in NK cells, B- and T-
cells. On the other hand, granulocytes isolated from peripheral
blood or bonemarrow were invariably positive in post-transplant
samples of all patients. Until day+30 post-transplantation, TTV
tested either near or below the detection limit in granulocytes,
but dramatically increased between days +30 and +100 days
post-transplantation in peripheral blood and bone marrow
granulocytes. At the same time, TTV DNA was absent in
granulocytes derived from healthy immunocompetent controls
throughout the study period. Together, these findings suggest
granulocytes as potential TTV replication sites, particularly in
immunosuppressed individuals.

Evidence comparing viral titers between different tissues
within a single patient suggests anellovirus replication can occur
in bone marrow (108), liver (109, 110), lungs (111), lymphoid
tissue (112), oropharyngeal and/or salivary glands (40). These
findings suggest that viral replication takes place in multiple
tissues at distinct levels in infected individuals (48).

Attempts to replicate anellovirus in vitro have been
unsuccessful thus far. Human cell lines, including Chang
liver (109), HEK293TT (113), lymphoma and T-cell leukemia
(83), and the Raji cell line (109), have demonstrated TTV
infection in initial passages, but the virus did not propagate to
later passages (83, 113, 114).

IMMUNOBIOLOGY OF HUMAN
ANELLOVIRUSES

Toll-like receptors (TLRs) are members of a family of cell-surface
proteins responsible for recognition of a diverse spectrum of
pathogens and generation of an innate immune response. TLR9
recognizes intracellular unmethylated heterodimers of guanosine
and cytosine (CpGs), which are abundant in the genomes of
DNA viruses. Depending on the number of nucleotides flanking
CpGs, this may stimulate the production of either pro- or anti-
inflammatory cytokines (115). It has been reported that the
genome as well as the replicative intermediates of anellovirus are
unusually rich in CpG sequences (116). The DNA of 1 genogroup
of anellovirus (ViPiSAL strain) was found to provoke robust
activation of TLR9 and the production of proinflammatory
cytokines in ex vivo mouse spleen cells (117). Nevertheless,
the genomes of other anellovirus strains failed to promote
inflammatory responses. These findings may indicate that the
effects of anelloviruses on the host’s inflammatory status vary
depending on genogroups.

Due to the lack of an efficient culture system to support
TTV replication, the transcription profile of TTV has been
largely gained from human cell lines (COS1, HEK293, and L428)
transfected with TTV plasmids (87, 118). Three spliced mRNAs
of TTV that produce at least 6 proteins by alternative translation
initiation have been reported (85). At present, the functional
role of ORF2 protein is well-characterized. Overexpression of
TTV ORF2 encoded protein has been shown to suppress NF-
κB activation elicited by TNFα in various human cancer cell
lines, including HeLa and HepG2, and in the mouse macrophage
line RAW 264.7 (86). Further analyses revealed that TTV ORF2
protein has the ability to suppress NF-κB activity in vitro
in a dose-dependent manner, affecting translocation of NF-κB
p65 and p50 subunits to the cell nucleus, thus inhibiting the
transcription of downstream genes such as interleukin (IL)-6, IL-
8, and cyclooxygenase-2. Together these findings indicate that
TTV ORF2 protein may be involved in negative regulation of
host cell inflammatory responses.

Evidence suggests that TTV encodes microRNAs (miRNA)
that cooperate with viral proteins to regulate the expression of
viral genes involved in replication, pathogenesis, inflammation,
and immune evasion (119). The functional relevance of proteins
translated from other TTV ORFs and TTV-encoded miRNAs
warrant further study.

ROUTES OF TRANSMISSION

Numerous studies have suggested horizontal and vertical
TTV transmission routes. Horizontal transmission includes
parenteral, fecal-oral, and sexual. Vertical transmission involves
the possible passage of virus from mother to fetus during
pregnancy and breast feeding.

Parenteral Route
Since bone marrow cells and activated PBMCs are recognized as
potential sites of TTV replication (120, 121), blood and blood
products could be among possible routes of TTV transmission.
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Therefore, people with blood-related diseases such as hemophilia
and thalassemia (122–124), blood donors (5), patients having
multiple blood transfusions (124–126), and patients who have
undergone organ transplantation (73, 127–131) are more likely
to have TTV colonization.

