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Predicted cellular interactors of
the endogenous retrovirus-K
protease enzyme
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Retroviral proteases are essential enzymes for viral replication and drive

changes within the cellular proteome. While several studies have

demonstrated that protease (PR) enzymes from exogenous retroviruses

cleave cellular proteins and modulate cellular signaling, the impact of PRs

encoded by endogenous retroviruses within the human genome has been

largely overlooked. One human symbiont called Endogenous retrovirus-K

(ERVK) is pathologically associated with both neurological disease and

cancers. Using a computational biology approach, we sought to characterize

the ERVK PR interactome. The ERVK PR protein sequence was analyzed using

the Eukaryotic Linear Motif (ELM) database and results compared to ELMs of

other betaretroviral PRs and similar endogenated viral PRs. A list of putative

ERVK PR cellular protein interactors was curated from the ELM list and

submitted for STRING analysis to generate an ERVK PR interactome.

Reactome analysis was used to identify key pathways potentially influenced

by ERVK PR. Network analysis postulated that ERVK PR interacts at the apex of

several ubiquitination pathways, as well as has a role in the DNA damage

response, gene regulation, and intracellular trafficking. Among retroviral PRs, a

predicted interaction with proliferating cell nuclear antigen (PCNA) was unique

to ERVK PR. The most prominent disease-associated pathways identified were

viral carcinogenesis and neurodegeneration. This strengthens the role of ERVK

PR in these pathologies by putatively driving alterations in cellular signaling

cascades via select protein-protein interactions.
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1. Introduction

Viral proteins frequently interact with host proteins to

interfere with cellular signaling pathways. For exogenous

viruses, these interferences modify pathways relating to host

immunity, cell survival, virion production, and dissemination,

resulting in greater replicative success (1, 2). The manner

through which endogenous retroviruses (ERVs) interact with

host proteomes is less understood.

ERVs are genomic symbionts that comprise approximately 8%

of humanDNA, withmost being defective and non-infectious due

to the accumulation of nonsense mutations and deletions since

their integration (3, 4). In recent years, ERVs have been implicated

in multiple pathological conditions, including cancer (5),

autoimmune diseases (6), and neurological conditions (7).

Endogenous retrovirus-K (ERVK/HERV-K) is of particular

interest as proviral elements of the HML-2 clade are upregulated

in a variety of disease conditions, including human

immunodeficiency virus (HIV) infection (8), a variety of cancers

(8, 9), rheumatoid arthritis (10), and amyotrophic lateral sclerosis

(ALS) (8), potentially contributing to the pathology of these

diseases (3, 7). ERVK polymorphisms have also been directly

linked to genomic alterations and instabilities that are observed

in these pathologies (11).

Retroviral proteases are essential enzymes for viral

replication and drive changes within the cellular proteome (12,

13); thus, they are prime targets for antiviral therapy (14). The

ERVK protease (PR) has been characterized (15–18), and a

variety of ERVK transcripts are predicted to encode variants of

this enzyme in human cells (19). The human genome comprises

approximately 480 ERVK loci containing PR sequences, with the

majority of them classified in the HML-3 clade and remainder

classified as either HML-2 or other HML clades (19). While their

capacity to complete the viral life cycle is not intact (20, 21),

several ERVK loci can nonetheless generate transcripts that

produce PR protein. Conformational analyses of ERVK PR

have revealed a typical A2 aspartic acid protease dimer,

consisting of two 106-residue monomers (19, 22). Each

monomer consists of helical, flap, and b-sheet motifs. Active

site motifs contain aspartic acid residues and are located within

the interior pocket of the protease dimer (17, 19, 22). Despite

diversity among ERVK clades, several ERVK loci encode a PR

enzyme containing all the domain structures and motifs that are

required for retroviral PR function (19).

The PR enzyme of exogenous retroviruses plays an essential

role in facilitating viral protein maturation and replication. This

maturation is accomplished by PR-mediated catalytic cleavage of

precursor proteins (19). One of the primary functions of ERVK

PR includes the proteolytic processing of Gag-Pol precursors

into mature Gag proteins within the cytoplasm (23). Gag

retroviral proteins are responsible for mediating intracellular

transport to the cell membrane, coordinating viral particle
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assembly, and facilitating particle budding (14, 24, 25). ERVK

PR inhibitors have effectively blocked the proteolytic processing

of Gag-Pol precursors, demonstrating the role of ERVK PR in

viral protein processing and maturation (17). In addition to viral

protein processing, select retroviral PRs are also capable of

processing host proteins, such as serine-threonine kinases and

the precursor of NF-kB (23, 26). Host protein interactions such

as these have been localized in both the nucleus and cytoplasm

and are implicated in the disruption of immune signaling and

the progression of human disease pathology (23).

Altered cell signaling, protein mislocalization and

proteinopathy are recognized as hallmarks of HIV-associated

neurocognitive disorder (HAND) (27) and ALS (28)

neuropathology. One mechanism by which retroviral PRs can

contribute to redistribution of cellular proteins is seen in HIV

infection. Specifically, the HIV PR contributes to the

sequestration of the innate immune sensor RIG-I, resulting in

its relocalization to lysosomal structures and subsequent

degradation (29). The consequence of this interference with

innate immune signaling is that it prevents the cell from

detecting HIV genomic RNA. At this time, it remains unclear

if ERVK PR may also interact with select cellular proteins and

contribute to their deregulation through interference with

protein-protein interactions, sequestration or facilitating

degradative processes, as seen in HIV infection (12, 13). HIV-

1 PR has also been shown to cleave various host proteins,

including actin, tropomyosins, and eIF3D (eukaryotic

initiation factor 3D), thus altering cellular complexes and

impacting cellular functions such as protein translation, RNA

splicing, and apoptosis under appropriate conditions (12, 30,

31). Although ERVK PR has been shown to share substrates with

HIV PR (16), it is unclear if it participates in the same processes,

and its full interactome remains unknown.

We also seek to understand how ERVK PR interacts with

cellular proteins and pathways, as has been done with other

retroviral PRs (12, 30–33). Given the knowledge of how

retroviral PRs impact cellular functions, we hypothesized that

potential ERVK PR interaction partners could be identified

using a computational biology approach, which would further

provide clues to its effects on cellular pathways. A comparison

with similar PRs from eukaryotic organisms and model species

may also provide information required for the future

development of in vivo models for ERVK PR-driven pathology.

2. Methods

2.1. Database curation

The National Centre for Biotechnology Information (NCBI)

Protein-protein Basic Local Alignment Search Tool (BLASTp)

(34) within the non-redundant (nr) database was used to

identify PRs with sequences resembling ERVK PR (reference
frontiersin.org
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sequence HERV-K10, UniProtKB P10265.2). Default algorithm

parameters were used, with cut-offs as follows: E value < 1.0X10-

17 and identity of > 40%. Sequences were grouped based on

phylogeny as informed by ICTV [International Committee on

Taxonomy of Viruses; https://talk.ictvonline.org/ (accessed on

06 December 2021)] or OneZoom [OneZoom Tree of Life

Explorer; version 3.4.1; Software for Technical Computation;

United Kingdom, 2021, https://www.onezoom.org/ (accessed on

12 December 2021)] (35) and are listed in Tables S1-S6.
2.2. Protein alignments and eukaryotic
linear motif annotation

Geneious Prime (version 2021.0.3) software (36) was used to

align theERVKPRprotein sequence, aswell as select representative

PRs from exogenous Betaretroviruses (Figure 1) or endogenous

retroviruses (Figure 2). A global alignmentwith free end gaps using

BLOSUM62 matrix was performed. Longer sequences were

truncated to overlap with the ERVK PR reference sequence.

