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The human immunodeficiency virus type 1 (HIV-1) is a global health threat that is
characterized by extensive genetic diversity both within and between patients, rapid
mutation to evade immune controls and antiretroviral therapies, and latent cellular and
tissue reservoirs that stymie cure efforts. Viral genomic sequencing has proven effective at
surveilling these phenotypes. However, rapid, accurate, and explainable prediction
techniques lag our sequencing ability. Modern natural language processing libraries, like
the Hugging Face transformers library, have both advanced the technical field and
brought much-needed standardization of prediction tasks. Herein, the application of
this toolset to an array of classification tasks useful to HIV-1 biology was explored:
protease inhibitor resistance, coreceptor utilization, and body-site identification. HIV-
Bidirectional Encoder Representations from Transformers (BERT), a protein-based
transformer model fine-tuned on HIV-1 genomic sequences, was able to achieve
accuracies of 88%, 92%, and 89% on the respective tasks, making it competitive with
leading models capable of only one of these tasks. This model was also evaluated using a
data augmentation strategy when mutations of known function were introduced. The HIV-
BERT model produced results that agreed in directionality 10- to 1000-fold better than
traditional machine learning models, indicating an improved ability to generalize biological
knowledge to unseen sequences. The HIV-BERT model, trained task-specific models,
and the datasets used to construct them have been released to the Hugging Face
repository to accelerate research in this field.

Keywords: HIV-1, deep learning, transformers, genetic variation, natural language processing, coreceptor tropism,
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1 INTRODUCTION

The human immunodeficiency virus type 1 (HIV-1) is a global
health threat that impacts millions of people worldwide. This
lentivirus primarily infects the immune system by attaching to
the CD4 receptor, entering the cell, integrating into the genome,
and then producing viral copies to infect new cells, a process
reviewed in greater detail by Mailler et al. (1). Antiretroviral
therapy has proven to be an effective treatment for individuals;
however, the error-prone replication process leads to rapid
diversification of the virus and eventual resistance through the
accumulation of mutations which impact the efficacy of the
treatment (2, 3). This rapid evolution also allows the virus to
evade host antibodies and invade new niches through the
changes to the viral envelope and accessory proteins (4–7).

These phenotypes have drastic impacts on patient morbidity
and mortality (5, 8, 9). Given their selective advantage, strains
containing drug resistant mutations (DRMs) with low fitness
requirements tend to proliferate within infected individuals and
have been shown to drastically increase the potential for virologic
failure (10, 11). At present, there are five classes of HIV-1
antiretroviral therapies: nucleoside reverse transcriptase inhibitors
(NRTIs), non-nucleoside reverse transcriptase inhibitors
(NNRTIs), protease inhibitors (PIs), integrase inhibitors (INIs),
and entry inhibitors (12, 13). Indeed, DRMs have been identified
corresponding to each class of inhibitors, albeit at different
proportions (12).
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Since these DRMs and other genotypes/phenotypes are
transmitted within the proviral genome, there has been a long
history of techniques for predicting these traits from genomic
sequence. This manuscript has chosen three diverse tasks from
the HIV-1 field across the viral lifecycle as described in Figure 1
and below:

1. Protease inhibitor resistance – The protease gene is a 99
amino acid protein responsible for cleaving viral proteins that
are translated as a single polyprotein into their active form;
thus making it an ideal target for antiretroviral therapy. The
Stanford HIV database maintains a prediction server for
annotating HIV-1 sequences with known resistance
mutations (14). Investigators have also developed predictive
tools such as SHIVA, a decision tree classifier (15), generative
machine learning algorithms (16), and the ANRS (Agence
Nationale de Recherches sur le SIDA) algorithm, a well-
regarded program for predicting protease receptor and
reverse transcriptase resistance (17).

2. Coreceptor utilization – HIV-1 enters human cells by first
binding the CD4 receptor and then recruiting one of two
possible coreceptors: CCR5 or CXCR4. This allows for the
entry into two different cellular reservoirs with CCR5
primarily responsible for T-cell infection and CXCR4 for
macrophages (4, 18). This phenotype is primarily due to the
3rd variable loop of the envelope gene, the V3 loop. This 35
amino acid loop mediates the interaction between the
FIGURE 1 | A diagram for the biological processes explored. The left column depicts the basic viral lifecycle starting with entry through the binding of CD4 and cell-
specific coreceptors, followed by unpackaging of the capsid, reverse transcription of viral RNA, integration into the host genome, subsequent translation of viral
proteins and repackaging. Steps where antiretroviral medications interfere with the lifecycle are also noted. The middle panel indicates bodysites that are known to
be anatomic reservoirs of latent viral replication. The right panel shows a flow diagram of the experiments and training procedures described in the text. Figure
created with BioRender.com.
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envelope protein and coreceptor primarily at positions 13-21
(19). The earliest methods of coreceptor prediction used
alignment-based methods to create a position-specific
scoring matrix (PSSM) (20). Newer methodologies like
decision trees (21) and XGboost (22) have been applied
with great success.

