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Early life represents a period of profound immunological development and heightened
susceptibility to infectious disease. The developmental trajectory over this period is
influenced by a number of factors, including gestational age, mode of delivery, mode of
feeding, microbiome development, and environmental exposures. There are also several
maternal factors that have been shown to have a negative effect on both immune
development and clinical outcomes, including maternal infection and inflammation.
Studies have associated maternal HIV infections with an increase in infectious morbidity
and mortality and decreased growth measures among their HIV-exposed uninfected
(HEU) offspring. Among HEU infants, socioeconomic factors, maternal nutrition, maternal
viral load, and maternal inflammation have also all been associated with impaired infant
immune status and clinical outcomes. However, the mechanisms underlying these
observations have not been elucidated and, apart from measures of disease severity,
few studies thus far have undertaken in-depth assessments of maternal health status or
immune function during gestation and how these influence developmental outcomes in
their infants. The lack of a mechanistic understanding of how these gestational influences
affect infant outcomes inhibits the ability to design and implement effective interventions.
This review describes the current state of research into these mechanisms and highlights
areas for future study include; how HIV infection causes the inflammatory trajectory to
deviate from normal gestation, the mechanism(s) by which in utero exposure to maternal
inflammation influences infant immune development and clinical outcomes, the role of
socioeconomic factors as an inducer of maternal stress and inflammation, and maternal
nutrition during gestation.

Keywords: maternal HIV, maternal inflammation, HIV-exposed uninfected (HEU), infant development, pregnancy and
maternal infection
INTRODUCTION

Although there is evidence that the underlying trajectory of immune development is fairly resilient
(1, 2), studies have also shown that immune development is influenced by a range of factors
including gestational age, mode of delivery, mode of feeding, microbiome, and environmental
exposure (3–9). Many of these factors have also been associated with impaired clinical outcomes in
infants (10–14), including susceptibility to infectious diseases.
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Maternal characteristics during gestation can also have a
notable effect on infant immune development and clinical
outcomes. These include maternal nutrition and microbiome,
as well as maternal infection and inflammation (7, 15–18).
Maternal HIV in particular has been widely shown to be
associated with increased infectious morbidity and mortality,
reduced growth parameters, and higher risk of pre-term birth in
their HIV-exposed-but-uninfected (HEU) infants (19–22).

There are numerous hypotheses regarding the mechanism(s)
underlying the poor outcomes of HEU infants. A definitive
consensus remains elusive, and the evidence thus far suggests
that the cause is likely multifactorial. Antiretroviral exposure,
mode of feeding, a more infectious environment, reduced
maternal care, and socioeconomic factors have all been
proposed (23). Patterns of altered immune development have
also been detected among HEU infants, which may contribute to
their increased susceptibility (24). As with the clinical picture, it
remains unclear by what mechanism(s) these immune
alterations are induced, with in utero HIV exposure, ARV
exposure, and the influence of maternal nutrition and
microbiome all potential candidates to influence the
developing immune system (25, 26). Numerous studies have
reported that worse maternal health status, as assessed by viral
load or CD4 count, also appears to be associated with poor infant
outcomes (27–30). Again, the underlying mechanism(s) are not
yet clear. Apart from measures of disease severity, a limited
number of studies have undertaken in-depth assessments of
maternal health status or immune function and attempted to
determine how these influence immune development and
infectious outcomes in their infants.
POTENTIAL MECHANISMS OF MATERNAL
INFLUENCE ON HEU INFANT OUTCOMES

Many mechanisms have been proposed to explain the disparity
in clinical outcomes between HEU and HUU infants. Potential
factors such as mode of feeding and delivery, while important,
are beyond the focus of this review and will be mentioned only
briefly here. Several maternal factors have been proposed that
may play a role in infant outcomes but have been less well
studied. The remainder of this review will focus on these areas.
MATERNAL HIV INFECTION

The placenta protects the developing fetus from maternal
infections; however, certain viruses possess mechanisms that
allow them to evade this protection (31). HIV has been
detected in fetal tissues (32–34), confirming that the virus is
able to cross the placenta. While this has obvious implications for
mother-to-child-transmission (MTCT), in utero HIV exposure
presents other potential risks to the developing fetus, including
pre-term birth and impaired fetal growth compared to infants
born to HIV-negative women (35, 36). Studies have shown that
in utero HIV exposure may also have long term effects on the
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development and function of the infant immune system (24),
although the relative contribution of maternal factors has not
been elucidated.