Figures depict sequence logo and protease active site DTGAD,

flap VGVG, and GRDLL regions highlighted based on Conserved

Domains Database (CDD) annotation (19, 37).

Aligned PR sequences were submitted to the Eukaryotic

Linear Motif (ELM; http://elm.eu.org/, accessed March 2022)

resource (38). A complete listing of ELMs identified in each PR is

presented in Tables 1 and 2. ELMs unique to ERVK PR, as well

as ELM sites exhibiting motif consensus above 70% with other

PRs were annotated in Figures 1 and 2.
2.3. STRING analysis and reactome
pathways

Thenames of interactingproteinswere curated fromeachELM

reference page to identify potential ERVK PR binding partners

basedonELMmotifs.Whenonlyageneral interactiondomain for a

given ELMwas listed, it was further linked to the InterPro database
Frontiers in Virology 03
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domain. Based on the 17 ELMs identified in ERVK PR, a total of

101 putative human protein interaction partners were identified.

The list was submitted to STRING version 11.5 (https://string-db.

org/) for network analysis (Table S7). Full network analysis was

performed using Experiment and Databases as active interaction

sources. Submitted query proteins are indicated by coloured nodes,

with edges indicating confidence lines with aminimum interaction

score of 0.4 (medium confidence). First shell interactors were

limited to 10 and are indicated by uncoloured nodes. Query

proteins unlinked to the network were omitted from analysis. A

payload list was used to colour hub proteins based on cellular

function. Reactome pathways associated with the network analysis

were presented in a heatmap usingGraphPad Prism (version 9.1.1)

software and in a complementary list (Table S8). Additional

network analysis based on KEGG pathways, UniProt keywords

and Gene Ontology (GO) function are provided in supplementary

tables (Tables S9-S11).
3. Results and discussion

Both cellular and retroviral aspartic proteases are known to

impact many cellular signaling pathways, including those

implicated in homeostasis (39, 40), immunity (41–43), DDR

(44), autophagy (45), neurological disease (39, 46), and

oncogenesis (39). Herein, we describe putative cellular

interactors for the ERVK PR and how those interactions may

impact cellular function and viral replication.
3.1. Characterization of eukaryotic linear
motifs in ERVK protease and other
exogenous betaretrovirus proteases

To determine which exogenous and endogenous retroviruses

encode PR sequences that are most similar to ERVK PR, we

performed BLASTp searches using the non-redundant (nr) NCBI
FIGURE 1

ERVK and exogenous betaretrovirus proteases share common eukaryotic linear motifs. The The ERVK10 protease (PR) sequence was aligned
with PRs from Enzootic Nasal Tumor Virus (ENTV), Jaagsiekte sheep retrovirus (JSRV), Squirrel monkey virus (SMRV), Mason–Pfizer monkey virus
(M-PMV), and Mouse mammary tumor virus (MMTV), showing the enzymatic active site conservation in yellow. ELMs associated with ERVK PR
are positioned within the protein sequence, with colours respective of the functional clusters within the network in Figure 3. Sequence
alignment and annotation performed using Geneious Prime software.
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database. As expected, exogenous Betaretroviruses were identified

through BLASTp search, which includedmultiple hits for Enzootic

Nasal Tumor Virus (ENTV), Mason–Pfizer monkey virus (M-

PMV), Jaagsiekte sheep retrovirus (JSRV), Squirrel monkey virus

(SMRV) and Mouse mammary tumor virus (MMTV) (Table 1).

ELManalysis of a representative sequence fromeach genuswas

compared with ERVK PR and revealed the conservation of select

protein motifs (Table 1, Figure 1). Apart from a general

conservation of the DTGAD active site motif (19), all

betaretroviral PRs contained several interaction motifs related to
Frontiers in Virology 04
DNA damage response (DDR), including interaction with

Forkhead-associated (FHA) domain proteins and WD40 repeat

domain WDR5 proteins (47, 48). Modulation of ubiquitination

was alsoevident as a strategyofbetaretroviral PRs. Putativedocking

with cell signaling associated ubiquitin-specific protease 7 [USP7/

HAUSP (49, 50)] was also a conserved prediction for all

betaretroviral PRs. Specifically, ERVK PR contains a conserved

USP7TRAF domain (MATH) P/A-xx-S bindingmotif (ADVS, aa.

29-32), as well as a USP7UBL2 domain interaction site (aa. 41-45).

Other frequently observed ELM motifs in betaretroviral PRs
FIGURE 2

ERVK protease and similar endogenous proteases share eukaryotic linear motifs patterns. Modified OneZoom image illustrating the conservation
of ELM motifs in proteases from eukaryotic organisms (Homo sapiens, Macaca fascicularis, Oryctolagus cuniculus, Mus musculus, Nannospalax
galili, Puma concolor, Lynx pardinus, Equis asinus, Odobenus rosmarus divergens, Eumetopias jubatus, Notamocropus rufogriseus). Motifs are
color-grouped according to function; Cell cycle/DNA repair/DDR (blue), ubiquitination (red), trafficking (purple), transcription (gold), and
signaling (green). The number in each colored shape refers to the number of motifs with the respective protease enzyme. Note: Aquila
chrysaetos (Table 2) was excluded to maintain figure clarity.
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TABLE 1 ELM motifs in proteases from ERVK and exogenous betaretroviruses.