Fecal-Oral Route
To examine patterns of anellovirus shedding into the circulation
and the GI tract after new infection, 2 naïve chimpanzees
were injected intravenously with bacteria-free (filtered) fecal
supernatant or serum from human newborns with documented
acute TTV infection (132). Serum and fecal specimens obtained
weekly from experimentally infected chimpanzees were tested for
TTVDNA by nested PCR. In the chimpanzee that received TTV-
positive human serum, TTVDNAwas detected in serum starting
5 weeks post-inoculation (PI) and remained positive until 15
weeks PI. In the chimpanzee that received fecal supernatant,
TTV DNA was detected in serum samples 7–12 weeks PI and
peaked at 14–16 weeks PI and continued to be positive for
longer than 30 weeks. TTV DNA was detected in fecal specimens
from the chimpanzee inoculated with TTV-positive human fecal
supernatant after 16 weeks PI (coincident with high-titer TTV
DNA in the serum). However, fecal specimens obtained at
24 weeks PI (when serum titers were low) were negative for
TTV DNA.

Sexual Contact
Detection of TTVDNA in semen (54), and vaginal fluid (64, 133),
suggests possible TTV transmission during sexual intercourse.

Transplacental Route
The published information on transplacental TTV transmission
is inconsistent. In a prospective cohort study, paired maternal
and cord bloods were examined for the presence of TTV DNA
(69). Among 105 participants enrolled in the study, 37 mothers
were TTV DNA-positive, and 7 cord blood samples from the 37
TTV-positive mothers were also TTV-positive. All cords from
TTV-negative mothers were TTV-negative. In another study
(134) TTV DNA was present in the blood of 57 of 138 mothers.
Among the 57 TTV-infected mothers, 19 cord sera were positive
for TTV DNA. A follow-up of 3 randomly selected infants with
TTV sequences in their cord blood showed positivity persisting
for 8 weeks after birth. The finding of TTV in the cord blood
of between 1/5 and 1/3 of colonized mothers is consistent with
transplacental passage of virus, however other routes are possible,
as is contamination of the cord specimens by maternal blood.

A separate study analyzed plasma samples from 54 mothers
and their newborns for TTVDNA (135). Though TTV-DNAwas
detected in 49 of 54 mothers, only 4 (8%) infants tested positive.

By contrast, another study analyzed TTV DNA in maternal
and fetal cord blood collected postpartum from 100mother-child
pairs (44). TTV DNA was detected in 84% of maternal samples,
while cord blood was devoid of TTV.

The sum of these findings call into question whether
transplacental transmission of TTV occurs in human pregnancy.

Breast Feeding
Several studies provide evidence of anellovirus transmission by
breast feeding (9, 134, 136). In a cohort study, blood was sampled
from 300 normal pregnant people (60 of whom were TTV-
positive). Twenty infants born to TTV-positive women in the
cohort who delivered vaginally (n = 10) or by C/S (n = 10)
were sampled at both 5 days and 3 months after birth. Half the
infants in each group were also tested at 6 months after birth.
Additionally, breast milk was collected from 30 TTV-positive
nursing women (137). All infants from TTV-positive mothers
were TTV-negative at both 5 days and 3 months after birth,
regardless of delivery method, arguing against TTV transmission
either transplacentally or during the birth process. By 6 months
after birth, 4 of the 10 infants born to TTV-positive parents were
TTV-positive. TTV DNA was detected in the breast milk of 7 of
30 TTV-positive patients.

An earlier study in Germany looked for TTV in 46 women
who collectively birthed 47 children. Of this cohort, 22 maternal
serum samples tested positive for TTV. Notably, TTV DNA was
detected in 22 of 23 serum samples of 1-week-old infants who
were born to TTV-positive parents. Twenty four TTV-negative
individuals gave birth to 24 TTV-negative children who remained
negative throughout the study period of 28 months. TTV DNA
was detected in 77% of breast milk samples from TTV-positive
patients and in none from TTV-negative individuals (45).

A prospective single-center study in Russia analyzed whole
blood TTV load in 98 clinically healthy breastfeeding infants of
1–12 months of age to determine TTV dynamics during the first
year of life (17). The findings revealed a significant increase in
TTV copy number for the first 60 days, before plateauing after 6
months, with viral loads correlating with age.

In sum, these findings suggest that newborns can acquire TTV
through breast milk, but acquisition from either parents or others
via alternative routes was not ruled out. There is some evidence
that among infants who are breast-fed, the prevalence of TTV
positivity increases with prolonged lactation (136).