Despite the lack of mechanistic explanation, evidence for the
effect of in uteroHIV exposure on the immune development and
function of the infant has been strengthened by numerous
studies that have demonstrated a linkage between maternal
disease severity, as measured by viral load or CD4 count, and
infant outcomes. Reduced maternal CD4 counts have been
associated with increased infant mortality (29, 37) and
morbidity (27, 28); similarly, high maternal viral load has also
been shown to be a significant predictor of infant morbidity and
mortality (29). This is not surprising, as where more severe
maternal disease will expose the infant to quantitatively higher
levels of HIV antigen. There will also be exposure to a maternal
immune environment biased towards systemic activation and
chronic inflammation. These exposures may, individually or
together, influence the development of the infant, resulting in
an increased susceptibility to infections in early life.

Infant growth parameters are also influenced by maternal
disease severity (38). Low maternal CD4 counts were associated
with reduced length-for-age (LAZ) scores over the first two years
of life (39). Lower maternal CD4 counts were also associated with
reductions in weight-for-age (WAZ) (40, 41), LAZ (41), weight,
length, and head circumference measurements (42) as well as
increased intrauterine growth restriction (IUGR) (43). Higher
maternal cervical HIV RNA (44) and low maternal CD4 counts
were associated with increased risk of low birth weight (LBW)
(45). A high maternal viral load was significantly associated with
infant stunting (46) and lower infant weight (30).

The collective evidence from these studies supports that
infants born to mothers with advanced disease are at increased
risk of poor outcomes (21, 37, 47–49), although the precise
underlying mechanism(s) are not yet known. More severe
maternal disease will expose the infant to quantitatively higher
levels of viral particles as well as a more activated maternal
immune environment biased towards systemic activation and
chronic inflammation. These exposures may, individually or
combined, exert a deleterious influence on the developing
fetus, resulting in poorer infant outcomes.

Maternal Inflammation
Along with hormonal and physiological changes, immunological
alterations during pregnancy may increase the risk of adverse
infant outcomes (50). In recent years, our knowledge of the
maternal immune system during pregnancy has undergone a
significant shift. Previously thought to exist primarily in a state of
immune suppression to accommodate the semi-allogeneic fetus,
our current understanding, while incomplete, now points to a
system that is constantly changing according to a predetermined
physiological pattern, or ‘pregnancy clock’ (51). Initially, a
proinflammatory state is maintained during the first trimester
of pregnancy, which is critical for embryo implantation,
placentation, and initial fetal growth, followed by transition to
an anti-inflammatory state during the rapid fetal growth of the
second trimester, and finally a return to a proinflammatory state
prior to labor (52).
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Despite the natural tendency towards a pro-inflammatory
milieu at certain stages of gestation, it has been hypothesized that
chronic exposure to low-grade systemic inflammation in fetal
and early postnatal life, of the type that is characteristic of HIV
infection (53) may result in stunting (54). Maternal HIV
infection has been associated with an increased risk of preterm
birth, a complication likely related to inflammation at the
materno-fetal interface (55, 56). Prendergast et al. further
reported strong associations between maternal and infant
inflammatory markers at birth, supporting the hypothesis that
an increased maternal inflammatory environment contributes to
an increase in inflammation in the infant (54). However, these
findings have been contradicted by multiple studies that have
found that maternal and infant levels of inflammation do not
correlate (31, 57, 58) suggesting that the increased levels of
inflammatory mediators that have been described in HEU
infants may not be solely the result of direct maternal transfer.

Although HIV infection is associated with increased levels of
serum inflammatory mediators, it has not conclusively been
shown that these cytokines can cross the placenta, making it
difficult to accurately gauge their effect on the developing fetus
(59). The presence of inflammation in cohorts with controlled
maternal viral load suggests that antigenic exposure via placental
transfer does not provide an adequate explanation either. Further
complicating efforts to determine the impact of maternal
inflammation on infant outcomes is the finding reported by
multiple studies that maternal HIV infection is associated with
lower levels of pro-inflammatory mediators in both mothers and
children (60–62), conflicting with studies that have reported
increased inflammatory mediators in HEU mothers and
infants (58).