3. Bodysite identification – Due to the ability of HIV-1 to infect
immune cell populations, it spreads across the body rapidly
and adapts to new compartments (23–26). When exploring
HIV-1 cure strategies such as “shock & kill” and anti-HIV
CRISPR-Cas9 gene editing, it is important to surveil these
compartments (27–29). This task is traditionally tackled
using phylogenetic methods in which the evolutionary
relationship between sequences isolated from different
bodysites is explored (30–32). In our review of the relevant
literature this prediction task has not been previously
attempted.

Using sequence data for machine learning (ML) techniques poses
multiple challenges. First, most ML techniques require numeric
inputs. This requires a conversion of the amino acid sequence
into a numeric form that can be consumed by downstream
algorithms. Techniques for doing this can be grouped into two
categories: alignment-based and alignment-free.

Alignment-based methods require using alignment tools like
MUSCLE (33), T-coffee (34), or minimap2 (35) to associate each
position in the query with a consistent column. This is critical
when using machine learning methods like SVM, decision trees,
or other classic techniques as they assume that each column
consistently represents the same physical property. Once aligned,
a feature matrix can be constructed by converting each column
of the alignment into a number, or set of numbers, either through
one-hot encoding or encoding physiochemical properties of each
amino acid at each position. This matrix can then be used like
any other ML dataset.

However, the rapid mutation of HIV-1 leads to difficulties with
alignment-based methods as the insertion and deletion rate of the
virus leads to alignments with copious gaps. Alignment-free
methods sidestep this problem by summarizing a protein of any
length into a fixed length vector. Tools like MathFeature (36) and
ProtDCal (37), perform this through calculation of physiochemical
properties of the protein. However, this presupposes that these
properties are relevant to the prediction task. K-mer based
approaches count occurrences of fixed-length subsequences of
the protein. This generates a fixed-length vector for each protein
that compares the presence, absence, or quantity of short amino
acid sequences. However, this requires one to balance the length of
the k-mer with the sparsity of the downstream dataset. As each k-
mer is a distinct feature in the matrix, it also does not account for
the similarities between amino-acids.

Many of these problems are also present in related fields like
natural language processing (NLP): not all sentences are the
same length, words have different meanings in different contexts,
and similar words can be used interchangeably. This has spurred
a great deal of crosstalk between the NLP field and the genomic
language processing (GLP) field (38, 39). Of particular interest to
this manuscript are advances in artificial intelligence (AI)
Frontiers in Virology | www.frontiersin.org 3
methods, particularly the Transformer models (40, 41). While
the initial investment is large (42), once trained, models can be
reused on multiple tasks (43–45).

In 2021 a high-performance computing group led by
Burkhard Rost set out to leverage Summit, the world’s second
fastest computer, to accelerate GLP research. They leveraged
1096 GPU containing nodes to train a Bidirectional Encoder
Representations from Transformers (BERT) model on a dataset
of 393 million amino acids from Uniprot50, Uniref100, and the
Big Fantastic Database (BFD) of human isolated metagenomic
proteomes (46). This model architecture considers the entire
protein at once (Bidirectional) and encodes proteins into fixed
length vectors (Encoder Representation) for downstream
predictions. Like all transformer style language models, it can
be trained on unlabeled data for many tasks through a technique
called Masked Language Modeling (MaskedLM). In this process,
a subset of amino acids are ‘masked’ from the model during
training and it is tasked with predicting them and its weights are
updated through gradient back-propagation. Accomplishing this
task pretrains the model for future tasks. The Rost-Lab showed
that this model could be further refined in a process called
“transfer learning” to predict new tasks such as subcellular
localization, secondary structure, and enzyme activity (46).

This group released their prediction models into the Hugging
Face Model Repository for open-source use (https://huggingface.
co/models). The Hugging Face transformer library is a Python-
based library for implementing state of the art AI models in a
consistent, reproducible, and extensible fashion (47). Pretrained
models can be downloaded with a single command and applied
to new data with another Hugging Face transformer pipeline
(47). The library also provides an interface for refining the
pretrained models on new data (48). These studies reported
herein applies these tools to the three HIV-1 prediction tasks
described above. It explores the effects of pre-training, class
weighting, and dataset size on the task. It also releases the
models and datasets to the Hugging Face dataset and model
hub for the community at large to accelerate future work. These
studies also provide advice and expectations on adapting this to
other applicable tasks.
2 MATERIALS AND METHODS

The entire analysis pipeline was implemented as a Snakemake
pipeline and is available on the public Github repository (49).
This allows any researcher to download, reproduce, transform,
or extend this analysis. The deep learning aspect of this pipeline
requires access to sufficient computational resources. While the
script auto-scales to the user’s available memory the training of
the transformer models require at least 6GB of GPU RAM. Once
trained, the models can be used on generally available hardware.