ELM motif ELM
Accession

Alignment
Abbreviation

Protease Motif
Conservation

ERVK ENTV JSRV SMRV M-
PMV

MMTV

Cleavage and
degradation

CLV_C14_Caspase3-7 ELME000321 0 1 0 1 0 1 0.50

CLV_NRD_NRD_1 ELME000102 0 0 0 0 0 1 0.17

CLV_PCSK_KEX2_1 ELME000108 0 0 0 0 0 1 0.17

CLV_PCSK_SKI1_1 ELME000146 2 2 2 1 3 3 1.00

DEG_APCC_DBOX_1 ELME000231 0 1 1 1 1 1 0.67

DEG_APCC_KENBOX_2 ELME000232 0 0 0 0 1 0 0.17

DEG_Nend_Nbox_1 ELME000355 1 1 1 1 1 1 1.00

Docking DOC_CYCLIN_yClb5_NLxxxL_5 ELME000506 0 0 0 0 1 0 0.17

DOC_CYCLIN_yCln2_LP_2 ELME000491 0 0 0 0 1 0 0.17

DOC_MAPK_DCC_7 ELME000433 0 1 1 0 1 0 0.50

DOC_MAPK_MEF2A_6 ELME000432 0 2 2 1 2 1 0.83

DOC_PP2A_B56_1 ELME000425 0 1 0 0 0 0 0.17

DOC_PP1_RVXF_1 ELME000137 0 0 0 0 1 0 0.17

DOC_PP4_FxxP_1 ELME000477 0 0 0 0 1 1 0.33

DOC_USP7_MATH_1 ELME000239 USP7-M 1 1 1 1 1 1 1.00

DOC_USP7_UBL2_3 ELME000394 USP7-U 1 0 0 1 1 0 0.50

DOC_WW_Pin1_4 ELME000136 0 0 0 1 0 0 0.17

Ligand LIG_14-3-3_CanoR_1 ELME000417 0 0 0 0 0 1 0.17

LIG_14-3-3_CterR_2 ELME000418 0 0 0 0 0 1 0.17

LIG_deltaCOP1_diTrp_1 ELME000459 0 1 1 0 2 1 0.67

LIG_FHA_1 ELME000052 FHA1 2 0 0 2 3 0 0.50

LIG_FHA_2 ELME000220 FHA2 2 4 3 1 2 1 1.00

LIG_Integrin_isoDGR_2 ELME000316 0 0 0 0 0 1 0.17

LIG_IRF3_LxIS_1 ELME000439 0 0 0 0 0 1 0.17

LIG_LIR_Apic_2 ELME000369 0 0 0 1 0 0 0.17

LIG_LIR_Nem_3 ELME000370 0 1 1 0 1 0 0.50

LIG_PCNA_yPIPBox_3 ELME000482 PCNA 2 0 0 0 0 0 0.17

LIG_SH2_PTP2 ELME000083 0 1 1 1 0 0 0.50

LIG_SH2_SRC ELME000081 0 1 1 0 0 0 0.33

LIG_SH2_STAT5 ELME000182 0 2 2 2 1 0 0.67

LIG_SH3_1 ELME000005 0 1 1 1 0 0 0.50

LIG_SH3_3 ELME000155 0 1 1 1 2 1 0.83

LIG_SUMO_SIM_anti_2 ELME000335 1 1 1 0 1 0 0.67

LIG_SxIP_EBH_1 ELME000254 EBH 1 0 0 0 0 0 0.17

LIG_TYR_ITIM ELME000020 0 0 1 0 0 0 0.17

LIG_UBA3_1 ELME000395 UBA3 1 0 0 1 1 1 0.67

LIG_WD40_WDR5_VDV_2 ELME000365 WDR5 3 7 7 5 5 2 1.00

LIG_WRPW_2 ELME000105 0 1 1 0 0 0 0.33

Modification MOD_CK1_1 ELME000063 CK1-P 1 3 2 0 0 0 0.50

MOD_CK2_1 ELME000064 CK2-P 1 1 1 0 0 0 0.50

MOD_Cter_Amidation ELME000093 0 0 0 0 0 1 0.17

MOD_GlcNHglycan ELME000085 0 0 0 2 1 3 0.50

MOD_GSK3_1 ELME000053 0 2 1 1 2 1 0.83

MOD_N-GLC_1 ELME000070 0 1 1 0 1 0 0.50

MOD_NEK2_1 ELME000336 NEK2-P 2 1 1 0 1 2 0.83

MOD_PIKK_1 ELME000202 0 0 0 2 0 1 0.33

(Continued)
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included a binding motif for ubiquitin-activating enzyme-3

(UBA3) adenylation domain found in several ubiquitin-like

(UBL) E1 enzymes and the presence of a small ubiquitin-like

modifier (SUMO)-interacting motif (SIM).

Most betaretroviral PRs were also predicted to be

phosphorylated by the cell cycle checkpoint kinases NIMA

(Never In Mitosis Gene A)-Related Kinase 2 (NEK2) (51) and

polo-like kinases (PLK-1 and PLK-4) (52) (Table 1).

Additionally, ERVK, ENTV, and JRSV PRs were predicted to

be phosphorylated by casein kinases (CK-1 and CK-2) via an S-

X-X-S/T site (53). All betaretroviral PRs were predicted

substrates for glycogen synthase kinase 3 (GSK3) (54)

(Table 1), except for ERVK PR. Additionally, ELMs for MAPK

docking motifs and SH3 ligands were not present in ERVK PR.

ERVK PR was unique in its propensity to putatively interact

with proliferating cell nuclear antigen (PCNA) (55), as it contained

two overlapping PCNA-interacting protein (PIP) motifs (aa. 41-

55), also known as a PIP box, just prior to the PR flap domain

(Figure 1, Table 1). In addition, only ERVK PR contained an N-

terminal SxIPmotif (Figure1, aa. 80-94) that binds toEBHdomains

in end-binding proteins involved in microtubule transport (56),

similar towhat is predicted forERVK integrase (57). This patternof

consistent SxIP motifs in ERVK proteins may point to a unique

usage of microtubule networks through EBH domain interaction.

It is important to note that despite the similar complement

of ELM motifs in betaretro viral PRs, some sites were positioned

differently than in ERVK PR. Additional ELMs and their motif

frequencies in individual betaretroviral PRs are listed in Table 1.

3.2. Characterization of eukaryotic linear
motifs in ERVK protease and other
endogenous proteases

ERVK-like endogenous PRs were evident in much of the tree

of life, including eutherians, marsupials, aves, ecdysozoa, and
Frontiers in Virology 06
eubacteria (Figure 2, Tables S2-S6). ELM conservation in these

PRs for select protein interaction partners frequently included

binding motifs for deubiquitinating enzyme USP7, FHA 1 and 2

proteins, SUMO motifs, WD40 repeat domain protein WDR5,

as well as PR phosphorylation sites for cell cycle proteins CK1

and PLK4. All endogenous PRs exhibited phosphorylation sites

for NEK2 and PLK1. ELMs identified in ERVK PR but

uncommon in other endogenous PRs were PCNA interaction

sites, UBA3 binding, and SxIP motifs for interaction with end-

binding proteins.

ELMs that were highly conserved in most endogenous PRs

but are absent in ERVK PR were also observed. Among these

signatures was the frequent presence of phosphotyrosine ligands

bound by SH2 domains, SH3 ligands, GSK3 phosphorylation

sites, PIKK phosphorylation sites, and glycosaminoglycan

attachment sites. Additional ELMs and their frequencies in

endogenous PRs similar to ERVK can be found in Table 2.
3.3. Unlike similar enzymes, the ERVK
protease contains distinct ELM
signatures

Two motifs in ERVK PR stand out as distinct for this virus,

while other signatures are differentially expressed in ERVK PR as

compared with similar PRs.

