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Regulation of viral
RNA-dependent RNA
polymerases by phosphorylation

Camille Duflos and Thomas Michiels*

de Duve Institute, Université catholique de Louvain, Brussels, Belgium
RNA viruses encode an RNA-dependent RNA polymerase (RdRp), which is

essential for transcription and replication of their genome since host cells lack

equivalent enzymes. RdRp residues were shown to be phosphorylated by host

kinases in several human, animal or plant viruses including flaviviruses,

picornaviruses, coronaviruses, influenza viruses and tymoviruses. RdRps can be

phosphorylated on several residues by distinct host kinases. Phosphomimetic

mutations of identified phosphorylated residues either positively or negatively

regulate RNA synthesis or association of RdRps with RNA or other proteins.

Interestingly, some RdRps evolved to recruit cellular kinases through direct

protein-protein interaction, likely to promote or to tightly control their own

phosphorylation. Given the essential nature of RdRps for RNA virus replication, a

better knowledge of RdRps’ phosphorylation is expected to facilitate the design

of future drugs that strongly affect polymerase activity.

KEYWORDS
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1 Introduction

RNA viruses include a wide variety of human, animal and plant viruses. All RNA

viruses characterized to date, with the exception of retroviruses, code for an RNA-

dependent RNA-polymerase (RdRp) necessary for the replication and the transcription

of their RNA genome. RdRps belong to the larger class of enzymes called template-directed

nucleic acid polymerases. These polymerases adopt a “right hand” conformation with three

subdomains: palm, fingers and thumb (Figure 1). RdRps’ right hand is closed and they

share a common core architecture with 7 highly conserved motifs named A to G (2, 3). The

detailed structure of RdRps has been largely discussed elsewhere (2, 4–6) and the structural

overview presented here only provides the minimal background to discuss the impact of

phosphorylation sites.

The catalytic site in the palm, composed of a three-stranded anti-parallel b-sheet core
surrounded by three a-helices, is the most conserved feature of these polymerases. It

contains motifs A and C involved in NTP binding and catalysis, motif B important for in

NTP recognition and positioning, motif D involved in maintaining polymerase structural
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integrity and fidelity and motif E that participates in the formation

of the NTP entry tunnel. Motifs C and E also participate in locking

the primer strand in an optimal position for elongation (2, 3, 7).

On the N-terminal side of the palm are the fingers. In the case of

RdRps, fingers and thumb interact to form a closed structure

surrounding the active site. This closure is mediated by the index

and ring fingertips, which form protrusions that reach the thumb

and thereby create a hole, which acts as the template RNA entry

channel. This channel contains the conserved motif G (8). RdRps

are also characterized by the presence of a positively charged NTP

entry channel at the back of the polymerase, of which motif F forms

the roof (2, 3, 7).

The C-terminal thumb subdomain is located at the side of the

palm. This subdomain is much more diversified than the fingers

and palm subdomains. The thumb of picornavirus and calicivirus

RdRps is small, leaving an opening to the active site that allows for

the accommodation of the protein primer VPg. The thumb of

flavivirus RdRp is much larger and protrudes into the active site,

thereby stabilizing de novo initiation complexes but imposing more

important conformational changes to allow elongation (2, 7).

Although all RdRps share the same core, a number of

polymerases contain additional domains. For example,

polymerases of flaviviruses have an N-terminal methyl-transferase

(MTase) domain involved in viral mRNA capping (4, 9). Influenza

virus polymerase is an heterotrimer formed of polymerase basic 1

and 2 (PB1, PB2) and polymerase acidic (PA) subunits. The RdRp

domain is found in the PB1 protein, which is wrapped by PA (10).

This review specifically focuses on core RdRp phosphorylation.

It does not address the phosphorylation of regulatory subunits or

that of cofactors such as the polymerase basic (PA) subunit of the

influenza polymerase, the phosphoprotein (P) of rhabdoviruses or

the non-structural 5A (NS5A) protein of hepaciviruses.

