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Editorial on the Research Topic

Predicting virus evolution: from genome evolution to
epidemiological trends
1 Introduction

Evolution is central to understanding viruses, given its importance in processes such as

viral emergence (1), adaptation to host immunity (2), reversion of virulence in attenuated

vaccine strains (3), loss of heterologous sequences in viral expression vectors (4), and

development of resistance against antivirals (5). Viruses have proved invaluable for

studying evolutionary processes and identifying the underlying mechanisms of

evolution, due to their potential for rapid adaptation (6). As well as evolutionary-

oriented comparative analyses of clinical and environmental samples, viruses of animals,

plants, bacteria, and other organisms can be experimentally evolved in the laboratory under

controlled conditions. Over the last decade, evolutionary biologists have devoted great

efforts to predicting the outcomes of evolutionary processes and assessing the limits of such

predictability (7, 8). However, despite the importance of viruses as model systems in

evolutionary biology, there are only limited examples of evolutionary predictions tested on

viruses (2, 8, 9). Such a lack of studies is remarkable, given that virus evolution is (i) rapid

due to short generation times, large population sizes, and high mutation rates, (ii)

repeatable in the clinic and laboratory, which is an important prerequisite for high

predictability, and (iii) highly relevant due to its impact on health, livelihoods, and

ecosystems (6, 8). Notable predictions of virus evolution, such as of future Influenza A

virus (IAV) strains (2), illustrate these various aspects, from the basic feasibility of

prediction to its relevance (8).

Has evolutionary predictability been neglected in virus research, or are there

insurmountable obstacles to making non-trivial predictions? Some problems, such as
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host shifts and the emergence of new viruses (1), will probably

remain elusive due to their extremely stochastic nature and our

incomplete knowledge of the relevant ecological, demographic, and

environmental variables. For known viruses, however, is it possible

to develop general guiding principles and broad, meaningful

frameworks? To what extent do the minutiae of each virus-host

system dictate evolutionary outcomes? These largely unanswered

but highly relevant questions inspired this Research Topic in

Frontiers in Virology. Whilst the small number of submissions

perhaps reflects our concern that these questions have been

neglected so far, the quality and innovation of the studies makes

us hopeful about the future of the field.
2 The challenge of predicting
virus evolution

The emergence and global spread of SARS-CoV-2 provided a

stark reality check on the predictability of virus evolution. From first

principles, mutation rates for coronaviruses, and increasing

knowledge of the virus, some general predictions on the future

evolution of this virus could be made (8). However, our inability to

make specific predictions was accentuated by the near concurrent

emergence of the highly transmissible Alpha, Beta, and Gamma

variants, as unexpectedly each of these variants contained a

considerable number of mutations (17-21 nonsynonymous

mutations) (10, 11). In this Research Topic, Ghafari et al. tackle

this question using simulation models to explore the impact of

different underlying fitness landscapes and the longevity of

infection on the virus mutational profile. The best-supported

model predicts the fitness landscape as a plateau that must be

crossed to reach a steep peak. Long-lived chronic infection allows

these multiple mutations to accumulate in one or a few individuals,

due to the absence of narrow transmission bottlenecks. This paper

exemplifies how relatively simple evolutionary models can be used

to explore the plausibility of different scenarios. A key question is

whether the patterns observed for SARS-CoV-2 are likely to be

repeated in other viruses. We believe that long-lived viral infections

require special attention in general because of their evolutionary

implications. Moreover, several key requirements for the relevance

of chronic infections are applicable to viruses; fitness landscapes of

viruses are rugged (12), large effective population sizes enable

“leapfrogging” fitness valleys, reducing repeatability of evolution

(13), and the effects of infection duration on virus adaptation have

been noted in other systems (4, 14). Moreover, given the small odds

of leapfrogging events, these processes are not easy to study with

experimental evolution due to limited replication.

One key measure adopted almost universally during the SARS-

CoV-2 pandemic was social distancing, to reduce virus

transmission and thereby avoid overwhelming health care systems

(15). However, what are the evolutionary consequences of this

intervention? In this Research Topic, Laguna-Castro and Lázaro

address this question using experimental evolution of a

bacteriophage Qb in different densities of susceptible bacteria.

Contrary to the expectation that more stable virus particles or
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prudent host exploitation would occur, higher infectivity repeatedly

evolved under low host densities. This unexpected finding

highlights that, even for relatively simple experiments in

controlled environments that result in highly reproducible

mutation patterns, it remains difficult to make global, qualitative

predictions. As discussed by Laguna-Castro and Lázaro, the

mechanisms that lead to adaptation to low host densities differ

among viral species (16). It is plausible that other instances of

evolutionary rescue in viruses facing adverse environmental

conditions are also characterized by evolutionary convergence at

the species level but by cross-species variability in qualitative terms.

Such a possibility should be kept in mind when developing public

health policies, as it implies that effective strategies for the control of

viral epidemics may fail or even be counterproductive when applied

to other viruses.

Virus evolution can make preventive or therapeutic interventions

ineffective, but can it also be exploited? One of the most spectacular

suggestions stemming from evolutionary theory is lethal mutagenesis

(17). Most viruses have high intrinsic mutation rates, and mutagenic

drugs could push mutation rates to catastrophic levels, resulting in the

extinction of ever-smaller virus populations. However, is evolutionary

escape possible and might the applications of mutagens have other

undesired consequences? In this Research Topic, Bank et al. consider

what kinds of mutations might rescue virus populations exposed to

mutagens. Given typical distribution of mutational fitness effects

(DFEs) (18), scarce beneficial mutations are unlikely to compensate

for the effects of deleterious ones. Mutation-rate-modifying mutations

are known to occur in some viruses (19). These mutations could

protect populations in the presence of mutagens, but they must occur

very early to ensure genome integrity. Otherwise, by the time

mutagenesis induces an anti-mutator, the fate of the population will

have been sealed by other deleterious mutations (Bank et al.). As an

alternative to mutations that reduce the mutation rate, the authors

explore exotic mutations that would modify the overall DFE. Changes

in the DFE could rescue populations by decreasing or, in some cases,

increasing the effect of other deleterious mutations (Bank et al.). Such

mutations exist for cellular life forms (e.g., mutations in chaperones or

transcriptional regulators), so why not for viruses? One possibility

could be the disruption of coinfection exclusion when controlled by

the virus (20), allowing defective genomes to complement each other

at high multiplicities of cellular infection. While this would limit the

role of selection and promote accumulation of more deleterious

mutations (21), it could ensure short-term survival under highly

mutagenic conditions.
3 Keeping a broad perspective

When it comes to predicting virus evolution, we are only

scratching the surface. While the studies in this Research Topic

illustrate some of the possibilities, they also highlight many of the

problems and outstanding challenges. Virtually all studies on this

topic are framed around human diseases. While improving human

health will remain an important driver for studying the

predictability of virus evolution, it is important to recognize that
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the underlying questions are relevant to many fields. The evolution

of viruses of livestock, crops, and microorganisms will affect the

functioning of industrial and agricultural processes and natural

ecosystems. On the flipside of this, these systems will typically be

quite amenable to experimentation, as illustrated here by work with

bacteriophages (Laguna-Castro and Lázaro). From our perspective,

considering a wide range of virus systems within the virus evolution

community will enrich our understanding of virus predictability. It

is essential to safeguard this broad outlook that has been a hallmark

for this community, to maximize the opportunities for testing,

improvement, and utilization of our capacity to predict

virus evolution.
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