2.1 Explanation of Public Datasets
2.1.1 HIV-1 Full Genome Dataset
The Los Alamos National Laboratory HIV sequence (LANL)
database maintains a standard dataset of 1,690 high-quality full-
May 2022 | Volume 2 | Article 880618
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length genomes. The most recent version was downloaded
(2016-Full-genome) on 12/21/2021 (https://www.hiv.lanl.gov).
This was then processed using the LANL GeneCutter tool to
extract and splice the DNA sequence of each gene (https://www.
hiv.lanl.gov/content/sequence/GENE_CUTTER/cutter.html).
The GeneCutter tool aligns the query to a gold-standard codon
aligned multiple-sequence alignment using HMMER v 2.32. This
ensures that any gene within the region is properly extracted in
the proper reading-frame. These extracted DNA sequences were
then translated into the appropriate protein sequence to the first
stop-codon using the BioPython library Seq.translate function
with a human codon table (50). The database was processed
using the script workflow/scripts/process_lanl_flt.py.ipynb and
deposited as a Hugging Face Dataset damlab/HIV_FLT.

2.1.2 Protease Drug Resistance
The high-quality interactions from the Stanford HIV Genotype-
Phenotype database (51) were downloaded on 12/21/2021 and
contained 1959 lines at the time of download. The file stores the
amino-acid differences from the provided reference sequence, for
example V30I|D46N, and an array of drug-susceptibility scores for
each isolate. This was converted into a Hugging Face dataset by
inferring the full protease sequence by exchanging the indicated
amino acids from the pre-translated reference sequence and
labeling any drug with a >4-fold increase in resistance as “True”
conforming with the methodology described by Rhee et al. After
filtering the dataset to only include the drugs FPV, IDV, NFV, and
SQV, and dropping all missing items, there were 1733 total PR
sequences for analysis with roughly half being resistant to at least
one drug. The database was processed using the script workflow/
scripts/process_stanford_pr.py.ipynb and deposited as a Hugging
Face Dataset damlab/HIV_PI.

2.1.3 Coreceptor Tropism
V3-loop sequences were downloaded from the LANL database
through the Search Interface (https://www.hiv.lanl.gov/
components/sequence/HIV/search/search.html) on 12/20/21. The
query was generated by limiting the Subtypes to A, B, C, and D;
selecting “list in field output” for the Coreceptor and Sample Tissue
fields; and selecting V3 in the Genomic Region Selection box. This
generated approximately 220,000 results at the time of search. The
LANL search tools were used to align, trim, and return the selected
sequences with the associated background info. The background
information was parsed to create an independent binary variable
each for CCR5 and CXCR4 binding status. This search generated
2935 sequences with 91% being CCR5 tropic and 23% labeled as
CXCR4 tropic. The database was processed using the script
workflow/scripts/process_lanl_v3.py.ipynb and deposited as a
Hugging Face Dataset damlab/HIV_V3_coreceptor.

2.1.4 Bodysite Identification
Using the same V3 dataset mentioned above, the Sample Tissue
field was aggregated so similar bodysites were grouped together.
The grouping was performed as follows:

• Periphery-tcell: plasma, PBMC, T cells, CD4+ T cells, resting
CD4+ T cells, effector memory CD4+ T cells, transitional
Frontiers in Virology | www.frontiersin.org 4
memory T cells, central memory T cells, serum, blood, lymph
node, CD4+ T cell supernatant, lymph node CD4+ T cells,
CD14+ monocytes, activated CD4+ T cells, naive CD4+ T
cells, effector memory T cells, T-cell, CD8+ T cells, PMBC,
PBMC supernatant, stem memory T cells, terminally
differentiated T cells

• Periphery-monocyte: lamina propria mononuclear cells,
CD14+ monocytes, monocyte, CD16+ monocytes

• CNS: brain, CSF, spinal cord, dendrites
• Lung: lung, BAL, sputum, diaphragm
• Breast-milk: breast milk
• Gastric: colon, rectum, jejunum, ileum, GALT, rectal fluid,

intestine, feces, stomach, choroid plexus, sigmoideum, gastric
aspirate, esophagus

• Male-genitals: semen, seminal plasma, foreskin, seminal cells,
urethra, prostate, testis, prostatic secretion

• Female-genitals: vaginal fluid, cervix, vagina, vaginal cells,
cervicovaginal secretions