3.3.1. Among betaretroviruses, ERVK protease
has a unique predicted interaction with PCNA

PCNA is a cellular hub protein for DNA replication and

repair, as well as epigenetic control of chromatin remodeling,

with over 100 known cellular interactors (58, 59). Its many

protein-protein interactions are facilitated by short linear motifs,

including PIP boxes in cognate ligands. The canonical PIP-box

motif is Qxx(L/M/I/V)xx(Y/F)(Y/F) (55, 59, 60); here, ERVK PR
TABLE 1 Continued

ELM motif ELM
Accession

Alignment
Abbreviation

Protease Motif
Conservation

ERVK ENTV JSRV SMRV M-
PMV

MMTV

MOD_PKA_2 ELME000062 0 0 0 1 0 1 0.33

MOD_Plk_1 ELME000442 PLK1-P 2 1 1 1 1 2 1.00

MOD_Plk_4 ELME000444 PLK4-P 1 1 1 1 2 0 0.83

MOD_ProDKin_1 ELME000159 0 0 0 1 0 0 0.17

MOD_SUMO_for_1 ELME000002 SUMO 0 0 0 1 1 0 0.33

MOD_SUMO_rev_2 ELME000393 SUMO 0 0 0 0 1 1 0.50

Target TRG_ER_diArg_1 ELME000012 0 0 0 0 0 1 0.17

TRG_Pf-PMV_PEXEL_1 ELME000462 Pexel 1 0 0 1 2 0 0.50
GenBank accession numbers for Betaretroviral protease sequences are as follows: Endogenous retrovirus-K (ERVK; P10265.2), Enzootic nasal tumor virus (ENTV; ANG58662.1), Jaagsiekte
sheep retrovirus (JSRV; QIB89446.1), Squirrel monkey retrovirus (SMRV; PO3364.3), Mouse mammary tumor virus (MMTV; AAA46538.1), Mason-Pzifer monkey virus 5 (M-PMV;
6SIV_A).
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TABLE 2 ELM motifs in ERVK protease and similar endogenous proteases in eukaryotes.

ELM motif ELM
Accession

ERVK
Protease

Hypothetical
Protein

Protease
(Oryctolagus

Protease
(Mus

ERVK
member 7

ERVK
member

Hypothetical
Predicted

ERVK
member

ERVK
member 7
Pro-like
protein

(Odobenus
rosmarus
divergens)

ERVK
member 7
Pro-like
protein

(Eumetopias
jubatus)

Protease
(Notamacropus
rufogriseus)

Uncharacterized
protein
(Aquila

chrysaetos)

Motif
conservation

1 0 1 0 0.17

0 0 0 0 0.08

0 0 0 0 0.25

0 0 0 0 0.17

1 1 2 2 1.00

0 0 1 0 0.33

0 1 0 0 0.08

1 1 1 1 0.75

0 0 0 0 0.08

0 0 0 0 0.08

1 1 1 0 0.42

1 1 0 0 0.17

1 1 0 0 0.17

0 0 0 0 0.17

0 0 0 0 0.08

1 1 0 0 0.17

0 0 1 0 0.17

0 0 0 0 0.17

1 1 2 0 0.50

0 0 0 0 0.08

0 0 0 0 0.08

0 0 1 0 0.08

1 1 0 2 0.83

0 0 1 0 0.50

1 1 0 0 0.50

3 2 0 0 0.33

0 0 0 0 0.08

0 0 0 0 0.17

0 0 1 1 0.42

1 0 0 0 0.67

2 2 0 1 0.75

0 0 0 1 0.08

0 0 0 0 0.17

2 1 1 0 0.58

0 0 0 1 0.08

0 0 0 0 0.17

0 0 0 0 0.17

1 1 0 0 0.17

0 1 0 1 0.17

0 1 0 0 0.08

0 0 0 0 0.17

0 0 0 0 0.08

0 0 0 0 0.08

0 0 1 0 0.08

0 0 1 1 0.67

(Continued)
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7

(Homo
sapiens)

(Macacca
fascicularis)

cuniculus) musculus) pro-like
protein

(Nannospalax
galili)

10 pro-
like

protein
(Puma

concolor)

Protein
(Lynx

pardinus)

8 pro-
like

protein
(Equus
asinus)

Cleavage CLV_C14_Caspase3-7 ELME000321 0 0 0 0 0 0 0 0

CLV_NRD_NRD_1 ELME000102 0 0 0 0 0 0 1 0

CLV_PCSK_KEX2_1 ELME000108 0 0 0 1 1 0 1 0

CLV_PCSK_PC1ET2_1 ELME000100 0 0 0 1 1 0 0 0

CLV_PCSK_SKI1_1 ELME000146 2 1 1 4 2 2 2 1

Degradation DEG_APCC_DBOX_1 ELME000231 0 0 1 2 1 0 0 0

DEG_MDM2_SWIB_1 ELME000184 0 0 0 0 0 0 0 0

DEG_Nend_Nbox_1 ELME000355 1 1 0 1 1 0 1 0

DEG_Nend_UBRbox_1 ELME000351 0 0 0 0 0 0 0 1

DEG_SCF_FBW7_1 ELME000289 0 0 1 0 0 0 0 0

DEG_SCF_TRCP1_1 ELME000269 0 0 0 0 0 1 1 0

DEG_SPOP_SBC_1 ELME000388 0 0 0 0 0 0 0 0

Docking DOC_CKS1_1 ELME000358 0 0 0 0 0 0 0 0

DOC_CYCLIN_RxL_1 ELME000106 0 0 0 0 1 0 0 1

DOC_CYCLIN_yClb5_NLxxxL_5 ELME000506 0 0 0 1 0 0 0 0

DOC_CYCLIN_yCln2_LP_2 ELME000491 0 0 0 0 0 0 0 0

DOC_MAPK_DCC_7 ELME000433 0 0 0 0 0 0 0 1

DOC_MAPK_gen_1 ELME000233 0 0 0 0 0 0 2 0

DOC_MAPK_MEF2A_6 ELME000432 0 0 0 1 1 0 2 0

DOC_PP1_RVXF_1 ELME000137 0 0 0 1 0 0 0 0

DOC_PP2B_PxIxI_1 ELME000237 0 0 0 0 0 0 0 1

DOC_PP4_FxxP_1 ELME000477 0 0 0 0 0 0 0 0

DOC_USP7_MATH_1 ELME000239 1 0 3 1 1 1 1 2

DOC_USP7_UBL2_3 ELME000394 1 1 0 1 0 1 1 0

DOC_WW_Pin1_4 ELME000136 0 0 1 0 1 1 1 0

Ligand LIG_14-3-3_CanoR_1 ELME000417 0 0 1 0 0 0 0 1

LIG_BIR_II_1 ELME000285 0 0 1 0 0 0 0 0

LIG_BRCT_BRCA1_1 ELME000197 0 0 0 0 0 2 2 0

LIG_deltaCOP1_diTrp_1 ELME000459 0 0 2 1 1 0 0 0

LIG_FHA_1 ELME000052 2 1 1 0 1 1 3 1

LIG_FHA_2 ELME000220 2 2 1 2 1 0 0 1

LIG_LIR_Apic_2 ELME000369 0 0 0 0 0 0 0 0

LIG_LIR_Gen_1 ELME000368 0 0 0 0 0 1 1 0

LIG_LIR_Nem_3 ELME000370 0 0 0 1 2 2 2 0

LIG_PALB2_WD40_1 ELME000413 0 0 0 0 0 0 0 0

LIG_PCNA_yPIPBox_3 ELME000482 2 2 0 0 0 0 0 0

LIG_PDZ_Class_1 ELME000086 0 0 0 0 0 1 1 0

LIG_PDZ_Class_2 ELME000091 0 0 0 0 0 0 0 0

LIG_Pex14_1 ELME000080 0 0 0 0 0 0 0 0

LIG_Pex14_2 ELME000328 0 0 0 0 0 0 0 0

LIG_SH2_GRB2like ELME000084 0 0 0 0 0 1 1 0

LIG_SH2_PTP2 ELME000083 0 0 0 1 0 0 0 0

LIG_SH2_SRC ELME000081 0 0 0 0 1 0 0 0

LIG_SH2_STAT3 ELME000163 0 0 0 0 0 0 0 0

LIG_SH2_STAT5 ELME000182 0 0 1 1 2 2 2 1
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TABLE 2 Continued
ELM motif ELM

