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Since the COVID-19 outbreak emerged, SARS-CoV-2 has continuously

evolved into variants with underlying mutations associated with increased

transmissibility, potential escape from neutralizing antibodies, and disease

severity. The SARS-CoV-2 pandemic in South Africa has been characterized

by periods of infections with fourmajor epidemic waves. To determine whether

the variants driving the epidemic waves at the national level were also driving

the epidemic waves at the local level, we performed analysis of a total of 1287

samples from qPCR confirmed SARS-CoV-2 positive individuals. The samples

were subjected to viral RNA extraction, genomic amplification, and

sequencing. Variant assignment of the viral sequences and mutation

identification were conducted using PANGOLIN and SARS-CoV-2 genome

annotator, respectively. Our analysis revealed that during the initial part of the

first wave, B.1, B.1.1, B.1.1.53, B.1.1.448 and B.1.237 circulated in the Free State
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province, followed by Beta variant, B.1.351 later in the wave. Although most of

the initially detected variants disappeared during the second wave, the Beta

variant, B.1.351, persisted. Early in the third wave, the Beta variant, B.1.351,

predominated but was replaced by the Delta sub-lineage, AY.45. The fourth

wave was characterized by unique emergence of the Omicron sub-variant,

BA.1. The data further indicates that SARS-CoV-2 variants driving the epidemic

waves in the Free State at the local level correlated with the ones driving the

epidemic waves at the national level. Findings from this study highlight the

importance of continued genomic surveillance and monitoring of

the circulating SARS-CoV-2 variants to inform public health efforts and

ensure adequate control of the ongoing pandemic.
KEYWORDS

Beta variant, Delta variant, epidemiological profile, Omicron variant, Free State, SARS-
CoV-2 variants, South Africa
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) emerged in Wuhan, China, in December 2019 and spread

rapidly worldwide (1, 2). The SARS-CoV-2 is an enveloped RNA

virus with a positive-sense, single-stranded RNA genome of

approximately 30 kb (3). Coronavirus disease 2019 (COVID-19)

is the clinical syndrome associated with SARS-CoV-2 and is

characterized by respiratory or gastrointestinal symptoms. In

severe cases, there is the potential for cardiovascular and

neurological complications, thrombosis and renal failure (4, 5).

Approximately 544 million COVID-19 cases with over 6.3 million

deaths have been reported globally as of 27th June 2022 (https://

covid19.who.int/). In Africa, the precise impact of the SARS-CoV-

2 pandemic is not fully known (6), although 252,560 deaths have

been confirmed so far with five countries, South Africa (100,147),

Tunisia (28,509), Egypt (24,613), Morocco (16,063) and Ethiopia

(7,509) reporting the largest number of deaths (https://covid19.

who.int/) at the time of writing this work. The number of SARS-

CoV-2 cases and deaths varies across the nine provinces of South

Africa (Western Cape n = 700,090 (22,257), Gauteng n =

1,320,982 (20,973), Eastern Cape n = 363,529 (16, 847),

KwaZulu-Natal n = 715, 652 (16,228), North West n = 201,653

(4,984), Limpopo n = 159, 429 (4,671), Northern Cape n =

115,122 (3,249), Mpumalanga n = 201,665 (4758)) with the Free

State having 215, 721 (7,826) confirmed cases and deaths,

respectively (www.sacoronavirus.co.za).

SARS-CoV-2 has complex anatomy, consisting of

nonstructural proteins (nsps), structural proteins, and accessory

proteins (7). The structural proteins are numbered from 1 to 16

(nsp1-16) while the structural proteins are also subdivided into

spike (S), envelope (E), membrane (M), and nucleocapsid (N)

proteins (7). Genomic investigations have been integral in SARS-
02
CoV-2 surveillance and the Network for Genomic Surveillance

South Africa (NGS-SA) consortium has been at the forefront in

real-time tracking of the SARS-CoV-2 epidemiology (8). The

inherent mutational ability of SARS-CoV-2 has led to multiple

variants classified into four groups: variants of concern (VOC),

variants of interest (VOI), variants being monitored (VBM) and

variants of high consequence (VOHC) (www.cdc.gov). The SARS-

CoV-2 variants are further classified by the use of the letters of the

Greek alphabet e.g. Alpha, Beta, Delta Gamma, Iota, Kappa,

Lambda, Omicron, etc. for easy-to-say labeling (www.who.int).