Maternal Immunity
Pregnancy involves a tightly regulated immunological trajectory
(51) designed to provide adequate immune protection to the
mother and fetus while simultaneously maintaining tolerance
towards the semi-allogeneic fetus (50). During a healthy
pregnancy, the maternal immune system undergoes a series of
adaptations in both the adaptive and innate arms (50). Initiated
early in pregnancy (63), these adaptations result in a progressive
shift from a cell-mediated, pro-inflammatory, Th1-biased profile
towards a humoral, anti-inflammatory, Th2-biased profile (64).

Increased maternal immune activation has also been
identified as a factor in the association between maternal viral
infections and adverse infant outcomes (31). HIV infection and
antiretroviral therapy (ART) both impact key immune
mechanisms, which may in turn disturb this normal
immunological trajectory of pregnancy (65). Maternal HIV
infections are commonly associated with increased levels of
pro- and anti-inflammatory cytokine levels in cord blood,
independent of pathogen transmission (16).

Maternal HIV and ART has been associated with distinct
systemic cytokine profiles throughout pregnancy that differ from
an HIV- pregnancy profile (65). HIV-exposure has further been
shown to affect the maternal/fetal unit, with increased levels of
proinflammatory cytokine produced by placenta cells, as well as
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altered infant immune responses (66). HEU infants have high
levels of inflammatory mediators in their cord blood. Further
studies are required to address the origin and long-term
consequences of prenatal HIV-exposure and subsequent
immune activation for infant health.

Maternal Antibodies
Maternal antibodies are a central component of the newborn
immunity against pathogens in early life. In healthy pregnancies,
antibodies are selectively transferred across the placenta (59),
while chronic maternal infections are associated with reduced
transfer of IgG across the placenta, presenting a unique
‘disruption model’ (67–70). In HIV positive pregnancies,
factors associated with maternal disease progression are
associated with poor placental IgG transfer (29, 67, 71–73).
The mechanisms underlying this impaired transfer are not
fully defined. One hypothesis that has been proposed is that
increased levels of maternal antibodies saturate the placental Fc
receptor (24). Martinez et al. showed that placental transfer of
maternal IgG is a selective process in which a combination of
factors, including IgG FcR binding strength, subclass, and glycan
profiles, play a role in the selective and differential transfer of
maternal antigen-specific IgG across the placenta (67).

The functional potential of antibodies are determined by their
glycosylation profile, which defines the Fc receptors that the
antibody can bind to (74). Binding to placental Fcg receptors can
predict the transfer of placental IgG transfer efficiency. Altered
antibody glycosylation profiles in the context of maternal HIV
infection could also be related to the reduced transfer efficiency
observed in HEU infants. The occurrence of inflammation due to
maternal HIV infection may also negatively influence the passive
immune transfer to the fetus (73).

Maternal Microbiome
Over the course of a normal pregnancy, changes naturally occur
to the maternal vaginal and gut microbiota (7). The vaginal
microbiome becomes less diverse and develops a higher relative
abundance of Lactobacillus species (75). There is some evidence
of decreased diversity in the gut microbiome as well as pregnancy
progresses, along with a shift towards a greater abundance of
pro-inflammatory Proteobacteria (76).

Previous studies have shown that HIV infection also alters the
composition of the gut microbiome (77). Reported differences
include increased diversity and abundance of Prevotella species
(77, 78) as well as increased Proteobacteria and decreased
Bacteroidetes (53, 78).

Emerging studies have shown that the maternal microbiome
plays a major role in the early microbial colonization of the
infant as well as in the development of the infant immune
system. Factors that disrupt the maternal transfer of
microbiota, such as perinatal antibiotics, mode of delivery, and
mode of feeding, have been shown to influence the composition
of the infant microbiome and have been associated with adverse
outcomes later in life (7). A study in Zimbabwe reported an
association between gestational maternal gut microbiota and
birthweight and neonatal growth (79). In the context of
May 2022 | Volume 2 | Article 885246

https://www.frontiersin.org/journals/virology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/virology#articles


Ruck and Smolen Effect of Maternal HIV Infection
maternal HIV infections, a Haitian study reported that the
microbiome of HEU infants was altered compared to that of
UE infants (80). However, a study comparing the microbiome of
HEU infants across different regions demonstrated that these
differences are not universal but rather are complicated by
population-dependent differences (81).