Accession
ERVK
Protease
(Homo

Hypothetical
Protein
(Macacca

Protease
(Oryctolagus
cuniculus)

Protease
(Mus

musculus)

ERVK
member 7
pro-like

ERVK
member
10 pro-

r)

Hypothetical
Predicted
Protein
(Lynx

pardinus)

ERVK
member
8 pro-
like

protein
(Equus
asinus)

ERVK
member 7
Pro-like
protein

(Odobenus
rosmarus
divergens)

ERVK
member 7
Pro-like
protein

(Eumetopias
jubatus)

Protease
(Notamacropus
rufogriseus)

Uncharacterized
protein
(Aquila

chrysaetos)

Motif
conservation

1 0 0 0 0 0 0.33

1 1 1 0 3 1 0.67

1 1 1 1 0 1 0.83

0 0 0 0 0 0 0.17

0 0 0 0 0 0 0.17

0 0 1 1 0 0 0.17

0 0 0 0 0 0 0.08

0 0 0 0 0 0 0.17

8 4 6 5 0 4 0.92

0 0 0 0 0 0 0.08

0 0 0 0 0 0 0.08

1 2 1 1 2 1 0.92

0 0 2 2 0 0 0.33

0 0 0 0 1 0 0.08

0 0 0 0 0 0 0.08

2 0 2 2 1 2 0.75

4 1 3 3 4 0 0.75

1 2 1 1 2 2 1.00

1 0 1 0 0 0 0.33

0 1 0 0 0 0 0.08

1 1 3 3 3 1 0.75

0 0 1 1 0 1 0.33

0 0 0 0 0 0 0.08

0 1 2 2 0 0 0.33

0 0 1 1 0 0 0.17

2 1 1 1 1 2 1.00

0 0 0 0 0 0 0.08

2 1 0 0 1 2 0.83

1 0 1 1 0 0 0.50

0 0 1 1 0 0 0.17

0 0 0 0 0 0 0.08

0 0 1 1 0 0 0.17

1 0 0 0 0 0 0.17

1 0 1 1 0 0 0.25

1 1 1 0 0 1 0.75

.2), Hypothetical protein EGM_09722 (Macaca fascicularis; EHH59578.1), Protease (Oryctolagus cuniculus;
10 pro-like protein (Puma concolor, XP_025775096.1), Hypothetical Predicted Protein (Lynx pardinus,

ens, XP_012417946.1), ERVK member 7 Pro-like protein (Eumetopias jubatus, XP_027958789.1), Protease
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sapiens) fascicularis) protein
(Nannospalax

galili)

like
prote
(Pum

concol

LIG_SH3_1 ELME000005 0 0 1 1 0 1

LIG_SH3_3 ELME000155 0 0 1 1 0 1

LIG_SUMO_SIM_anti_2 ELME000335 1 0 1 1 2 1

LIG_SUMO_SIM_par_1 ELME000333 0 1 0 1 0 0

LIG_SxIP_EBH_1 ELME000254 1 1 0 0 0 0

LIG_TRAF2_1 ELME000117 0 0 0 0 0 0

LIG_TRAF2_2 ELME000118 0 0 1 0 0 0

LIG_UBA3_1 ELME000395 1 1 0 0 0 0

LIG_WD40_WDR5_VDV_2 ELME000365 3 3 8 5 6 6

LIG_WRC_WIRS_1 ELME000507 0 0 0 0 1 0

Modification MOD_CDK_SPxK_1 ELME000153 0 0 1 0 0 0

MOD_CK1_1 ELME000063 1 1 1 0 2 2

MOD_CK2_1 ELME000064 1 1 0 0 0 0

MOD_CMANNOS ELME000160 0 0 0 0 0 0

MOD_Cter_Amidation ELME000093 0 0 0 0 1 0

MOD_GlcNHglycan ELME000085 0 0 2 1 1 2

MOD_GSK3_1 ELME000053 0 0 1 2 3 5

MOD_NEK2_1 ELME000336 2 2 3 2 2 1

MOD_NEK2_2 ELME000337 0 0 1 0 0 1

MOD_N-GLC_2 ELME000079 0 0 0 0 0 0

MOD_PIKK_1 ELME000202 0 0 0 1 1 1

MOD_PK_1 ELME000065 0 0 1 0 0 0

MOD_PKA_1 ELME000008 0 0 0 1 0 0

MOD_PKA_2 ELME000062 0 0 0 1 0 0

MOD_PKB_1 ELME000061 0 0 0 0 0 0

MOD_Plk_1 ELME000442 2 1 2 1 1 1

MOD_Plk_2-3 ELME000443 0 0 0 1 0 0

MOD_Plk_4 ELME000444 1 1 2 2 2 1

MOD_ProDKin_1 ELME000159 0 0 1 0 1 1

MOD_SUMO_for_1 ELME000002 0 0 0 0 0 0

MOD_SUMO_rev_2 ELME000393 0 0 0 2 0 0

Targeting TRG_DiLeu_BaEn_2 ELME000524 0 0 0 0 0 0

TRG_ENDOCYTIC_2 ELME000120 0 0 0 0 0 1

TRG_ER_diArg_1 ELME000012 0 0 0 0 0 0

TRG_Pf-PMV_PEXEL_1 ELME000462 1 1 1 1 0 1

GenBank accession numbers for endogenous protease sequences are as follows: Endogenous retrovirus-K (ERVK Protease in Homo sapiens; P1026
AAO32667.1), Protease (Mus musculus; BAF81989.1), ERVK member 7 pro-like protein (Nannospalax galili, XP_01761366.1), ERVK membe
VFV21003.1), ERVK member 8 pro-like protein (Equus asinus, XP_044634089.1), ERVK member 7 Pro-like protein (Odobenus rosmarus diverg
(Notamacropus rufogriseus, BCW03411.1), Uncharacterized protein LOC121232732 (Aquila chrysaetos, XP_040977069.1).
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presents with a non-canonical PIP-box QKAVTGLV signature

for binding the DNA clamp PCNA (Figure 1, aa. 45-53, yeast-

like PIP box variant). The glutamine in position 1 fits the front

face of the PCNA ring called the “Q pocket” (59, 60). The

residues in positions 4-8 generally form a helix. The aliphatic

hydrophobic valine in position 4 is typical of canonical PIP

boxes, whereas the hydrophobic residues (LV) in position 7 and

8 are similar in composition to the non-canonical PIP box of the

yeast anti-recombinogenic helicase Srs2, which places the

terminal two residues into a large hydrophobic pocket on the

front face of PCNA called the “three-forked plug” (58–60).