Phosphorylation of RdRps has been studied in a variety of

viruses, including members of the families Picornaviridae,

Coronaviridae, Flaviviridae, Orthomyxoviridae, amongst others.

Table 1 provides a snapshot on select RdRp phosphorylated
Frontiers in Virology 02
residues shown to impact polymerase activity. Supplemental

Table 1 provides a more extensive list of RdRp phosphorylation

sites identified to date, including in some plant viruses, and provides

some information about the role of phosphorylated residues. As

many studies focused on the RdRp of flaviviruses and of hepatitis C

virus (HCV) in particular, we used the HCV genotype 1b RdRp as

reference for phosphorylation site description and residue

numbering (PDB accession: 3MWV).
2 RdRp phosphorylation and its
impact on polymerase activity

2.1 RdRp fingers phosphorylation

Fingers interact with the thumb through fingertips protrusions,

leaving openings for incoming template RNA and nucleotides. In

the polymerase of HCV, non-structural protein 5B (NS5BHCV),

Ser27 and Ser29, which can be phosphorylated, are located in the

index finger at the back of the polymerase (Figure 2). Ser29 makes

van der Waals contacts with thumb residues His428, Pro495,

Trp500 and Arg503, thus contributing to the closure of the

polymerase (23, 24).

NS5B Ser29 and the nearby Ser27 were reported to be

phosphorylated by both AKT and PRK2 in mammalian Huh7 cell

lysates and in in vitro kinase assays (16–18). A Ser-to-Ala mutation,

which prevents any phosphorylation (phosphoinhibiting mutation)

or a Ser-to-Glu mutation, which mimics phosphorylation

(phosphomimetic mutation) in either residue reduced primer

extension and de novo synthesis activities of the polymerase as

well as replication of a minireplicon (16, 17). It was proposed that

contacts between index finger and thumb residues are affected upon

Ser29 phosphorylation. The resulting structural perturbation might

explain the decreased activity of the RdRp carrying the

phosphomimetic mutation. However, the phosphoinhibiting
A B

FIGURE 1

General structure of RdRps. (A) Cartoon representation of HCV genotype 2a protein NS5B seen from the front with a hand drawing on top. The
pinky, ring, middle and index fingers are represented in red, yellow, orange, and green, respectively. Thumb is blue and palm is grey. Template RNA
is colored in light violet and the newly synthesized strand in purple. Structures were drawn using Pymol (Schrödinger) using PDB entry 4WTI, (1).
(B) The same hand representation as in A shows the orientation of the polymerase. The template RNA enters the polymerase from the top and
comes out as dsRNA from the front of the polymerase. NTPs enter the polymerase through the back.
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mutation also decreased polymerase activity, suggesting that subtle

local structural changes imposed by the Ser-to-Ala mutation might

be sufficient to affect the contact between the fingers and the thumb

and, hence, the polymerase activity.

In the polymerase of Norovirus (3DNoV) Thr33, which is the

homolog of NS5BHCV Ser27, can also be phosphorylated in vitro by

AKT. In agreement the above data reported for HCV, the
Frontiers in Virology 03
phosphomimetic Thr33-Glu mutation in 3DNoV decreased

polymerase speed and affinity for NTPs (12).

Interestingly, two residues (Ser433 or Ser434) structurally occur

at a similar position as 3DNoV Thr33 and NS5BHCV Ser27 in the

polymerase (non-structural protein 12, nsp12) of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). These

residues, which are conserved among b-coronaviruses, were
TABLE 1 Characteristics of select RdRp phosphorylated residues.

Family Species AA

AA
in
HCV
(1)

Evidence (2) Effect of phosphorylation (3) Kinase Reference

Birnaviridae

Infectious
bursal
disease
virus

S7 –

MS of purified VP1
(polymerase) in cell
extracts; Phospho-Ser7-
specific immunoblots on
infected cells.