• Umbilical-cord: umbilical cord plasma, placenta
• Organ: liver, kidney, epidermis, thymus, pancreas, adrenal

gland, spleen, bone marrow
• Dropped sequence: supernatant, saliva, urine, meninges, skin

tumor, qVOA, urine cells, breast milk supernatant, aorta,
glioma

Then, sequences were grouped such that each unique
sequence was annotated with all bodysites it was associated
with. This allows a sequence to be annotated with multiple
bodysites. Due to the over-representation of periphery-tcell
tags, a random 95% were discarded. After processing, there
were 5510 unique V3 sequences annotated with about half
from the periphery-tcell tag and the rest ranging from 5-20%
composition. The database was processed using the script
workflow/scripts/process_lanl_v3.py.ipynb and deposited as a
Hugging Face Dataset damlab/HIV_V3_bodysite.
2.2 Models
Four models were constructed to evaluate the real-world
performance on these prediction tasks. The datasets above
were split using 5-fold cross-validation with the folds preserved
across the different model trainings. This allows for an honest
comparison of each fold across each model.
2.2.1 Naive Models
First, a Dummy model was created using the sklearn.dummy.
DummyClassifier class with stratified strategy. This model
represents randomly guessing utilizing the known class
distribution of the training data. For example, 91% of V3
sequences are CCR5 tropic, therefore this model will guess True
91% of the time. This naïve model represents the lowest reasonable
bar to set for prediction tasks.

Next, a basic Random Forest Classifier was used as a biology
naive model machine learning model. The variable length
sequences were encoded into fixed length vectors using term
frequency-inverse document frequency (TF-IDF). This
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technique creates a feature for each N-gram present in the
database and encodes proteins by the sum of the number of
times the N-gram occurs in the sequence divided by the number of
times it occurs in the database. Sequences, V3 or PR, were
transformed with the sklearn.feature_extraction.text.
TfidfVectorizer class using a ngram_range = (1,3) and analyzer=
‘char’. This creates a vector of each k-mer sized 1-3 with the count
normalized by the inverse of its prevalence in the rest of the
training dataset. This naturally highlights k-mers that are over-
represented in the sequence. After a basic variance threshold to
remove invariant columns, a classifier was built with the
sklearn.ensemble.RandomForestClassifier class using the default
parameters. This model represents a purely mathematical
approach to the prediction problem. These models were trained
using the workflow/scripts/sklearn_train.py script using scikit-
learn version 1.0.2.
2.2.2 Transformer Models
Biologically informed Transformer models were imported using
the Hugging Face AutoModelForSequenceClassification tool. The
Hugging Face library provides a Trainer module for refining
pretrained models on new datasets. However, the default Trainer
cannot accommodate multi-label prediction problems like those
posed here. As such, a CustomTrainer class was developed per
recommendations in a related forum post (52) and
documentation (53). In brief, there were three changes
implemented. First, the CategoricalCrossEntropy loss function
was replaced with a BinaryCrossEntropy function; this allows the
model to predict multiple True values in each field (i.e. a protease
sequence can be resistant to zero, one, or potentially all drugs).
Second, as the class labels are not equally distributed for each
field, 91% of V3 sequences are CCR5 tropic weighting was used
to balance the imbalanced classes as described in the BCELoss
documentation. Finally, the loss from each field of the prediction
was added together in equal weights. This CustomTrainer is
implemented in the module workflow/scripts/common.py.
Training was performed using the same parameters across all
models: learning rate of 1E-5, 50K warm-up steps, and a
cosine_with_restarts learning rate schedule and continued until
3 consecutive epochs did not improve the validation loss metric.

For these experiments, the Prot-Bert-BFD model from the
RostLab was used as the basis for pretraining (46), commit-tag
6c5c8a5. It has been trained across a wide array of proteins and is
easily available in the Hugging Face library. This pre-trained
model was used as the initial weights for training each of the
three models described above. This is implemented in the script
workflow/scripts/huggingface_train.py.

Previous research has shown that refining language models on
domain-specific sequence can improve downstream performance
(43–45). Using the whole genome sequence data described above,
the Prot-BERT-BFD model was refined using MaskedLM training.
In this task, a random set of amino acids are masked from the
model, which is then asked to predict them. A training script was
adapted from the HuggingFace transformers run_mlm.py script
(54). Pre-training was performed by concatenating all protein
sequences from the Full HIV Genome Dataset described above
Frontiers in Virology | www.frontiersin.org 5
and chunked into 256 amino acid segments. 80% of the sequences
were used for training and 20% were reserved for validation. This is
implemented in the script workflow/scripts/huggingface_lm.py
using transformers v4.15.0.
2.3 Conceptual Error
Conceptual error was calculated using a set of reference
mutations known from other sources of information to induce
a known effect. It relies on our knowledge of the structure-to-
function relationships involved in these processes and quantifies
the biological “unexpectedness” of a model’s output.