Currently, three VBM’s (Alpha-B.1.1.7, Beta-B.1.351 and

Gamma-P.1) and two VOC’s (Delta - B.617.2 including AY

sub-lineages and Omicron - B.1.1.529 including BA lineages)

are in circulation worldwide (www.cdc.gov). The Omicron

variant has predominated over other variants globally (9). Viral

evasion due to mutations in the spike protein region of the SARS-

CoV-2 arising in immunocompromised patients with prolonged

infection is hypothesized to contribute to the emergence of the

global variants of concern (10–12).

The SARS-CoV-2 pandemic in South Africa has been

characterized by periods of infections with four major epidemic

waves. During the first wave of the epidemic (March 2020 to

September 2020), a total of 42 phylogenetic lineages were

identified with three lineages, B.1.1.54, B.1.1.56 and C.1, causing

half of the infections (13). The second wave of the SARS-CoV-2

epidemic began around October 2020 to March 2021

characterized mainly by the Beta/501Y.V2 lineage (B.1.351) that

superseded the B.1.1.54, B.1.1.56 and C.1 lineages that were

prevalent during the first wave of infections (13). The third

wave that began in May 2021 was associated with the Delta

variant (also referred to as lineage B.1.617.2) that was detected first

in India in late 2020 (www.cdc.gov). In mid-November 2021, in

what appeared to be the emergence of a fourth wave, there was a
frontiersin.org
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resurgence of infections in South Africa’s Gauteng province

driven by the omicron variant which has since spread globally (9).

The epidemiological profile of SARS-CoV-2 in South Africa

has been influenced greatly by government response in the

implementation of lockdown measures which helped minimize

transmissions (8). Additionally, the government also promoted

preventative measures such as frequent washing of hands, wearing

of face masks in public, avoidance of physical contact and

gathering and quarantine and isolation measures (for

individuals with COVID-19 symptoms) (14). More importantly,

the government rolled out the administration of three SARS-CoV-

2 vaccines (Johnson & Johnson, Pfizer-BioNTech and the Oxford-

AstraZeneca). The Oxford-AstraZeneca vaccine was, however,

suspended prior to implementation due to its suboptimal

effectiveness against the Beta variant (15). As of 4th July 2022,

36, 861, 272 vaccines have been administered across South Africa

which have helped ease the burden of SARS-CoV-2 disease

(https://sacoronavirus.co.za/latest-vaccine-statistics/). Both the

Johnson & Johnson vaccine and Pfizer-BioNTech vaccine were

administered in the Free State province. As per the time of writing,

the total number of vaccines administered in the Free State

province was 2,217,104 with the number of individuals

vaccinated as percentage of the population at 60.30% (https://

sacoronavirus.co.za/latest-vaccine-statistics/).

We sought to investigate the epidemiological profile of

SARS-CoV-2 variants circulating in the Free State province

during the 2020-2021 genomic surveillance period with

sequenced data (between July 2020 – December 2021)

available in the GISAID database. The main aim was to

evaluate whether the variants driving the epidemic waves at

the national level were also driving the epidemic waves at the

local level, in the context of the Free State province.
Materials and methods

Ethic approval

The Health Sciences Research Ethics Committee (HSREC)

of the University of the Free State (UFS), Bloemfontein, South

Africa, approved the study under ethics number HSD2020/1860/

2710. The patients’ identities and demographics were de-linked

from their unique laboratory identities to ensure confidentiality.

Participant consent was not required for genomic surveillance.

All generated sequences were uploaded to the GISAID database,

and their use is subject to the database terms and conditions.
Sample characteristics

In our analysis, the samples were divided into four different

waves of infections. The nasopharyngeal and oropharyngeal

swab samples of individuals who tested positive for SARS-
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CoV-2 in the first-wave infection in the Free State province

(between July 2020-October 2020, n = 176) were sequenced and

submitted to the GISAID database (https://www.gisaid.org/).