CDK1 inhibitors reduced polymerase activity in transfected
cells. S7A mutant virus produced lower titers than WT.

CDK1 (11)

Caliciviridae Norovirus T33 S27

In vitro kinase assay
with AKT; anti-AKT
phospho-substrates
immunoblot.

Phosphomimetic mutant was slower in an in vitro polymerase
assay.

AKT (12)

Coronaviridae
SARS-
CoV-2

T20 –

MS of cells transfected
with CDK2 and nsp12;
MS after in vitro kinase
assay using CDK2.

Reduced polymerase activity of Ala mutant due to decreased
interaction with nsp7 and 8; phosphomimetic had WT
activity. CDK2 inhibitor decreased SARS-CoV-2 replication
in infected Vero cells.

CDK2 (13)

Flaviviridae
Dengue
virus

T449 I134

MS of infected or
transfected 293T cells
and in vitro kinase assay
with mammalian PKG
Ia. MS of infected Aedes
aegypti cells.

T449S mutant replicon replicated as WT while
phosphomimetic and His mutants were unable to replicate.
However, viral titers were decreased by PKG inhibition and
increased after PKG activation.

PKG (14) (15)

Flaviviridae
Hepatitis
C virus

S29 S29
MS after in vitro kinase
assay with PRK2 and
AKT.

Phosphomimetic and Ala mutants showed reduced activity in
vitro and failed to produce plaques.

PRK2
and
AKT

(16, 17)

Flaviviridae
Hepatitis
C virus

S76 S76
MS after in vitro kinase
assay with Huh-7 cell
lysate.

Compared to WT, phosphomimetic but not Ala mutant virus
produced more colonies and presented higher activity in
vitro.

(18)

Flaviviridae
Hepatitis
C virus

T267 T267
MS after in vitro kinase
assay with AKT.

Ala mutant showed lower activity in vitro; Phosphomimetic
mutant outperformed WT.

AKT (17)

Flaviviridae
Usutu
virus

S669 N316
MS after in vitro kinase
assay with AKT.

Ala mutant displayed faster kinetics than WT polymerase;
Phosphomimetic mutant lacked activity.

AKT (19)

Flaviviridae
West Nile
virus

S38 –

MS of infected 293T
cells and after in vitro
kinase assay with
PGKIa.

Overexpression of PGK in BHK cell lines increased viral titers
but this phenotype was not shown to depend on Ser38.

PKG (20)

Ortho-
myxoviridae

Influenza
A virus

S216
close
to:
T132

MS of infected A549
cells and 293T
transfected cells.

Phosphomimetic and Ala mutant proteins produced WT
RNA levels in vitro; phosphomimetic mutant virus produced
more RNA than WT in single-round infection.

(21)

Ortho-
myxoviridae

Influenza
A virus

S384
close
to:
S46

MS of transfected 293T
cells.

Phosphomimetic but not Ala mutant produced slightly less
RNA than WT in single-round replication; no phenotype of
the mutations in vitro.

(21)

Ortho-
myxoviridae

Influenza
A virus

S673
close
to:
A84

MS of infected A549
cells and 293T
transfected cells.

Phosphomimetic mutation affected the balance between
vRNA (+) and mRNA (-) production in vitro;
Phosphomimetic mutant virus could not be rescued; Ala
mutant produced more RNA than WT in single-round
infections, had WT in vitro enzymatic activity, but decreased
titers in multiple-round infections.