Maternal Nutrition
Maternal nutritional status has a strong influence on infant
growth and development (82). Fetal growth involves a complex
interplay of factors including metabolic and endocrine signaling
as well as maternal nutritional and immune status (83). Maternal
malnutrition can impair the nutrient stores of the developing
fetus, which consequently can inhibit fetal immune function and
growth (84). Maternal gestational weight gain and body mass
index have been positively associated with infant birth weight
(82) while low maternal BMI was associated with an increased
risk of low birth weight (85–87). Maternal height has been
inversely associated with infant mortality, stunting and
underweight in survey data from 54 low- to middle-income
countries (88).

Pregnancy increases the need for both absolute calories as
well as specific nutrients (89). These increased nutritional
requirements are necessary to support the physiological
changes that take place during gestation as well as fetal growth
and development (90).

HIV infection also increases both energy and micronutrient
requirements. Infected individuals often have compromised
nutritional status (91) and/or are micronutrient deficient (92,
93). Common HIV-related issues, such as diarrhea, appetite loss,
and opportunistic infections, all place an increased burden on
available energy stores (84). As such, HIV has long been
associated with changes in body mass and composition (84, 94).

Although there is not a great deal of previous literature
regarding the specific effect of HIV on nutrition in women,
certain sex-specific changes have been identified. HIV infection
was associated with a reduction in the fat mass index (FMI) in
women, while no difference in FMI was observed between men
with and without HIV (94). Further, women suffering from AIDS
wasting syndrome experience a disproportionately high decrease
in body fat relative to lean body mass compared to men (95).

Both pregnancy and HIV infection increase the risk of
anemia. The risk of developing anemia during pregnancy is
higher for HIV infected women (96, 97). Maternal anemia has
been shown to negatively affect infant outcomes, regardless of
infection status. In uninfected mothers, maternal anemia is
associated with low birth weight (82) while anemia in HIV-
infected mothers was associated with increased risk of PTB and
LBW (98) and small-for-gestational-age (SGA) (99).

Taken together, it is apparent that the combined nutritional
requirements of pregnancy and HIV can leave HIV-infected
mothers at greater risk of malnutrition. This has been borne out
by studies in which maternal wasting was shown to be more
prevalent in HIV-infected mothers compared to uninfected
mothers (90). This compromised nutritional status may also
affect the growth and health status of their infants. Reductions in
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the MUAC of HIV-infected mothers during gestation were
associated with reductions in infant WAZ and LAZ through to
6 months of age (100). Similarly, greater maternal weight change
during pregnancy was associated with higher LAZ of their HEU
infants (101), while lower maternal BMI was associated with
lower length and weight gain in their 2 wk old HEU infants
(102). Indeed, the use of maternal anthropometry as an indicator
of infant outcomes appears to be more applicable in the context
of maternal HIV infection than in HIV-negative mothers (103).
SOCIOECONOMIC FACTORS

It is well established that a range of maternal factors influence
infant outcomes; developing a comprehensive understanding of
these forces needs to include consideration of non-biological
factors. Studies into non-biological factors have identified several
indicators that are associated with determinants of maternal and
infant health. The non-biological maternal factors associated
with reduced infant anthropometry are not unique to the HEU
population but rather are in line with factors that have previously
been identified in UE infants, particularly in lower income
countries, such as parental education, income, and number of
children within the household (104–106).

Lower educational outcomes have been associated with
increased risk of HIV infection among women of childbearing
age (107, 108). Maternal education has also been linked to infant
health and growth outcomes. Lower maternal education is
associated with increased infectious morbidity in infants
among both HIV-infected and uninfected women (109) and is
an independent predictor of infant stunting, wasting, and
underweight measures (46, 110). Reduced maternal education
was found to be associated with decreased LAZ and WAZ scores
over the first two years of life (39), while maternal illiteracy was
identified as a risk factor for reduced linear growth (111). The
mechanisms underlying this association have not yet been
conclusively established. Higher educational attainment may
result in increased knowledge related to hygiene, pre-natal
care, childcare, and feeding practices (110). As well, lower
education has been associated with reduced knowledge about
PMTCT (112) and decreased access to testing (113, 114).

It is possible that education is a surrogate for socioeconomic
status, and poverty is the real causative factor (109). Poverty is
associated with increased risk of HIV infection (108, 114–116);
thus it follows that poverty would also have a role in maternal
HIV status. Low socioeconomic status has been associated with
poor maternal nutrition and gestational anemia (96, 117, 118)
factors that have been linked to worse infant outcomes.
TIMING OF ART

Given the observed associations between severity of maternal
disease and infant health status, it is not surprising that the use
of maternal ART has been shown to improve infant outcomes.
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The benefits of maternal ART use have been well reviewed
elsewhere (119–121); this review focuses on the timing with
which ART is established relative to pregnancy. There is a
conflicting body of literature suggesting that ART initiation can
result in HU-equivalent status for the infant if ART was initiated
prior to conception or early in pregnancy. Although these findings
are still somewhat inconsistent, early studies indicate that this
result is at least partly dependent on whether the cohort is located
in high-income countries vs low-income countries.