Among betaretroviruses, ERVK PR was exceptional in its

predicted interaction with PCNA, which has several potential

implications related to DDR and viral replication. Key ERVK PR

hub protein UBE2N acts with HLTF and SHPRH to mediate

Lys-63-linked poly-ubiquitination of PCNA for engagement of

DDR during genotoxic stress (61). In the case of EBV infection,

the EBV deubiquitinating enzyme BPLF1 targets ubiquitinated

PCNA, which disrupts DDR (62). A similar mechanism is also

employed by the Herpes simplex virus 1 (HSV-1) UL36USP

protein (63). Deubiquitination of PCNA is typically performed

by USP1; however, the deubiquitinating function of USP7 is

important for suppressing PCNA activity during DNA repair

and, unlike USP1, acts independently of cell cycle processes (64).

Both EBV BPLF1 and HSV-1 UL36USP viral proteins can also

perform this task and therefore can modulate the function of

PCNA in the translesion synthesis (TLS) DNA damage tolerance

pathway. K164 monoubiquitination of PCNA recruits

polymerases h, i, and k to DNA replication forks and activates

TLS, thus allowing DNA synthesis despite damaged DNA

templates (65). Extension of K63-linked polyubiquitin on

K164 activates the template switch pathway allowing for error-

free DNA repair (65). Thus, deubiquitination of PCNA results in

increased cell sensitivity to DNA-damage but can facilitate viral

DNA replication (63).

The herpesvirus EBV BPLF1 and HSV-1 UL36USP proteins

each contain a PIP box motif to facilitate their interaction with

PCNA (62, 63), opening the possibility that the ERVK PR PIP

box may also enable a similar contact of this viral protein with

PCNA. Given that ERVK PR was also predicted to interact with

USP7, a molecular bridge of USP7-ERVK PR-PCNA may be

formed preventing PCNA ubiquitination, resulting in a similar

inhibitory effect on TLS during ERVK reactivation. However, it

is now appreciated that PIP boxes may bind a more diverse set of

proteins than just PCNA (58, 59), thus potentially allowing

ERVK PR to interact with additional cellular partners.

The ELM profile of ERVK PR has additional implications for

PCNA interaction due to the presence of the SIM motif for

SUMO recognition. PCNA can be both ubiquitinated and

SUMOylated, which impacts its function in DDR pathways

(60). Srs2 specifically recognizes SUMO-PCNA using both its

non-canonical PIP box and SIM motif (60, 66). As ERVK PR

also contains both a non-canonical PIP box and SIM motifs, it is
Frontiers in Virology 09
likely that ERVK PR may also specifically interact with the

SUMOylated form of PCNA. Unlike Ub-PCNA, which is

involved in recruiting translesion DNA polymerases for TLS,

the SUMOylation of PCNA is recognized by the anti-

recombinogenic DNA helicase Srs2 in yeast. Srs2 limits

homologous recombination and facilitates synthesis-dependent

single-strand annealing (SDSA) for double-stranded DNA break

repair (66). Notably, ERVK PR exhibits a tandem SIM motif and

non-canonical PIP box arrangement, similar to Srs2 and

potentially its human orthologues (66, 67). Experimental

validation will be required to confirm ERVK PR and SUMO-

PCNA interaction, as well as the cellular impact of a putative

partnership. Considering that ERVK activity is frequently

associated with cellular DNA damage and oncogenesis (9),

future studies into the impact of ERVK PR on PCNA activity

are warranted.

One reason that viruses may target PCNA is its differential

impact on viral replication. In the case of DNA viruses, PCNA

often acts as a cofactor for viral genome replication in the

nucleus (63, 68–71). Although PCNA is largely considered a

nuclear protein, it has also been shown to interfere with ssRNA

virus replication by forming a complex with genomic viral RNA

in the cytoplasm, which suppressed viral polymerase activity and

blocked the replication of Potexviruses (72). It remains unclear

whether PCNA impacts betaretroviral replication.

3.3.2. ERVK protease may preferentially use
end-binding protein-based transport

Cellular transport of viral proteins is essential for viral

replication and pathology (73). ERVK PR contains an N-

terminal SxIP motif (Figure 1, aa. 80-94) for binding to EBH

domains in end-binding proteins involved in microtubule

transport (56). Of note, ERVK IN is also predicted to interact

with end-binding proteins (57), and the same SxIP motif

(ELME000254) is found in both ERVK enzymes. The cluster

related to the plus-end tracking proteins (+TIP) consist of only

microtubule associated protein RP/EB family members

(MAPRE1, MAPRE2, and MAPRE3) and the microtubule

motor protein kinesin family member 14 (KIF14), making it

by far the smallest grouping within the ERVK PR interactome

(Figure 3). This grouping is connected to the rest of the network

through one connection with SUMO3, which is known to be an

important factor in microtubule-mediated chromosome

separation during cell division (74). Together, this suggests the

use of the cellular centrosome for viral trafficking and viral

aggresome formation (73). Deregulation of the centrosome

during viral replication may underlie aberrant cell division and

transformation (73); thus, this could be investigated as a

potential pathway associated with ERVK-driven oncogenesis.

Of note, ERVK employs a different strategy for end-binding

protein interaction than HIV. While ERVK viral enzymes contain

an SxIP motif that binds EB proteins, conversely HIV capsid has

EB-like motifs that interact with SxIP motifs in +TIP (75).
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3.4. ERVK interactome reveals
association with a diversity of
cellular pathways

A list of potential interacting proteins was compiled based

on the ELMs identified in ERVK PR, and an ERVK PR

interactome network was constructed using STRING software

(Figure 3). The ERVK PR network contained 102 nodes and 154

edges (expected number of edges 47), resulting in a significant

PPI enrichment (p<1.0e-16). All direct ERVK PR interactor

proteins (Table S7, Figure 3 coloured nodes) are shown with

links to a maximum of 10 second shell interactions

(uncoloured nodes).

Central hub proteins within the curated STRING network

were identified based on a node degree ≥10 and included

ubiquitin-conjugating enzyme E2 N (UBE2N), ubiquitin-

conjugating enzyme E2 I (UBE2I), Small Ubiquitin Like

Modifiers (SUMO-1, SUMO-2, and SUMO-3), mediator of

DNA damage checkpoint 1 (MDC1), PCNA, and TNF

receptor associated factor 6 (TRAF6).
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Figure 4 depicts a heat map of the most significant Reactome

pathways associated with the ERVK PR network. Major

pathways emerge under groupings of cell cycle control,

ubiquitination, DDR, transcriptional regulation, nervous

system, immunity, and metabolism (see Figure 4 and Table S8

for full Reactome listing). Similarly, enriched KEGG pathways

consisted of ubiquitin-mediated proteolysis (p=4.92 x 10-9),

small cell lung cancer (p=1.4 x 10-4), NF-kB signaling pathway

(p=1.7 x 10-4) and viral carcinogenesis (p=0.0049) (Table S9).