(21)
f

(1) homologous residue or residue close to homologous residue in HCV NS5 (numbering as in PDB file 3MWV); (2) MS, Mass spectrometry analysis; (3) WT, wild type;
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shown to be phosphorylated in infected Vero cells (25). Influence of

the phosphorylation of the latter residues was not studied but, given

the structural similarity of the polymerases, they likely play similar

functions as their homologs in norovirus and HCV.
2.2 Phosphorylation of residues close to
the RNA template entry channel

2.2.1 Different impacts of Thr223 and Ser384
phosphomimetic mutations in Influenza virus PB1

Several polymerase phosphorylation sites were reported to

occur near the RNA template entry channel, including influenza

A virus PB1 Thr223 and Ser384 (Figures 2E, F), which are well
Frontiers in Virology 04
conserved among influenza viruses (Figure 3). PB1 Thr223 was

shown to be phosphorylated in infected A459 cells and when

overexpressed in 293T cells (21, 26). An influenza A virus of the

strain WSN, carrying the PB1 Thr223-Ala mutation reached lower

titers than the parental virus (21). A similar mutant of mouse-

adapted influenza strain SC35M displayed however unaffected

replication in a reporter replicon assay (27). In contrast, Thr223-

Asp phosphomimetic mutants of either strain could not be rescued

by reverse genetics and displayed severely affected replication in a

luciferase reporter assay (25, 27). This mutation prevented the

interaction of PB1 with genomic or complementary viral RNA,

thereby impeding nucleocapsid assembly and viral replication (25).

Predictions suggest that Thr223 phosphorylation in the polymerase

fingers might promote interaction of this residue with the side chain
A B

C D

E F

FIGURE 2

Localization of select HCV and influenza virus RdRp phosphorylated sites. Hand representation of a standard RdRp seen from the front (A) or the
back (B). Cartoon representation of (C, D) HCV genotype 2a protein NS5B (PDB 4WTI, (1)) and of (E, F) Influenza A/H7N9 PB1 protein (PDB 7QTL,
(22)). Fingers, palm and thumb are colored in pink, grey, light blue, respectively. (C–F), phosphorylated residues presented in this review are
represented as red spheres.
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of Arg350 close to the matrix entry channel, thereby negatively

affecting RNA template binding and NTP channeling (27).

Influenza virus PB1 Ser384 is localized at the back of the

polymerase close to the incoming RNA template. It was shown to

be phosphorylated in 293T cells overexpressing the polymerase.

Mutant influenza PB1 Ser384-Ala virions replicated as the wild type

virus in single and multiple round infection. Unlike the Thr223

phosphomimetic mutation which crippled the polymerase, a

Ser384-Asp mutation only slightly affected replication. Both

Ser384-Ala and -Asp mutant polymerases assembled properly and

were as effective as the wild type polymerase in in vitro primer

extension assay, suggesting the phosphorylation of this residues has

no big impact on PB1 activity although it is localized close to the

template entry channel (21).

2.2.2 Influenza virus PB1 Ser673 influences the
balance between transcription and replication

Only few phosphorylated residues described in the literature

mapped to the thumb of RdRps. The best studied is influenza virus

PB1 Ser673, located in an unstructured loop close the template RNA

(Figures 2E, F). This residue was shown to be phosphorylated in

transfected 293T cells as well as in infected A549 cells. A

phosphorylatable Ser or Thr residues is very well conserved at the

corresponding positition in the PB1 polymerases of influenza and

Thogoto viruses (Figure 3). A Ser673-Ala mutant replicated even

better than the parental virus in single-round infections but virus

titers declined as compared to the parental virus in multiple-round

infections. In contrast, a phosphomimetic PB1 Ser673-Asp

mutation fully prevented infectious virus rescue although the

mutant PB1 kept the capacity to interact with PB2 and PA, to

form the heterotrimeric polymerase. Interestingly, in vitro, the

mutant polymerase produced wildtype levels of viral genomic

RNA but produced very low levels of viral mRNA indicating that

phosphorylation of Ser673 probably acts as a switch for the
Frontiers in Virology 05
polymerase to favor replication over transcription. The phenotype

of the PB1 Ser673-Asp mutant is reminiscent of that of an His510-

Ala mutant of the PA subunit of the polymerase, which is located

nearby in the trimeric structure (21). That phosphorylation of

Ser673 at the level of the RNA entry channel differentially affects

transcription and replication suggests that template binding or

positioning constraints may be stricter for transcription than

for replication.