The SARS-CoV-2 positive samples collected during the second

wave of infection (November 2020 - March 2021, n = 156) were

regarded as the second-wave infection samples. The third wave

SARS-CoV-2 genomic sequences were submitted to GISAID

between April 2021 – October 2021, n = 904 while the fourth

wave SARS-CoV-2 sequences entailed samples collected from

November to December 2021, n = 51).
Sample collection

The National Health Laboratory Service (NHLS) Universitas

Academic Laboratories in conjunction with the University of the

Free State-Next Generation Sequencing (UFS-NGS) Unit received

randomly selected nasopharyngeal and oropharyngeal swab

samples from qPCR confirmed SARS-CoV-2 positive

individuals for whole-genome sequencing as part of the

Network for Genomic Surveillance South Africa (NGS-SA). The

samples were collected from several health centers around the

Free State from the following municipalities: Dihlabeng, Fezile

Dabi, Kopanong, Lejweleputswa, Letsemeng, Maluti A Phofung,

Mangaung Metro, Mantsopa, Masilonyana, Matjhabeng,

Metsimaholo, Mohokare, Moqhaka, Ngwathe, Nketoana,

Phumelela, Setsoto, Thabo Mofutsanyana, Tokologo, Tswelopele

and Xhariep. In total, the number of sequenced samples from Free

State available in Global Initiative on Sharing Avian Influenza

Data (GISAID) from July 2020 to December 2021 at the time of

analysis of the data was 1,461 sequences.
RNA extraction

Automated RNA extraction was performed using the

NUCLISENS® EASYMAG® instrument (Biomerieux, Marcy

I’Etoile, France) as per the manufacturer’s instructions.
CDNA synthesis and tiling PCR

The extracted RNA was subjected to cDNA synthesis using

Lunascript RT SuperMix kit (New England Biolabs, Ipswich, MA,

USA). The cDNA reaction was prepared by adding 4 µL of

LunaScript RT Mix (5X) to 10 µL of extracted RNA, and 6 µL of

nuclease-free water was added to the mix for a total volume of 20

µL. The mix was then incubated in a thermocycler as follows: 25°C

for 2 minutes, 55°C for 20 minutes, 95°C for 1 minute and hold at

4°C. Whole genome amplification by multiplex PCR was carried

out using primer pools to generate 400 bp amplicons covering the

30-kb SARS-CoV-2 genome (16). Briefly, 20 µL Mastermix

comprising 5 µL of Q5 reaction buffer, 0.5 µl of 10 nM dNTPs,
frontiersin.org
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0.25 µl of Q5 Hotstart DNA polymerase, 3.6 µL of primer pool and

10.65 µL of nuclease free water was added to 5 µL of the

synthesized cDNA. The amplification reaction was performed

under the following conditions: Heat activation at 98°C for 30

seconds, 35 cycles of denaturation and annealing at 98°C for 15

seconds, 65°C for 5 minutes, respectively, and a hold step at 4°C.
DNA library preparation and
whole-genome sequencing

The PCR amplicons were cleaned up using Ampure XP beads

(Beckman Coulter, Pasadena, CA, USA) and 70% ethanol (Sigma-

Aldrich®, St Louis, MO, USA). Quantification was performed on

Qubit™ 3.0, using Qubit dsDNA High Sensitivity Assay kit

(Invitrogen, Carlsbad, CA, USA). DNA libraries were then

prepared using the Nextera Flex DNA Library Preparation Kit

and Nextera CD Index kit (Illumina, San Diego, CA, USA),

following manufacturer’s instructions. The fragment sizes were

determined on Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA,

USA), using dsDNA High Sensitivity Assay Kit. The uniquely

indexed DNA libraries were normalized to a concentration of 4

nM, pooled and denatured with 0.2 N sodium hydroxide (NaOH).

A final library diluted to 8 pM concentration was spiked with 0.5%

PhiX control and sequenced on an Illumina MiSeq platform using

V2 Standard sequencing cartridge (Illumina, San Diego, CA, USA)

for 500 cycles to generate 250 x 2 paired end reads.
Bioinformatic analysis

Raw reads coming from Illumina sequencing were assembled

using Genome Detective 1.126 and the Coronavirus Typing Tool

(17, 18). The initial assembly obtained from Genome Detective

was polished by aligning mapped reads to the references and

filtering out low-quality mutations using the bcftools 1.7-2

mpileup method (19). The sequence variant assignment was

done using Phylogenetic Assignment of Named Global

Outbreak LINeages (Pangolin COVID-19 Lineage Assigner)

(20). SARS-CoV-2 genome annotator (21) was used to identify

the single amino acid mutations using Wuhan_1 (NC_045512.2)

as the reference sequence. The ggplot2 (22), Bioconductor library

was used in the visualization of the date and all the statistical

analyses conducted using R programming language (23).
Results

Different sets of predominant SARS-CoV-
2 variants characterized waves of
infections in the Free State province