Horizontal Transmission Could Be the
Major Route of Anellovirus Colonization in
Infants
A study determined whether the predominant route of
transmission of TTV in children is horizontal, vertical, or
both, by testing infants born to TTV-positive mothers (138).
Serum samples were obtained from 12 mothers on the day of
delivery or within 1 month after delivery. Among 12 mothers,
TTV DNA was detected in 10 (83%) cases. Serum samples
were obtained from infants at 0.5–3 month intervals from 1
to 12 months of age. All infants, aside from 1 born by C/S,
were delivered vaginally. The prevalence of TTV in infants
born to TTV-positive and TTV-negative mothers were 9/10
(90%) and 0/2 (0%) respectively. Serum TTV DNA was not
detected in any infant at 1 month of age but was detected
for the first time at 1.5–8 months of age, and thereafter
TTV positivity persisted throughout the follow-up period.
Detection of TTV in 9/10 infants born to TTV-positive mothers
and 0/2 infants born to TTV-negative mothers suggests that
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TTV transmission from mothers to their infants postpartum
is possible.

To confirm the transmission route, a homology search was
performed in 7 randomly selected TTV-positive mother-infant
pairs. Although only a few clones tested for each case were
sequenced, the degree of homology varied considerably in
most matched mother-infant pairs. One of the 7 mother-infant
pairs showed a high degree of similarity for all TTV clones
(98.7–100%), 2 pairs had 88–99% homology, and the remaining
4 showed 83.6–89% nucleotide identity. While these findings
indicate that colonization with maternal TTV can occur, most
acquired TTV is not identical to maternal strains.

These findings suggest a predominance of horizontal, rather
than vertical transmission of TTV to infants, whether from their
mothers or from other sources.

HUMAN ANELLOVIRUS COLONIZATION
AND PREGNANCY-RELATED
COMPLICATIONS

Although the bacterial microbiota of various compartments
(e.g., vagina, amniotic fluid, and placenta) have been studied in
pregnancy (139–143), there has been far less emphasis on the
normal or pathological viral community (144, 145). Given the
prevalence of anelloviruses in various tissues and body sites of
healthy asymptomatic pregnant individuals, several studies have
attempted to understand what impact, if any, TTV colonization
has on pregnancy, labor, and birth.

Anellovirus Colonization May Have a Role
in Determining the Timing of Parturition
Evidence suggests that overt maternal viral infection with
influenza (146), hepatitis (147, 148), HIV (149), and herpes (150)
can lead to preterm labor and delivery. Although themechanisms
underlying these associations are not clear, it has been
suggested that maternal viral infection may predispose toward
an exaggerated pro-inflammatory response to a secondary
inflammatory stimulus (such as bacterial infection), leading to
labor through a “double-hit” mechanism (151, 152). With this
premise, we examined the association of virus colonization with
a preterm “initiating event of labor” [either spontaneous labor
with intact membranes or premature rupture of membranes
in the absence of labor (PROM)] using a prospective case-
control study (153). We hypothesized that patients experiencing
a preterm initiating event of labor (< 37 weeks, “cases”) would
be more likely to harbor viruses than patients who enter labor
at term (“controls”). An initial unbiased screen for viruses
performed with next-generation sequencing in serum pooled
from 8 cases identified 7 unique viral sequences, all TTVs.
Subsequently, 72 patient samples were analyzed individually
by nested and semi-nested PCR to identify other anellovirus
subtypes. Among patients experiencing spontaneous labor, TTV
and TTMV were significantly more prevalent in cases than
controls, while TTMDV was not different between the 2 groups.
Cases were more likely to harbor at least 1 member of the
anellovirus family (91% vs. 68%). In the subgroup of subjects

experiencing spontaneous labor with intact membranes, the
incidence of TTV was significantly higher in preterm patients
(23 of 24 cases) than in controls (8 of 13), whereas there was
no difference in TTMDV and TTMV. There were no significant
differences in viral subtypes in serum from patients with PROM.

These observations led us to hypothesize that anelloviruses
may have a role in determining parturition timing. A potential
mechanism for such a phenomenon is through modulation of
the inflammatory and immune landscape (154), lowering the
threshold for a labor response to stimuli, such as subclinical
bacterial infection or non-infectious stimuli, that on their own
would be insufficient to induce parturition. It is also possible
that, due to the predilection of anelloviruses for leukocytes
and the changes in leukocyte populations induced by labor,
premature onset of the parturition process is a cause, rather
than a consequence, of increased anellovirus recovery in these
subjects. Given that the findings are qualitative and were made
in a small group of subjects, confirmatory studies are needed.