2.2.3 RNA template entry channel in other RdRps
In the NS5B polymerase of HCV, Ser96 is located in motif G,

very close to the template RNA entry channel (Figures 2A-D). Ser96

is highly conserved (Ser or Thr) in HCV, and is predicted to be

phosphorylated in genotypes 1a and 1b but such a phosphorylation

was not experimental ly proven (18, 28) . Whereas a

phosphoinhibitory Ser96-Ala mutation increased replication

levels, a phosphomimetic Ser96-Asp mutation totally abrogated

the replication of an HCV minireplicon and in vitro primer

extension activity of the mutant polymerase. Phosphorylation of

Ser96 is expected to promote the interaction of this residue with

Arg168, thereby changing the geometry of the channel needed to

accommodate the nascent RNA strand, which might explain the

complete loss of polymerase activity (18).

The 3D polymerase of enterovirus 71 carries a well-conserved

Thr114 – Ser115 doublet at a location structurally close to NS5BHCV

Ser96 (Figure 4). Mutagenesis of these residues suggested that they

critically constraint the RNA template and incoming nucleotide

positioning thus regulating polymerase translocation during

elongation (8).

Phosphorylation of these residue was however documented for

neither NSB5HCV Ser96 nor 3DEV71 Thr114-Ser115 and, although

these residues critically regulate the elongation process, there is no

evidence so far that this process is regulated by phosphorylation in

physiological conditions.
FIGURE 3

Conservation of phosphorylatable residues in orthomyxovirus protein PB1. Sequence alignment of orthomyxovirus polymerase subunit PB1. PB1
sequences from a series of Influenza A viruses, influenza B and C, Thogotoviruses and more distantly related viruses was aligned using Clustal
Omega. Phosphorylated residues discussed in the text are outlined.
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2.3 A conserved phosphorylation site in
mosquito-borne flaviviruses that can be
phosphorylated in both mammalian and
insect cells

Mass spectrometry analysis of 293T cells transfected with NS5

expression constructs identified a common phosphorylation site in

the NS5 polymerases of dengue virus type 2 (DENV-2) (Thr449)

and of yellow fever virus (YFV) (Ser450). NS5DENV-2 Thr449 was

confirmed to be phosphorylated in both mammalian and insect

(Aedes aegypti) cells infected with DENV-2. In agreement with in

silico predictions, this residue, which is contained in the consensus

CXT/SC motif, was phosphorylated by the human cyclic

nucleotide-dependent protein kinase G (PKG or PRKG1) in an in

vitro kinase assay. It is noteworthy that PKG can be expressed in

both mammalian and insect cells (14, 15, 29).

Whereas the CXT/SC motif is highly conserved among

mosquito-borne flaviviruses, thick-borne flaviviruses harbor a His

or a Gln residue at the corresponding position. Interestingly,

treatment of HEK293T cells with a PKG activator increased

DENV-2 viral titers up to 4 times and treatment with a PKG

inhibitor or with a siRNA targeting PKG decreased viral titers by up

to 10 times whereas none of the treatments significantly affected the

replication of the thick-borne Langat virus (LGTV) (14). Taken

together, these data suggest that phosphorylation of NS5 Thr449 by

PKG can activate mosquito-borne but not thick-borne flavivirus

replication in both mammalian and insect cells.

A phosphomimetic Thr449-Glu mutation however unexpectedly

decreased DENV-2 replication suggesting that either very subtle

conformation changes at this position heavily affect polymerase

activity or that Thr449 phosphorylation only allows polymerase

activity when transient or partial (14).
Frontiers in Virology 06
2.4 Phosphorylation can either increase or
decrease polymerase activity

Several of the studied phosphomimetic mutations do decrease

polymerase activity (see Table 1 and Supplemental Table 1). Such

decreases can be due to steric hindrance caused by the phosphate group

or by the phosphomimetic lateral chain, which alter the local RdRp

structure, or prevent interactions between residues. Interestingly, other

phosphomimetic mutations do positively impact polymerase activity

whereas the corresponding phosphoinhibitory mutations (usually to

Ala) hardly impacted activity if at all. Phosphorylation of these residues

likely occurs to boost polymerase activity in specific physiological

conditions or cell types.