The SARS-CoV-2 variants circulating in the Free State

province during the four waves are summarized (Figure 1).
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During the initial part of the first wave, B.1, B.1.1, B.1.1.53,

B.1.1.448 and B.1.237 circulated in the Free State province,

followed by Beta variant, B.1.351 later in the wave. In terms of

the number of isolates sequenced, the Beta variant, B.1.351,

(52.9%) predominated in the Free State province, followed by

B.1.237 (10.3%), B.1.1.448 (9.03%), B.1(8.4%) and B.1.1.53

(6.5%), respectively. Interestingly, in the second wave, most of

the variants detected in the first wave became extinct. During

this wave, the Beta variant, B.1.351, (95.5%), persisted (Figure 1).

The Zeta variant, P.2, first detected in Brazil, was also found in

0.65% proportion of sequenced genomes during the second peak

of infections (Figure 1). During the third wave, variant B.1.1

became extinct. Early in the third wave, the Beta variant

predominated until it was replaced by the Delta variant,

AY.45. In total, Beta variant accounted for 41.7% of isolates

sequenced during this period, while 44% were Delta variant

(Figure 1). The UK Alpha variant, B.1.1.7 and the Delta variant,

AY.11, was also identified in 1.36% and 5.67% of sequenced

genomes during the third wave of infections, respectively. The

C.1 variant, which was circulating during the first wave,

underwent mutation to C.1.2, and was identified in 1.36%

proportion of sequenced genomes during the third wave

(Figure 1). The fourth wave was predominantly characterized

by AY.45 which was identified from 41.28% of the data we

analyzed followed by BA.1 which was identified in 37.1% of the

samples (Figure 1).
Mutational profile of SARS-CoV-2
variants during different waves of
infections in the Free State province,
South Africa

Our data from the first wave of infection shows that the

SARS-CoV-2 in the Free State province in South Africa

accumulated amino acid mutations on the spike protein (S)

(Figure 2). The Beta variant related mutations: D80A, D215G,

K417N, E484K, N501Y, D614G, A701V were the predominant

spike protein mutations with the D614G being identified in the

majority of the sequenced SARS-CoV-2 viruses in the Free State

province (Figure 2). The second wave of infection was

characterized by some new amino acid mutations such as

L18F and G769V that were not detected in the first wave even

though D614G was still present in high frequency during the

second wave of infection (Figure 2). Notably, the E484K

mutations decreased, and we identified a deletion at position

L242 on the spike protein. The SARS-CoV-2 variants circulating

in the Free State province in South Africa had accumulated

relatively more amino acid mutations than the ones in the first

wave (Figure 2). During the third wave, there was an upsurge of

mutations across the spike region of the SARS-CoV-2 (Figure 3).

Notably, amino acid mutations, L452R, T478K, P681R and

D950N were observed in relatively higher frequencies during
frontiersin.org

https://doi.org/10.3389/fviro.2022.935131
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Mwangi et al. 10.3389/fviro.2022.935131
the third wave and were not present during the first and second

waves (Figure 2). The third wave saw an increase in the amino

acid mutations which were characterized by the Delta variant of

SARS-CoV-2 virus (Figure 1). Each wave of infection was driven

by a unique set of SARS-CoV-2 variants (Table 1; Figure 3).
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Discussion

Genomic surveillance has become an invaluable approach in

combating the spread of SARS-CoV-2. It has also been effective in

identifying different variants with multiple mutations at the
FIGURE 2

The frequency of spike protein mutations identified in SARS-CoV-2 variants during the epidemic waves. The x-axis indicates the frequency of
the SARS-CoV-2 variants while the y-axis indicates the amino acid point mutation and the exact location identified within the SARS-CoV-2
protein structure. The first, second and third waves are denoted by the red, green and blue colours, respectively.
FIGURE 1

The SARS-CoV-2 variants and their frequency in Free State during the course of four epidemic waves based on genomic surveillance data
analysed between July 2020 and December 2021. The y-axis indicates the SARS-CoV-2 variants while the x-axis shows the occurrence
frequency. The first, second, third and fourth waves are denoted by the red, green, blue and purple colours, respectively. Unique variants that
were identified in each wave are summarized in Table 1.
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immunodominant spike protein that facilitates viral cell entry

through the angiotensin-converting enzyme-2 (ACE2) receptor

(24–26). We describe the epidemiological profile of SARS-CoV-2

variants identified from July 2020 to December 2021 in the Free

State province, South Africa. Each epidemic wave had distinct

variants. The predominant variants driving the epidemic waves at

the local level in the Free State province were similar those driving

the epidemic waves at the national level. The Free State data also

showed an increase in the number of amino acid mutations in the

spike region of the SARS-CoV-2 genome with each infection wave.