Protease resistance conceptual error was measured by generating
a dataset of known protease inhibitor resistance mutations. Utilizing
the Stanford HIV database mutation explorer, 10 mutations were
identified as inducing a >4-fold increase in drug resistance when
acting alone: D30N, V32I, M46I, M46L, G48V, I54V, V82F, I84C,
N88S and L90M. For each sequence in the testing dataset of each
fold, they were examined for these mutations. If absent, they were
introduced; if present they were removed. Then, the original and
altered sequences were inferred by each trained model. The logit
output of each pair was subtracted and squared. Then, the squared-
error for pairs which introduced resistance mutations that increased
resistance were set to zero; as were pairs which removed resistance
mutations that decreased resistance. The resulting masked vector
was then averaged. This error represents the mean-squared error
change in the unexpected direction.

V3 coreceptor prediction can also be interrogated in this way.
Structural alignments by Fouchier et al. (55) have demonstrated an
11/24/25 rule: if there is a positive amino acid at positions 11, 24,
or 25 of the V3 loop then it can bind to CXCR4, otherwise it binds
to CCR5. Utilizing the same switching and error calculation
strategy described above, pairs of sequences were made with
S11H, S11R, S11K, G24H, G24R, G24K, E25H, E25R, and E25K.

As there are no known structure-function relationships that
can be used as a gold-standard for bodysite identification, it was
excluded from the conceptual error calculations.
2.4 Statistical Comparisons
As each prediction task used the same 5-fold cross-validation
scheme, it is possible to compare different models trained on the
same 80% and evaluated on the last 20%. For this reason, a paired
t-test provides the most power to evaluate differences. For each
comparison below, a paired t-test was implemented with
scipy.stats.ttest_rel (v1.7.3). As these pairwise comparisons
result in many tests per experiment, a Bonferroni correction
was used to correct for false positives. A corrected p<0.05 was
used as a threshold for declaring statistical significance.
3 RESULTS

3.1 Dataset Release
This manuscript publicly releases four HIV-focused datasets.
These have been prepared for other researchers by conforming to
May 2022 | Volume 2 | Article 880618
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the Hugging Face Dataset Hub style. This allows the datasets to
be downloaded using a simple command like:

from datasets import load_dataset
hiv_dataset = load_dataset(‘damlab/HIV_FLT’)

which are then available as high-speed data objects for
downstream use.

As shown in Figure 2A, the whole genome dataset contains a
mixture of genes of the correct length as well as those with
premature stop codons, with 33.3% of genomes contained at least
one gene with a premature stop-codon. When concatenated, this
dataset contains 3.9 million characters, approximately 1% of the
size of the original BFD training dataset of 393 million characters
(46). The classification datasets are independent from the
genome dataset as these full-genomes lack drug-resistance,
coreceptor binding type, or tissue isolation information. As
such, three datasets have been prepared for the three
classification tasks relevant to HIV biology. Figure 2B shows
the prevalence of drug resistance in Protease sequences across
four drugs from the Stanford HIV Database. Out of the 1733
Protease sequences with known drug resistance, 55.8% of
Frontiers in Virology | www.frontiersin.org 6
sequences have resistance to at least one drug, while 28.0%
have resistance to all four. Figure 2C describes the profile of
body-sites where 5510 unique V3 sequences have been isolated
with 28.3% isolated from multiple locations. A partially
overlapping set of 2935 V3 sequences contained coreceptor
information with the majority being CCR5 binding 92.1%,
23.9% CXCR4 binding, and 16.0% dual tropic as shown in
Figure 2D. Over 200,000 V3 sequences were discarded as
having neither body-site nor coreceptor information.

3.2 Classification Tasks
Table 1 and Figure 3 show the precision, recall, and accuracy of
each of the trained models when a standard 50% cutoff was used
to binarize the predictions. When considering accuracy, the
percentage of correctly called sequences from the validation
fold, the TF-IDF model best predicted protease resistance
mutations with a 91.3% accuracy, while the HIV-BERT model
performed the best at coreceptor prediction and bodysite
identification with a 92.5% and 89.1% accuracy respectively.
However, the TF-IDF and HIV-BERT models performed
A B

DC

FIGURE 2 | Description of publicly released datasets. (A) The length of each translated sequence is shown as a heatmap with darker regions indicating a greater
concentration of sequences at that length. The proteome represents the total length of all translated sequences. (B) The number of protease sequences with
observed resistance (orange) and no resistance (green) to each of four drugs. MultiDrug resistance represents the sum of individual drug resistances and is indicated
by the key above. (C) The number of V3 sequences observed at each body-site (orange) and not observed (green) to each of the grouped sites. MultiSite represents
the total number of sites that a unique V3 sequence was observed in. (D) The number of V3 sequences annotated with known coreceptor usage with those able to
bind the coreceptor in orange and those not able to bind the coreceptor in green. DualTropic represents sequences that were determined to utilize both coreceptors
in orange and those only able to bind to one are shown in green.
May 2022 | Volume 2 | Article 880618
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within 3% mean accuracy across all tasks, which is less than 1
standard deviation when considering models across folds.