Such activating phosphomimetic mutations were reported in

the case of NS5BHCV Ser46, Ser76 and Thr267 and in the case of

influenza virus polymerase PB1 residue Ser216.

NS5BHCV Ser46 is located in an a-helix of the index finger close to
the NTP entry channel. This residue was however not documented to

be phosphorylated in cells and is poorly conserved among hepacivirus

strains hepacivirus strains. The physiological relevance of the

phosphomimetic mutant phenotype can thus be questionned.

Ser76, which is well-conserved among hepaciviruses, is also

located in the fingers but rather close to the exit site of the RNA

(Figures 2A-D). This residue was phosphorylated in vitro, after

incubation with Huh7 cell extracts (18). Phosphomimetic mutants

produced more colonies than wild type replicons. Such a

phosphorylation thus likely promotes polymerase activity.

NS5BHCV Thr267 can be phosphorylated in vitro by AKT/PKB.

While mutation of either Thr267 or Ser269 into the non-

phosphorylatable Ala residue yielded a polymerase with less

activity than WT for primer extension and de novo synthesis, the

Thr267-Asp mutant displayed an increased activity in both assays.
A B C

FIGURE 4

A conserved Ser residue in motif G (A) Cartoon representation of HCV genotype 2a protein NS5B (PDB 4WTI, (1)). Fingers, palm and thumb are
colored in pink, grey, light blue respectively. Conserved motif G is represented in blue, template RNA in magenta and the new RNA strand in purple.
Front (B) and side (C) close-up on HCV NS5B motif G (PDB 4WTI) with EV-71 3D motif G and RNA aligned (PDB 6LSE, (8)). HCV polymerase is
colored in grey with motif G in blue, template RNA in magenta and within motif G, Ser96 is represented as cyan sticks. From EV-71 only motif G
(dark green) and template RNA (purple) are represented, with Ser115 shown as Light green sticks.
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This poorly conserved residue is located at the back of the

polymerase and the reason for enhanced polymerase activity of

the phosphomimetic mutant is unclear (17).
2.5 Phosphorylation of the Non-RdRp
domains of the polymerase

A number of viruses have their core RNA-dependent RNA-

polymerase domain extended with N-terminal domains important

for RNA replication, RNA protection or interaction with other

proteins. This is the case of flavivirus (WNV, YFV, ZIKA, DENV)

NS5 polymerases which have their RdRp domain N-terminally fused

to an S-adenosyl-L-methionine-dependent methyltransferase

(MTase) domain responsible for viral mRNA caping (9, 30, 31).

MTase domains of flaviviruses have been shown to be

phosphorylated. In particular, NS5DENV Thr39, as its homolog

Ser38 in West Nile virus (WNV), were reported to be

phosphorylated in infected mosquito as well as mammalian cells.

Interestingly, Ser or Thr residues are well-conserved at this position

in the polymerases of flaviviruses and, when not conserved, they are

often replaced by phosphomimetic Asp or Glu residues. In vitro,

Ser38/Thr39 residues can be phosphorylated by PKGa. The impact

of the phosphorylation of these residues by PKG is unknown but the

overall impact of PKG-mediated phosphorylation on viral replication

was shown to be positive (15, 20).