Anellovirus May Associate With Other
Maternal Microbiomes to Precipitate
Preterm Birth
A nested case-control study analyzed the vaginal eukaryotic
DNA virome and its associations with the bacterial vaginal
community and preterm birth (155). Viral communities were
analyzed according to diversity, dynamics over time, and
association with bacterial community in vaginal swabs collected
longitudinally from 60 subjects across pregnancy. Overall, 6
families of human DNA viruses were detected in vaginal
samples from pregnant patients, including Papillomaviridae,
Polyomaviridae, Herpesviridae, Poxviridae, Adenoviridae, and
Anelloviridae. Anelloviruses were the most common viruses,
detected in more than 40% of the patients. Viral richness
diminished through the trimesters of pregnancy in subjects who
had term delivery. Changes in vaginal virome diversity were
similar to changes in the vaginal bacterial microbiome over
pregnancy. The 24 pregnant subjects who delivered preterm
showed higher viral richness compared to term birth patients.
Although higher viral richness was significantly associated with
both spontaneous and indicated preterm birth subtypes, no single
virus or viral community was associated with preterm birth.
Nonetheless, individuals who had both high bacterial diversity [as
is seen in bacterial vaginosis, itself associated with preterm birth
(156)] and high viral diversity early in pregnancy had the highest
risk for preterm birth.

Evidence links the composition of the vaginal microbiome
with immune status and variations in cervical length in pregnant
people (157, 158). Specifically, when Lactobacillus crispatus is
dominant, the vaginal level of D-lactic acid isomer is high, matrix
metalloproteinase (MMP)-8 is low, and vaginal inflammation
tends to be absent. Conversely, when Lactobacillus iners or
bacteria other than lactobacilli are dominant, D-lactic acid levels
are low, and MMP-8 levels are high, which is associated with a
more pro-inflammatory vaginal environment and overall shorter
cervical lengths (159). A recent cohort study of 121 pregnant
subjects investigated TTV presence in vaginal secretions, and
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how its occurrence and/or titer varies with the dominant bacteria
in the vaginal microbiome (65). Vaginal secretions collected
from pregnant individuals in their first trimester (≤12 weeks),
third trimester (28–38 weeks), and 28–45 days postpartum were
analyzed for TTV DNA by quantitative PCR. Approximately
40% of pregnant individuals who delivered a healthy baby at
term had TTV detected in their vaginal secretions during at
least 1 of these time points. In subjects who were tested at
all time points (n = 33), those who were TTV-positive in
the first trimester were equally likely to became negative or
remain positive throughout the other sampling time points.
These findings suggest that vaginal TTV colonization is most
often associated with healthy gestation and normal outcomes.
However, the correlation between vaginal TTV and features of
bacterial vaginosis provides a mechanism by which anellovirus
colonization may lead to preterm delivery. In the first trimester,
L. crispatus was dominant in 66.7% of pregnant individuals
who were negative for TTV, as opposed to 25% of those who
were TTV-positive, and D-lactic acid levels were diminished
in TTV-positive patients. Similarly, in the third trimester, L.
crispatus was dominant in 50% of pregnant individuals who were
TTV-negative and only 6% of those who were TTV-positive. In
summary, vaginal TTV colonization appears to correlate with
features of bacterial vaginosis (diminished predominance of L.
crispatus, higher MMP-8, and lower D-lactic acid levels).

Adverse Pregnancy Outcomes May Not Be
Associated With Anellovirus Presence or
Quantity
A study determined the prevalence of viruses in matched
maternal-infant preterm cohorts and ascertained whether viral
presence or load correlates with histologic chorioamnionitis,
spontaneous preterm labor, and preeclampsia (160). Preterm
labor was defined as spontaneous preterm labor or preterm
premature rupture of membranes that resulted in very
premature delivery <31 weeks. Histological chorioamnionitis
was determined by placental pathology, and preeclampsia was
based on clinical diagnosis. Whole blood or plasma collected
from 56 matched mothers and premature infants was analyzed
for the presence and quantity of anellovirus and 8 other viruses
by qPCR. Twenty-nine of the 56 maternal samples contained
viral nucleic acid, of which anellovirus was most prevalent (26
samples). However, there was no association of presence or
quantity of viral load in samples from mothers with or without
preeclampsia, histological chorioamnionitis, or preterm labor.
Taken together, this study suggests no clear relationship between
TTV load and perinatal morbidity or spontaneous preterm labor,
though its small size and focus only on extreme prematurity are
limitations that require validation.