While commonly measured, accuracy may not be the ideal
metric for comparing model performance in a clinical context.
Depending on the situation, a researcher may wish to trade
precision for recall by altering the cutoff between a positive and
negative prediction. To account for this, the area under the
receiver-operator characteristic curve (AUC) was calculated and
Frontiers in Virology | www.frontiersin.org 7
shown in Table 1 and Figure 3D. Here the TF-IDF model
performed the best across all tasks but again this was statistically
significant in the protease resistance and tissue tasks but not
coreceptor prediction.

As these tasks are multi-class predictions, it is important to
examine the ability of the model to perform on each class.
Figure 4 shows the accuracy of each model across each of the
classes of each prediction task. When considering each model
TABLE 1 | Average model performance metrics across 5-fold cross-validation.

Task Model Precision Recall Accuracy AUC

Protease Resistance Null Model 43.4% (7.6) 43.6% (7.9) 51.7% (2.7) 49.9% (2.3)
TF-IDF 87.2% (5.0) 92.4% (4.9) 91.3% (2.8) 97.0% (1.4)
Prot-BERT 80.6% (10.6) 82.2% (22.9) 82.8% (10.4) 87.8% (13.1)
HIV-BERT 85.5% (9.0) 88.5% (4.3) 88.4% (3.2) 94.3% (2.4)

Coreceptor Usage Null Model 57.7% (36.3) 58.0% (35.8) 74.0% (11.9) 49.7% (2.1)
TF-IDF 92.7% (4.4) 82.0% (18.2) 92.4% (2.9) 92.5% (2.6)
Prot-BERT 91.0% (6.6) 81.5% (15.6) 91.2% (2.3) 91.6% (3.0)
HIV-BERT 91.7% (6.0) 84.5% (13.5) 92.5% (2.2) 92.4% (2.8)

Tissue of Isolation Null Model 14.1% (15.7) 14.2% (15.6) 79.3% (13.4) 49.7% (1.5)
TF-IDF 81.8% (19.7) 20.6% (20.8) 88.6% (9.6) 85.0% (6.7)
Prot-BERT 6.1% (17.5) 11.1% (31.8) 86.4% (12.4) 52.1% (7.2)
HIV-BERT 53.4% (34.0) 33.3% (25.4) 89.1% (9.9) 81.6% (7.4)
May 2022 | Volume 2 | A
The number in the cell represents the mean metric across all folds and across each predictive field. The numbers in the parentheses represent the standard deviation of the metric. The
bolded elements indicate the best performing model for each prediction task based on the metric.
A B

DC

FIGURE 3 | Pretraining improves prediction metrics across all tasks. The accuracy (A), F1-score (B), precision (C), and AUC (D) are shown for each model and
each prediction task. The bar indicates the mean value and the error bars represent the 95% confidence interval of 5-fold cross validation. The Null model is shown
in red, the TF-IDF model is show in blue, the Prot-BERT model in green, and the HIV-BERT model is in purple. The test-comparison bars represent the results of a
paired t-test between each group; undrawn comparisons p<0.05, *(0.05<p<=0.01), **(0.01<p<=0.001), ***(0.001<p<=0.0001), ****(p<=0.00001). A Bonferroni
correction based on all possible tests in the figure.
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individually, there is a consistent level of prediction ability
across classes with AUC scores within 5%. In the protease
resistance task, TF-IDF and HIV-BERT have an increased
ability to predict IDV relative to SQV (p<0.05). When
examining the tissue prediction task, the TF-IDF and HIV-
BERT did show differences across tasks with breast-milk
having the highest accuracy and periphery-tcell having
the lowest.