In an Ethiopian study, infants exposed to ART from
conception displayed decreased growth compared to those
exposed late in pregnancy (122). A Belgian HEU infant cohort
reported that initiation of maternal ART before pregnancy
reduced the risk of infant infection-related hospitalizations
(123). In a Brazilian cohort, although ART use was associated
with a high frequency of adverse events in newborns, these were
mainly of low severity (124). In contrast, the effect of maternal
ART on infant outcomes was not so clear in a South African
cohort (125). The mechanisms underlying these distinctions
between cohorts are not yet clear and are the basis of ongoing
studies. It could be an artifact of differences in study design, or it
could be related to population-level differences in health status
affecting the study participants.
FUTURE RESEARCH DIRECTIONS
AND NEW TECHNOLOGIES

Given the immense influence they have on infant outcomes,
maternal factors in the context of HEU infants have been
understudied. Gaps in knowledge that should direct future
research directions include a more thorough understanding of
maternal immunity, particularly the innate arm, and of how
immunological markers change across the entire gestational span
in both normal and pathological pregnancies (126). Improved
standardization of immune measures would also improve the
comparability between studies, as well as allowing for a more
defined metric to measure the extent of the adverse outcomes in
infants. A deeper understanding of the maternal microbiome is
also required, and how it affects infant development and
outcomes. Further, future studies need to move beyond the
observational and begin to attempt to elucidate the
underlying mechanisms.

Among the tools that are available to advance these research
agendas are the recently developed field of ‘omics technologies. To
date, these have primarily been used to map the immune profile of
the adults and infants; few comprehensive investigations into
maternal profiles exist thus far (127, 128). The systems approach
harnesses multiple “omics” technologies and applies
computational methodologies to analyze large volumes of data
about parameters of various interacting biological systems, can
help to address some of these gaps. This pooling of efforts results
in a comprehensive, high-resolution picture of a system of interest.
The application of these systems has begun to elucidate a number
of trajectories in pregnancy, including the characterization of the
proteomics, transcriptomics, and metabolomics (51, 129–131). In
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addition, systems serology is shedding new light on the assessment
of antibody function and glycosylation (132).

The main advantages of applying the systems biology
approach is the ability to acquire novel insight into immune
trajectories and to develop well-defined outcome parameters.
Pregnancy has a defined trajectory and complex ontogeny. To
best understand the complexity of the trajectory, the timeline
needs to be considered. Each trimester, month, and week of
pregnancy is marked by rapid development and change. It
remains a challenge to determine the optimal degree of
granularity required to adequately define this trajectory.

Furthermore, well-defined parameters for outcomes of
interest are essential but limited primarily to infant outcome
and exclude other factors such as maternal health and long-term
health outcomes of the infant. The outcomes of a normal versus
impaired immune state in the infant and beyond are nuanced.
Defined parameters need to be established for systems biology to
assess the presence and clinical relevance of optimal ontogeny
and deviation of that trajectory.
CONCLUSIONS

Despite the relative lack of attention given to maternal factors,
there is sufficient evidence to conclude that maternal HIV
infection adversely affects infant outcomes in early life. Among
the many reasons for these deleterious outcomes, the focus has
largely fallen on feeding practices and ARV exposure. Yet studies
have shown that, despite improvements in outcomes in the
context of breastfeeding and ARV use, these adverse outcomes
persist (133, 134). Further, evidence that the extent of this
influence is affected by the severity of maternal disease suggests
that the mechanism is at least partly related to in utero exposure,
although it remains an open question whether the virus itself or
the activated maternal environment is most responsible.
Understanding the mechanisms by which in utero HIV
exposure affects infant outcomes is the next step towards
understanding how best to design effective interventions to
improve infant outcomes.
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Economic Risk Factors for HIV Infection Among Women in Rural Haiti:
Implications for HIV Prevention Policies and Programs in Resource-Poor
Settings. J Womens Health (Larchmt) (2010) 19(5):885–92. doi: 10.1089/
jwh.2008.1334