Further analysis of the network included UniProt keywords and

GO function analysis (Tables S10 and S11, respectively), which

corroborated many of the pathways identified above.

3.4.1 ERVK protease is associated with the
apex of ubiquitin-like pathways

Ubiquitination is implicated in many cellular processes,

including the cell cycle, DDR, and cell signaling; thus, its

repeated implication in the ERVK PR interactome points to

the importance of ubiquitin control in retroviral replication (76–

78). The ERVK PR network highlights putative interaction
FIGURE 3

Predicted ERVK protease interactome. Cellular proteins containing complementary interaction motifs for ELMs identified in ERVK PR were used
to identify potential protein interactors used as query proteins for STRING network analysis version 11.5. Edges indicate both functional and
physical protein associations. A payload list was generated to colour nodes and hubs related to dominant pathways: ubiquitination (red), DNA
damage response (DDR)/cell cycle/SUMOylation (teal), TRAF signaling (purple), microtubule end-binding protein (grey), epigenetic and
transcriptional regulation (brown). Pale grey nodes indicate putative second shell interactors.
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partners at the apex of protein modification pathways, namely

E1 ubiquitin-activating enzymes (UBA1, UBA3, UBA7, ATG7)

and SUMO proteins (Figure 3). While UBA1 is implicated in

ubiquitination processes related to protein homeostasis, UBA3 is

a key component of the NEDDylation pathway, UBA7 activates

interferon stimulated gene 15 (ISG15) to induce an antiviral

response, and ATG7 activates autophagy related protein 8

(ATG8) to initiate autophagy (79). In contrast, SUMO

modification often alters protein-protein interactions and

protein affinity for a target (79). Together, this suggests that

ERVK PR may modulate several ubiquitin-like protein (UBL)

pathways by engaging with initiator E1 proteins.

Ubiquitin-like modifier-activating enzyme 1 (UBA1) was

determined to be a significant node within the ERVK PR

interactome. UBA1 is known to function as an essential

component of ubiquitination, contributing to both ubiquitin-

proteasome degradation and selective autophagy systems (80,

81). In addition to its function in protein degradation, UBA1-

mediated ubiquitylation is also an important mechanism

involved in cell cycle progression, DDR, and apoptosis (80).
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Furthermore, impaired UBA1 activity within the nervous system

has proven to be detrimental to neuronal function and health

(82). Murine, zebrafish, and fruit fly models of UBA1

impairment in motor neurons have demonstrated severe

defects in locomotion and evidence of neurodegeneration (82,

83). We suspect that ERVK PR interactions with UBA1 directly

interfere with its ability to facilitate ubiquitination in

proteasomal degradation pathways, ultimately contributing to

the neurodegeneration of motor neurons in Amyotrophic

Lateral Sclerosis (ALS). When UBA1 activity within the

nucleus is diminished, the repair of DNA double-stranded

breaks is severely impaired (84) and associated with defects in

apoptosis and enhanced tissue growth (85), suggesting an

additional role in oncogenesis.

USP7 is a deubiquitinating enzyme that plays a significant

role in cell signaling through its regulation of substrate stability

and degradation (86). Predicted to interact with all betaretroviral

PRs, USP7 is a ubiquitin-specific protease which plays a role in

DDR, immune response, epigenetic control, and cancer (49, 50).

USP7 is targeted in viral evasion of innate immunity, with
FIGURE 4

Pathways associated with ERVK protease interactome. Heat map of enriched Reactome pathways associated with the ERVK PR interactome
based on STRING network analysis. Enriched terms are reported along with significance scores (-log10 p value). ERVK PR is predicted to interact
with cellular pathways involved in cell cycle, ubiquitination and protein regulation, DNA damage response, transcriptional regulation and cell
signaling, nervous system, immunity, and metabolism.
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specific strategies employed by Herpes simplex virus 1 (HSV-1)

and Ebola virus (49, 87, 88). USP7 TRAF domain-mediated

interactions are mutually exclusive as interaction partners all

bind the identical interface (89). This can be seen in USP7

partner switches depending on the post-translational

modification status of Mdm2 and p53 (89). Thus, when a viral

protein interacts with USP7 via its TRAF domain, it may

displace cellular proteins or covet the site thus preventing

cellular interactors from engaging USP7. Indeed, the vIRF4

protein from Kaposi’s sarcoma-associated herpesvirus (KSHV)

binds the USP7 TRAF domain and competitively blocks

substrate binding of MDM2 and p53 (90). Similarly, the

Epstein-Barr nuclear antigen 1 (EBNA1) protein of EBV also

preferentially binds the TRAF domain of USP7, resulting in

destabilizing p53 and reducing p53 levels (91, 92). Considering

that ERVK PR contains a conserved USP7 TRAF domain

binding motif, as well as a USP7 UBL2 domain binding site

(similar to that used by HSV-1 ICP0 protein (93)), we predict

that ERVK PR engages USP7 and may alter signaling pathways

related to innate immunity and cancer. ERVK PR’s putative dual

interactions with USP7 has implications for p53 regulation

(Figure 4, Table S8), and thus oncogenic processes (86).

Specifically, network analysis revealed putative p53 regulation

occurring at the level of p53 transcription, phosphorylation,

activity, degradation, as well as p53 involvement in control of

cell cycle genes (Table S8).

Another pathway implicated in the ERVK PR interactome is

NEDDylation, a form of post-translational modification where

ubiquitin-like protein NEDD8 is conjugated to its target

proteins. NEDD8-activating enzyme (NAE) is formed by a

heterodimer of ubiquitin-like modifier activating enzyme 3

(UBA3, a putative betaretroviral PR interactor) and amyloid

precursor protein binding protein-1 (APPBP1) (79). The PR-

UBA3 interaction has notable implications for impacting

antiviral immunity, based on strong evidence for a necessity of

NEDDylation-associated cullin-RING E3 ubiquitin ligases in

retroviral infections, as a means to overcome cellular viral

restriction factors APOBEC and SAMHD1 (94). However,

given the broad antiviral effect of NEDDylation inhibitor

MLN4924 (95), and the role of NEDDylation in activating NF-

kB, IRFs, and interferon production (96, 97), it remains unclear

how PR involvement in NEDDylation may impact

ERVK activity.

ERVK PR was also associated with ISGylation. Putative

ERVK PR interaction partner UBA7 activates interferon

−stimulated gene 15 (ISG15) conjugation to a variety of target

proteins related to interferon response (98). Both cellular and

viral proteins can be targeted for ISGylation, with impacts on

innate immune signaling, as well as viral replication (98, 99).

Select proteins associated with the ERVK PR interactome

(PCNA, p53, NBN, UBA1, ATG7, SUMO2, TRAF2) are

known to be modified by ISG15 (99), yet the downstream

effects are still largely unknown. It is unclear whether ERVK
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viral proteins are ISGylated or what the influence may be on viral

proteins in host cells.