3.3 HIV-BERT Pretraining
Utilizing the full genome dataset described above, the RostLab/
prot_bert_bfd model was refined for HIV specific tasks. This
pretraining reduced the masked token cross-entropy loss from
1.85 nats for the unrefined model to 0.36 nats. This indicates
that the average prediction for the correct amino acid
improved from approximately 15% to 70%. This was
visualized by subjecting the consensus subtype B V3 loop
CTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHC (19) to
single amino acid masking across all 35 positions. Figure 5
shows the difference between the unrefined model and the HIV-
refined model across this masking task. The HIV-refined model
has a greater predicted probability for the consensus amino acid
at most positions (31/35) compared to the unrefined model.
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3.4 Conceptual Error
Each sequence in the protease dataset was subjected to single
amino acid mutations to either add or remove a known DRM,
as listed in the methods above. Figure 6 shows the effect of
those substitutions on the model’s prediction of the likelihood
of drug resistance with red dots indicating a gain of a DRM and
gray dots indicating a loss. A well performing model would
show that an addition of a DRM (red dots) increases the
resistance likelihood and would therefore be above the x=y
line. The converse would be true when removing a known
DRM (gray dots). When examining Figure 6, there are many
instances in the TF-IDF and Prot-BERT models in which
mutations mislead the prediction of the models; red dots that
are below the line or grey dots that are above the line. This is
noticeably less prevalent in the HIV-BERT model.

A similar pattern can be observed in Figure 7 when adding
mutations known to increase CXCR4 binding (orange dots)
and removing mutations known to indicate CXCR4 binding
(green dots). The TF-IDF model also has poor confidence in
classifying CXCR4 values after the addition of promoting
mutations with few mutated sequences increasing past a 50%
threshold. Prot-BERT and HIV-BERT do not suffer from
this limitation.
A B

C

FIGURE 4 | Area under the curve (AUC) scores for individual fields of drug resistance and coreceptor prediction are consistent, but tissue identification is not. The model
AUC scores were disambiguated for each field of each prediction task. Each task is shown in (A) protease drug resistance, (B) coreceptor prediction, and (C) tissue isolation
with colors indicating the prediction field. The bar indicates the mean value and the error bars represent the 95% confidence interval of 5-fold cross validation. The test-
comparison bars represent the results of a paired t-test between each group; undrawn comparisons p<0.05, *(0.05<p<=0.01), **(0.01<p<=0.001), ***(0.001<p<=0.0001),
****(p<=0.00001). A Bonferroni correction based on all possible tests in the figure.
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In order to quantify this, a mean-squared error was
calculated as described above such that only predictions in
the unexpected direction were penalizing. Figure 8A shows
the results of this analysis grouped by model. In the coreceptor
prediction task, all models improve upon the naïve
predictions but are not statistically significantly different
from each other. However, for the protease resistance
prediction task the Prot-BERT and HIV-BERT models are
more statistically significant than the TF-IDF model but not
from each other. Across all tasks, Figures 8B, C, the HIV-
BERT model outperforms all other models but not to a
statistically significant level.
4 DISCUSSION

Over the past decade there has been an explosion in open-
source natural language processing tools, especially in the AI
field. However, biological datasets are rarely in a form
amenable to easy implementation. This is particularly true of
specialized datasets like those discussed in this analysis.
Creating publicly accessible datasets in an easily retrieved
form will help bridge the gap between AI and biological
researchers. The study reported herein releases four HIV
specific datasets to the public for new researchers to iterate
upon. This is coupled with the release of a generically-trained
HIV-BERT model as well as the three task-specific refinements
Frontiers in Virology | www.frontiersin.org 9
discussed above. It is our hope that depositing these in the
open-source Hugging Face transformers library will allow for a
democratization of research and prevent issues like link-death,
a common problem when attempting to build upon the work
of others.

Examining previous machine learning attempts at these tasks
reveals that our technique is competitive with existing methods.
Early work in DRM mutation by Beerenwinkel et al. achieved
sensitivities ranging from 58-92% and specificities ranging from
62-92% using decision trees across different inhibitors (56). Later
work by Heider et al. was able to achieve AUCs ranging from
0.79-0.89 using chains of classifiers (57). Recent work published
in 2020 by Steiner et al. tested older AI techniques like multi-
layered perceptrons and recurrent networks achieving AUCs
from 0.8 to 0.97 (58). The HIV-BERT model released on the
Hugging Face repository has an average AUC of 0.94, making it
competitive with current state of the art techniques. When
examining our coreceptor prediction model we perform
competitively with recent work by Chen et al. in 2019 using
the XGBoost method (22).

It is important to note that none of the previous methods used
the same dataset for training and validation, making direct
comparison difficult. This is likely because HIV-1 sequence data
is sequestered within databases that require domain specific
knowledge to access and process for modern machine learning
and AI tools. Our release of a standard-formatted dataset and
processing scripts will help to alleviate these difficulties.