While the first wave featured a mixture of SAR-CoV-2

lineages, the Beta variant, B.1.351 predominated in the Free

State in the second and third waves and this variant was first

reported in Nelson Mandela Bay, the worst-affected

metropolitan area in Eastern Cape province, South Africa, in

early August 2020 (27). The D614G mutation identified in the

main first-wave lineages (B.1.1.54, B.1.1.56 and C.1) in South

Africa has been associated with increased transmissibility while

the combination of E484K, K417N and N501Y mutations in the
Frontiers in Virology 06
B.1.351 lineage has been hypothesized to result in potential

escape mutants (28–31). The first wave variants (B.1.1.117,

B.1.1.53, B.1.1.54, B.1.237 and B.1.381) containing only D614G

mutation, later became extinct in the subsequent epidemic waves

due to the mutational fitness effects and the consequent

emergence of other more transmissible variants.

The P.2 variant, a descendant of the B.1.1.28 strain, was the

unique variant identified only during the second wave in the Free

State. This variant emerged in July 2020 in the Brazilian state of

Rio de Janeiro and exhibited the E484K mutation in the spike

region (with the absence of N501Y mutation) (32). Lineages

carrying the E484K mutation, such as B.1351 and P.1, are

suggested to escape neutralizing antibodies (33). The P.2 variant

has also been associated with a symptomatic case of re-infection

underscoring the need for its continuous monitoring (34).

The third wave in the Free State province was driven by the

Delta variant and this variant has a higher replication efficacy

and fitness advantage than the Alpha and Beta variant in both

airway organoid and human airway epithelial systems (35, 36).

The Alpha variant arose from the UK and spread globally and

was also identified during the third wave in the Free State (37).

This variant contains a combination of N501 and 69-70del

mutations in the spike protein region (38). While previous

investigations have shown that the UK Alpha variant is more

transmissible, there is no evidence that the variant is more

clinically severe or has the capacity for vaccine escape (39).

The C.1.2 lineage that was first detected in the Mpumalanga

and Gauteng provinces of South Africa in May 2021 (9) was also
FIGURE 3

Venn diagram indicating the unique and the overlapping SARS-CoV-2 variants in each epidemic wave. In each wave, the number of unique and
overlapping genome variants identified during the analysis of each peak infections are indicated in absolute numbers and percentages. The first,
second, third and fourth waves are denoted by blue, yellow, green and red colours, respectively.
TABLE 1 Unique variants circulating in the Free State province in South
Africa during the first, second, third and fourth wave of infections.

Period of infection Unique variants

First wave B.l.l.53, B.l.1.54, B.l.l.117, B.l.237, B.1.381, C.l

Second wave P.2

Third wave AY.6, AY.19, AY.32, AY.38, AY.122, B.1.1.528, C.1.2

Fourth wave BA.1
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found in the third wave in the Free State province. This lineage

evolved from C.1, one of the dominant first-wave lineages in

South Africa (40). This variant contains multiple substitutions

(R190S, D215G, N484K, N501Y, H655Y, T859 including

deletions Y144del and L242-A243del) in the spike region (9)

that are associated with increased transmissibility and reduced

neutralization sensitivity (33, 41–44). The C.1.2 variant was

reportedly on the rise in South Africa in November 2021 (9)

and the mutations raised concerns of potential gain of replicative

advantage over the Delta variant (40).

BA.1, a sub-lineage of the omicron variant, emerged to drive

the fourth wave of infections in the Free State province. The

omicron variant was detected in November 2021 by Southern

African genomic researchers after being linked to a rapid

resurgence of infections in South Africa’s Gauteng province

(9). This variant contains over 30 mutations in the spike

protein that are predicted to affect antibody neutralization and

spike function, resulting in increased transmission (45).

The study was limited by a lack of correlation in the number

of sequenced samples and the proportion of infected individuals

in the Free State. Regardless, our findings indicate that continuous

monitoring of concerning variants such as the omicron is

imperative to ensure sustained public health response efforts.
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