A MECHANISM BY WHICH ANELLOVIRUS
COLONIZATION COULD INFLUENCE THE
TIMING OF PARTURITION

The link between infection and preterm labor has long
been recognized. In some instances, this may entail the

initial presence of microorganisms (whether bacterial, viral, or
fungal) which creates a favorable environment or amplifies the
effect of a secondary infection. As noted above, experimental
models illustrate the potential for synergy between viral and
bacterial infections leading to amplification of host responses.
Polyinosinic:cytidylic acid [poly(I:C)] is a TLR3 ligand and
synthetic analog of double-stranded RNA, which is a replication
intermediate for most viruses, including DNA viruses. Poly(I:C)
induces preterm delivery when injected either into the uterus
(152) or systemically (161) in mid- to late gestation and greatly
amplifies the potency of bacterial products in mice when
injected into the uterus (162). In a mouse model, it has been
demonstrated that viral infection of the cervix during pregnancy
reduces the capacity of the female reproductive tract to prevent
bacterial infection of the uterus (163). Similarly, sub-clinical viral
infection in pregnant mice has been shown to sensitize them
to bacterial infection, leading to preterm delivery (151). These
findings suggest the existence of synergism during combined
viral and bacterial infection. This “2 hit” trigger and existence
of synergism might be a beneficial strategy to a host, as it
would blunt the maternal response to mild insults (such as
subclinical infection), while providing for rapid and efficient
amplification of the labor response in cases of a superimposed or
more severe infection. Given the higher prevalence of circulating
anellovirus in preterm than in term patients (153), and TTV’s
association with other bacterial communities linked to preterm
birth (65, 155), we propose that anellovirus colonization during
gestation might affect the onset of labor through lowering
the threshold for a response to stimuli, such as subclinical
bacterial infection, that on their own would be insufficient to
induce parturition.

On the other hand, pregnant patients who have a normal
term pregnancy and give birth to a healthy infant may
harbor viral sequences or genogroups that protect against
preterm labor. Functional studies have revealed that apathogenic,
endogenous retroviruses (ERV), and ERV-derived proteins
found in the placenta mediate cell-cell fusion, suppress
maternal immunity, and protect the fetus from exogenous
viruses (164). Given the evidence that TTV ORF2 protein
suppresses NF-κB pathways and inhibits transcription of
proinflammatory cytokine genes (86), it is possible that
TTVs may act as “little helpers” in shaping the gene
networks of innate and adaptive immune responses to maintain
normal pregnancy.

In the majority of human body sites, microbial diversity
is considered a signature of health (1). If multiple variants or
genotypes of anellovirus (“anellome”) found in healthy humans
remain stable for a long time, they may make up the personalized
and healthy part of the host microbiome (92). The gene
products of anellovirus might help to maintain the composition
and fitness of other (beneficial) microbial communities by
preventing colonization by pathogens. At the same time,
the host immune system, through immunosurveillance,
may maintain a safe balance, thus protecting the body
from the pathogenic effects of the virus (165). However, as
noted above, microbial diversity (including anellovirus) in
the pregnant vagina is associated with premature timing

Frontiers in Virology | www.frontiersin.org 7 December 2021 | Volume 1 | Article 782886

https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
https://www.frontiersin.org/journals/virology#articles


Kyathanahalli et al. Human Anellovirus Colonization and Pregnancy

of delivery. In summary, under physiological conditions,
human anellovirus is unlikely to be pathogenic per se.
Nonetheless, perturbations in host defense and microbial
composition may allow anellovirus to achieve an opportunistic
pathogen status.

FUTURE DIRECTIONS

At present, the quality and number of studies on the association
of anelloviruses with pregnancy outcomes are limited. Large
cohort studies are important to clarify the role, if any, of
anellovirus colonization in the timing of labor. Investigations
are warranted with a focus on determining the kinetics of
anellovirus colonization over the course of pregnancy, and
whether certain genogroups promote or suppress preterm
birth. Studying anellovirus abundance in other conditions
associated with pregnancy, such as miscarriage, preeclampsia,
and gestational diabetes, will provide more detailed insight
in the relationship between anellovirus colonization and
clinical outcomes.

CONCLUSIONS

The impact of anelloviruses on human health remains
incompletely characterized. Although the possible pathogenicity
of anelloviruses is still an open question, further study of
anellovirus colonization during pregnancy and in mother-infant
pairs will help determine whether and how these ubiquitous
viruses affect microbial infection-associated preterm labor and
preterm birth.
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