An affinity for SUMO proteins was also evident given the

SIM motifs within the ERVK PR, in conjunction with putative

interaction with several SUMOylated proteins including PCNA

and MDC1. Many viruses target UBC9/UBE2I as it is the sole E2

SUMO-conjugating enzyme in the SUMOylation pathway (100);

therefore, its identification as a hub protein in the ERVK PR

interactome deserves further investigation. SUMOylation is

essential for HIV integrase-mediated proviral insertion into

the host genome and virion infectivity, yet SUMO

modification of cellular protein IkBa sequesters NF-kB in the

cytoplasm and limits HIV-1 transcription (101). This indicates

that control over SUMOylation processes is an important

component of HIV replication, specifically as it pertains to

regulation of DDR and innate immune signaling (102).

Similarly, all betatretroviral PRs were predicted to encode SIM

motifs, indicating a conservation for recognition of SUMOylated

proteins among this group of PRs.

3.4.2 TRAF Signaling
Tumor necrosis factor receptor (TNF-R)-associated factors

(TRAFs) are signaling adaptors that modulate the inflammatory

response, often through their regulation of canonical and non-

canonical NF-kB signaling (103). Moreover, USP7, TRAF2 and

TRAF5 contain a RING domain, granting them E3 ubiquitin

ligase activity (103, 104). Ubiquitin E3 ligases TRAF2, TRAF5,

and TRAF6 appear to be key proteins that potentially link ERVK

PR activity to NF-kB, MAPK, and RIP1 signaling pathways (103,

105). ERVK PR binding of the TRAF MATH domain may have

agonistic or inhibitory effects on TRAF’s ability to modulate

intracellular signaling. Both HIV-1 Nef protein and hepatitis C

virus Core protein activate TRAF signaling, leading to a

subsequent increase in NF-kB activation (106). It is possible

that ERVK PR participates in a similar mechanism that recruits

TRAFs to enhance NF-kB activation, which ultimately facilitates

ERVK viral replication through transcription via NF-kB
-binding sites on ERVK LTRs (107). Thus, USP7 and TRAF

protein involvement in the ERVK PR interactome points to a

potential impact on NF-kB signaling (Figure 3, Table S9), as

identified by KEGG pathway analysis (hsa04064, p<0.00017).

3.4.3 DDR, cell cycle, and processes regulated
by SUMOylation

DNA repair pathways were a strong component of the

ERVK PR network (Figure 4, Table S8). Identified

mechanisms included DNA double-strand break processing

and repair, recruitment and ATM-mediated phosphorylation

of repair and signaling proteins at DNA double- strand breaks.

Homology directed repair (HDR) through homologous

recombination (HR), or single strand annealing (SSA), were

also identified as repair strategies for double-strand DNA

lesions. Additionally, global genome nucleotide excision repair
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(GG-NER), nonhomologous end-joining (NHEJ), and cell cycle-

related DNA damage checkpoints were identified as activities

within the ERVK PR network. Phospho-Ser/Thr binding

domain proteins are key hub proteins in cell cycle regulation

and DDR (47); specifically, FHA domain protein interaction

sites (4), WD40 repeat interaction sites (3), PIP box (1), and PLK

phosphorylation sites (3) were identified in ERVK PR (Tables 1

and 2, Figure 1). In contrast to exogenous and most endogenous

PRs, fewer WD40 repeat domain WDR5 interaction sites were

found in ERVK PR (3 vs. 4-9 sites each). This suggests that

ERVK PR has potentially shifted away from WD40 domain

interaction in favour PCNA interaction as a means to connect

with DDR pathways (47, 108). Involvement in these processes

may be related to requirements for optimal ERVK integrase

activity and ERVK integrase-mediated DNA damage caused

during viral DNA integration in the host genome (109–111).

The SUMOylation cluster is the most widely connected

throughout the ERVK PR interactome (Figure 3), displaying the

greatest number of interactions with the other network clusters.

The Reactome analysis identified SUMOylation of DNA

replication proteins and DDR proteins as processes within the

ERVK PR network (Figure 4, Table S8). MDC1 was identified as a

hub protein of the ERVKPR interactome and is involved in ATM-

mediated DNA repair mechanisms and cell cycle checkpoint

control (112). SUMOylation of MDC1 is essential for effective

DDR. MDC1 can only be SUMOylated and degraded at sites of

DNA damage, and disruption of this process is associated with

impaired HR repair (113). Neighbouring primary nodes toMDC1

included RNF8 and NBN, both involved in MDC1-mediated HR

repair (114) andNHEJ (115), respectively (Figure 3). Deficiency or

allelic variation inMDC1, RNF8, and NBN results in susceptibility

to cancer (115–118).

3.4.4 Histone modification & transcriptional
regulation

The high conservation of WDR5 among multicellular

organisms may be foundational to its consistent targeting by

retroviral PRs (Tables 1 and 2). WDR5 has a canonical role in

histone methylation; however, it also plays a role as a histone tail

reader and transcriptional regulatorofprotein synthesis genes (119,

120).While ERVKPR contains fewerWDR5 binding linearmotifs

than other PRs, its position in the interactome strongly suggests ties

with both TRAF signaling and DDR (Figure 3).
3.5. Disease pathways implicated in the
ERVK protease interactome

Disease-associated processes thatwere significantly enriched in

the network included small cell lung cancer (KEGG, p=0.00014),

host-virus interactions (UniProt, p=0.0029), viral carcinogenesis

(KEGG, p=0.0049), Epstein-Barr virus (EBV) infection (KEGG,

p=0.0355), and neurodegeneration (UniProt, p=0.0453). This
Frontiers in Virology 13
points to ERVK PR having a role in virus-mediated oncogenesis

and neurodegenerative disease, conditions previously associated

with the activity of ERVK (121–127). Engagement of PCNA (55,

128), USP7 (89, 129) and TRAF signaling cascades (103) by ERVK

PR may feed into NF-kB driven and pro-oncogenic pathways.

Additionally, hub proteins PCNA (55), UBA1 (80), and UBA5

(130) were identified in the ERVK PR interactome and are

implicated in neurodegeneration.
4. Conclusion

Improving our understanding of how ERVK PR modulates

cellular pathways is a first step toward developing effective

antiretroviral therapy for ERVK-associated diseases. Despite their

efficiency in combating HIV infection (131), protease inhibitor

drugs are significantly less effectiveat inhibitingERVKPR(16, 132).

Moreover, protease inhibitors are also candidate drugs for treating

cancer (133). Our work highlights that ERVK PR likely modulates

ubiquitin-like pathways and DDR, thus strengthening the

association of ERVK with neurodegenerative disease and cancer.

As such, ERVK PR may be useful as a target for future drug

development in combating the progression of ALS and ERVK-

driven oncogenesis. However, it is possible that the cellular impact

of ERVK PR is not solely based on its enzymatic activity, and thus

additional investigation into the molecular pathways perturbed by

this viral protein is warranted.
Dedication

This study is dedicated to patients with ALS—we are

working on it!
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