SARS-CoV-2 nsp12 contains a N-terminal nidovirus RdRp-

associated nucleotidyltransferase domain (NiRAN) likely involved

in cap formation (32). Another characteristic of nsp12 is that it

needs an nsp8 monomer and an nsp7/nsp8 heterodimer to

function, and has additional structures for binding other non-

structural proteins involved in RNA replication (33). nsp12SARS-

CoV-2 Thr20, located in the NiRAN domain of the protein, was

convincingly shown to be phosphorylated by cyclin-dependent

kinase 2 (CDK2) (13). A phosphoinhibiting Thr20-Ala mutation

decreased replication of a reporter construct by 60% in CDK2-

positive cells but not in CDK2 knock down cells, whereas the

phosphomimetic Thr20-Glu mutation slightly increased replication

as compared to the wild type. Inhibition of RdRp by the Thr20-Ala

mutation turned out to be due to the inefficient association of nsp12

with nsp8 and nsp7 to form a functional polymerase. Interestingly,

pharmacological inhibition of CDK2 reduced SARS-CoV-2

replication in Vero cells (13). Thus, phosphorylation of the

NiRAN domain by CDK2 promotes viral replication by

promoting the assembly of polymerase with the co-factors nsp7

and nsp8.

Taken together, these data illustrate that phosphorylation of

residues located outside of the core RdRp can affect polymerase activity.
2.6 Kinases

2.6.1 Recruitment of host kinases by
protein-protein interaction

Strikingly, several host protein kinases were shown to be

recruited by RdRps, through direct protein-protein contact. For
Frontiers in Virology 07
instance, in the case of SARS-CoV-2, nsp12 was shown to recruit

CDK2 through its NiRAN domain (13). The polymerase of

infectious bursal disease virus (IBDV) can interact with the

CDK1-cyclinB1 complex (11). Polymerases of several flaviviruses

includingWest Nile virus, Usutu virus, Zika virus and HCV were all

shown to interact with AKT/PKB and to be phosphorylated by these

kinases in vitro (19, 34). In the case of NS5BHCV, interaction of the

polymerase with AKT/PKB was shown to modify the cellular

localization of this kinase from the cytoplasm to the perinuclear

region in infected cells (35).

Some RdRps likely recruit more than one host kinase. Phage

display, co-immunoprecipitation, immunolabeling and in vitro

kinase experiments converged to show that NS5BHCV can also

interact with PRK2 (28). In the case of WNV, in addition to

AKT/PKB, NS5 was shown to interact with PKG in transfected

cells. This interaction is mediated by an a-helix located in the

MTase domain (19, 20).

2.6.2 Recruited kinases can regulate
RdRp function

Recruited kinases were shown to phosphorylate RdRp residues

and/or to impact viral replication.

In SARS-CoV-2 nsp12, CDK2 was found to be responsible for

Thr20 phosphorylation, which activates replication by facilitating

the interaction of nsp12 with nsp8 and nsp7 (13).

In the case of HCV, siRNA-mediated silencing of PRK2 but not

of related kinases, reduced NS5B phosphorylation (16, 28), an effect

that was also achieved with the PRK2 inhibitor HA1077 (36).

Interestingly, PRK2 knock down reduced HCV RNA copy

numbers in infected mice (37). In contrast, AKT reduced in vitro

polymerase activity of NS5BHCV(35), showing that phosphorylation

by recruited kinases can either positively or negatively impact

RdRp activity.

2.6.3 Complex regulation by multiple kinases
Other studies examined the impact of human and insect PKG

on NS5YFV and NS5DENV-2 phosphorylation and activity. As

indicated above, a PKG activator increased DENV-2 viral titers

up to 4 times whereas PKG inhibition decreased viral titers by up to

10 times, similarly to the positive effect of AKT/PKB, observed for

the related HCV (14, 35, 38). In addition to PKG, NS5DENV-2 can be

phosphorylated in vitro by PKC, although this kinase was not

shown to interact with NS5. While the PKC inhibitor increased

viral copy numbers, PKC induction by PMA reduced it (39). Thus,

the RdRp of DENV-2 can be phosphorylated by at least 3 host

kinases (PKG, AKT and PKC), which play partly antagonist effects

on polymerase activity.
3 Discussion

3.1 Physiological relevance of
RdRp phosphorylation

Due to technical limitations, providing a global mechanistic

interpretation of available data is still challenging for several
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reasons: i) The identification of specific residues that are

phosphorylated by a kinase often stems from in silico predictions

and in vitro kinase assays, which are prone to false positive results.