To our knowledge, the tissue identification task has never
been posed as a classification problem in this manner. Previous
FIGURE 5 | Full genome pretraining of the Prot-BERT model increases HIV-1 sequence awareness. The probability of each consensus amino acid of the V3 loop
when performing masked prediction task. Green bars represent the prediction from the Prot-BERT model and red bars represent the HIV-BERT model.
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research has used phylogenetic methods to identify the level of
compartmentalization by finding mutations unique to a single
tissue type when examining isolates from diverse tissues (59, 60).
However, when performing routine surveillance sequencing of
patients, invasive methods like lumbar punctures for CSF or
bronchiolar lavage for lung sampling are impractical. Framing
the problem as a classification task allows for sequencing of virus
from peripheral blood to detect recent reactivation events from
these latent reservoirs. This will be useful when evaluating the
success of HIV cure strategies such as anti-HIV-1 CRISPR/Cas9
gene editing or latency reactivation (27).
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In our analysis, a simple k-mer and tree-based prediction,
TF-IDF, was able to outperform advanced AI models in many
of the tasks when considering classic metrics such as accuracy
and AUC. However, when it was subjected to biological
investigation by introducing mutations with known
function, it performed the worst. This reflects poor
generalization and indicates that the TF-IDF model may be
“memorizing” patterns that are correlated with the prediction
task, but not causative. BERT-style models, pre-trained on
millions of sequences, can distinguish between functional
changes in the sequence and random mutations. This result
FIGURE 6 | Transformer models accurately predict the outcome of drug resistance mutations (DRMs). Each sequence in the resistance dataset was mutated by
each of the ten DRMs as described in the methods and each mutated sequence is shown as a single point; there are ten points per sequence. Sequences where a
DRM was added are shown in red which should increase the probability of resistance. Points in grey indicate sequences where a DRM was removed and should
decrease in probability of resistance. The dashed black line shows the x=y line and the assumption of no change due to the mutation. Each column of axes shows
the predictions using each of the three models. With the first column indicating the TF-IDF model; the second indicating the Prot-BERT model; and the third showing
the HIV-BERT results. Each row represents the prediction on a different drug in the order FPV, IDV, NFV, and SQV.
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indicates a need for detailed evaluation of prediction models
to ensure that they reflect biological reality. The introduction
of conceptual error described above is an initial attempt at
performing this at-scale for HIV-1 tasks. Future work should
expand this by incorporating deep mutational scanning
datasets (61).

When examining the BERT style models across related
tasks, there is a notable level of consistency across predicted
fields. The AUC for each drug and coreceptor fall within 5% of
each other. This may indicate that information is being shared
within the model across these related fields, a common
strength of transformer models. This pattern was not seen
in the tissue classification task, this may indicate more
sequences are needed or that other areas of the HIV-1
genome should be examined. Other published research has
shown that regions across the genome have a role to play in
tissue specificity and cellular tropism. It may be that the V3
loop is important for cellular tropism but the accessory
proteins Vpr, Tat, and Nef may play a greater role in tissue
Frontiers in Virology | www.frontiersin.org 11
specificity (62, 63). Future work should explore other proteins
using similar prediction tasks.

The trained models have multiple biological applications.
The PI- and Tropism-trained models are immediately
applicable to predicting the most useful antiretroviral drug
for a given patient. They can also be utilized for exploring the
structure-function relationship between inhibitors and viral
sequences. The bodysite prediction task allows for the
tracking of leakages of strains from viral reservoirs. This
may lead to new avenues of research around the exchange of
viral quasispecies between compartments. Finally, the HIV-
BERT model functions as a base that future HIV predictive
models can be built upon.

Taken together, this work shows that AI models, particularly
transformers, are well suited to biological prediction tasks.
Refining the model on unlabeled sequences improves prediction
accuracy with minimal upstream cost; the HIV-BERT model
discussed above can be downloaded and finetuned for new
prediction tasks with minimal additional effort and has been
FIGURE 7 | Transformer models accurately predict the outcome of CXCR4 enhancing mutations. Each sequence in the V3 coreceptor dataset was mutated by
each of the nine CXCR4 promoting mutations as described in the methods and each mutated sequence is shown as a single point; there are nine points per
sequence. Sequences where a CXCR4 promoting mutation was added is shown in orange which should increase the probability of CXCR4 binding and decrease
the probability of CCR5 binding. Points in green indicate sequences where a CXCR4 promoting mutation was removed and should decrease CXCR4 binding and
increase CCR5 binding. The dashed black line shows the x=y line and the assumption of no change due to the mutation. Each column of axes shows the
predictions using each of the three models with the first column indicating the TF-IDF model; the second indicating the Prot-BERT model; and the third showing the
HIV-BERT. Each row represents the prediction on a different coreceptor with CCR5 on the top and CXCR4 on the bottom.
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successful with fewer than 2000 labeled sequences. This puts many
biologically relevant HIV-1 prediction tasks within reach and can
accelerate any additional protein-to-function prediction task and
will be useful to the HIV community as a whole.
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