117. Bekele A, Tilahun M, Mekuria A. Prevalence of Anemia and Its Associated
Factors Among Pregnant Women Attending Antenatal Care in Health
Institutions of Arba Minch Town, Gamo Gofa Zone, Ethiopia: A Cross-
Sectional Study. Anemia (2016) 2016:1073192. doi: 10.1155/2016/1073192

118. Kare AP, Gujo AB. Anemia Among Pregnant Women Attending Ante Natal
Care Clinic in Adare General Hospital, Southern Ethiopia: Prevalence and
Associated Factors. Health Serv Insights (2021) 14:11786329211036303. doi:
10.1177/11786329211036303

119. Selph SS, Bougatsos C, Dana T, Grusing S, Chou R. Screening for HIV
Infection in Pregnant Women: Updated Evidence Report and Systematic
Review for the US Preventive Services Task Force. JAMA (2019) 321
(23):2349–60. doi: 10.1001/jama.2019.2593

120. Fowler MG, Flynn P, Aizire J. What Is New in Perinatal HIV Prevention? Curr
Opin Pediatr (2018) 30(1):144–51. doi: 10.1097/MOP.0000000000000579

121. Bailey H, Zash R, Rasi V, Thorne C. HIV Treatment in Pregnancy. Lancet
HIV (2018) 5(8):e457–67. doi: 10.1016/S2352-3018(18)30059-6

122. Ejigu Y, Magnus JH, Sundby J, Magnus MC. Differences in Growth of HIV-
Exposed Uninfected Infants in Ethiopia According to Timing of In-Utero
Antiretroviral Therapy Exposure. Pediatr Infect Dis J (2020) 39(8):730–6.
doi: 10.1097/INF.0000000000002678

123. Goetghebuer T, Smolen KK, Adler C, Das J, McBride T, Smits G, et al.
Initiation of Antiretroviral Therapy Before Pregnancy Reduces the Risk of
Infection-Related Hospitalization in Human Immunodeficiency Virus-
Exposed Uninfected Infants Born in a High-Income Country. Clin Infect
Dis (2019) 68(7):1193–203. doi: 10.1093/cid/ciy673

124. Delicio AM, Lajos GJ, Amaral E, Cavichiolli F, Polydoro M, Milanez H.
Adverse Effects in Children Exposed to Maternal HIV and Antiretroviral
Therapy During Pregnancy in Brazil: A Cohort Study. Reprod Health (2018)
15(1):76–018. doi: 10.1186/s12978-018-0513-8

125. Slogrove AL, Powis KM, Cotton MF. Human Immunodeficiency Virus-
Exposed Uninfected Infants: Surviving and Thriving or Overlooked by
Success? Clin Infect Dis (2019) 68(12):2156–8. doi: 10.1093/cid/ciy1056

126. PrabhuDas M, Bonney E, Caron K, Dey S, Erlebacher A, Fazleabas A, et al.
Immune Mechanisms at the Maternal-Fetal Interface: Perspectives and
Challenges. Nat Immunol (2015) 16(4):328–34. doi: 10.1038/ni.3131
Frontiers in Virology | www.frontiersin.org 9
127. Ghaemi MS, DiGiulio DB, Contrepois K, Callahan B, Ngo TTM, Lee-
McMullen B, et al . Multiomics Modeling of the Immunome,
Transcriptome, Microbiome, Proteome and Metabolome Adaptations
During Human Pregnancy. Bioinformatics (2019) 35(1):95–103. doi:
10.1093/bioinformatics/bty537

128. Tarca AL, Pataki BÁ, Romero R, Sirota M, Guan Y, Kutum R, et al.
Crowdsourcing Assessment of Maternal Blood Multi-Omics for Predicting
Gestational Age and Preterm Birth. Cell Rep Med (2021) 2(6):100323. doi:
10.1016/j.xcrm.2021.100323

129. Vora NL, Hui L. Next-Generation Sequencing and Prenatal ’Omics:
Advanced Diagnostics and New Insights Into Human Development. Genet
Med (2018) 20(8):791–9. doi: 10.1038/s41436-018-0087-4

130. Benny PA, Alakwaa FM, Schlueter RJ, Lassiter CB, Garmire LX. A Review of
Omics Approaches to Study Preeclampsia. Placenta (2020) 92:17–27. doi:
10.1016/j.placenta.2020.01.008
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