ii) Another common way of identifying phosphorylated residues is

the overexpression of the viral polymerase by transfection in cells, a

model that lacks the complexity due to the many molecular changes

induced by a viral infection. iii) Phenotypic data provided by

phosphomimetic and phosphoinhibitory mutations must be

interpreted with caution since these mutations, in addition to

mimicking or preventing phosphorylation, may affect the local

conformation of the protein and thereby the interaction

landscape of the mutated residue. iv) The use of kinase activators

or inhibitors, which provides a more global view on the effect of a

specific kinase on viral replication can be subjected to off-

target effects.

RdRps also appear to be phosphorylated by a set of different

kinases, which can have antagonistic effects, and expression of these

kinases has a cell type-dependent pattern. Moreover, some

phosphorylation events were proposed to be transient or partial

because both phosphomimetic and phosphoinhibitory mutations

negatively affected polymerase activity.

Phosphorylation of viral proteins may have quite diverse effects

(40). It may affect protein stability, turnover, subcellular localization

and assembly with other proteins to form functional complexes. It

may also impact the local structure of RdRps and thereby affect the

interaction with RNA and nucleotides and fine-tune the polymerase

catalytic activity. In the case of cellular gene transcription by RNA

polymerase II, phosphorylation of the C-terminal domain of the

polymerase occurs as a well-orchestrated mechanism to control

stepwise transcription initiation, pausing, and elongation (41).

Given the impressive development of mass spectrometry

techniques, major developments are expected in the understanding

of mechanistic impacts of RdRp phosphorylation in the near future

but much is still to be done to get a better picture of the physiological

impact of RdRp phosphorylation.
3.2 Drugability

RdRps are among the best targets for antiviral drugs as they are

essential to the viral cycle and reasonably diverge from host

polymerases to allow specific targeting. For example, nucleoside

analogs targeting the nucleotide binding pocket of viral polymerases

have proven important in the treatment of viral infections (42, 43).

However, the use of inhibitor cocktails may be needed to counteract

the emergence of resistant mutants, which easily arise with RNA

viruses given the error-prone nature of RdRps.

On the one hand, one can examine the influence of specific

kinase inhibitors on viral replication in vitro or in vivo in search of

approved drugs that may be repurposed to globally decrease viral

replication. These empiric approaches can lead to important

therapeutic tools, even if the inhibitor may impact many other
Frontiers in Virology 08
processes than RdRp phosphorylation and RdRp-dependent viral

replication. On the other hand, with the exception of

phosphorylation sites that are buried in the polymerase (e.g.

Thr223 of influenza PB1) and might be phosphorylated before

folding or complex assembly (21), RdRp phosphorylation sites

usually correspond to amino acids that are accessible to small

molecules. Thus, the knowledge of phosphorylation sites that

strongly impact polymerase activity may prove interesting in the

design of molecules, which target polymerase activity.

It is worth noting that a screening for molecules that inhibit

enterovirus replication yielded a broad-spectrum inhibitor, which

inhibits RdRp activity by binding to the RNP entry channel, next to

EV71 3D Thr114-Ser115 doublet that was shown to block

replication when mutated into phosphomimetics (44). The

knowledge of RdRp structures at the level of phosphoresidues

may thus provide structural bases for the improvement or the

design of molecules, which block RdRp function.

In conclusion, although much remains to be done, the expected

progresses in identifying RdRp phosphorylated residues, the kinases

responsible for these phosphorylations and the mechanistic impact

of such phosphorylations on RdRp activity should help the

understanding of basic virus biology as well as the development

of new antiviral drugs.
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