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Klebsiella pneumoniae
co-infection leads to
fatal pneumonia in
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SARS-CoV-2 patients have been reported to have high rates of secondary

Klebsiella pneumoniae infections. K. pneumoniae is a commensal that is

typically found in the respiratory and gastrointestinal tracts. However, it can

cause severe disease when a person’s immune system is compromised. Despite a

high number of K. pneumoniae cases reported in SARS-CoV-2 patients, a co-

infection animal model evaluating the pathogenesis is not available. In our cohort

of COVID-19-positive human patients, 38% exhibited the presence of

K. pneumoniae. Therefore we developed a mouse model to study the disease

pathogenesis of SARS-CoV-2 and K. pneumoniae co-infection. BALB/cJ mice

were inoculated with mouse-adapted SARS-CoV-2 followed by a challenge with

K. pneumoniae. Mice were monitored for body weight change, clinical signs, and

survival during infection. The bacterial load, viral titers, immune cell

accumulation and phenotype, and histopathology were evaluated in the lungs.

The co-infected mice showed severe clinical disease and a higher mortality rate

within 48 h of K. pneumoniae administration. The co-infected mice had

significantly elevated bacterial load in the lungs, however, viral loads were

similar between co-infected and single-infected mice. Histopathology of co-

infected mice showed severe bronchointerstitial pneumonia with copious

intralesional bacteria. Flow cytometry analysis showed significantly higher

numbers of neutrophils and macrophages in the lungs. Collectively, our results

demonstrated that co-infection of SARS-CoV-2 with K. pneumoniae causes

severe disease with increased mortality in mice.
KEYWORDS
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Introduction

The COVID-19 pandemic caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has affected more than 700

million people with approximately 7 million deaths (1). Most

individuals infected with SARS-CoV-2 were asymptomatic or had

mild fever, headache, anosmia, fatigue andmild respiratory symptoms

(2–4); however, a significant number of patients exhibited severe

disease and required hospitalization. The hospitalized patients showed

pneumonitis, hypoxia, acute respiratory distress syndrome (ARDS),

and multiple organ failure (5, 6).

Viral respiratory tract infections suchas influenza andSARS-CoV-

2 are commonly accompanied by co- or secondary infections with

other viruses, bacteria, and/or fungal pathogens (7, 8). Bacterial

coinfections were responsible for high mortality during the 1918

influenza pandemic (9). Patients with severe respiratory signs are at

a higher risk of secondary infections due to compromised respiratory

epithelial barrier or dysregulated immune system (10, 11). Virus

infections induce upregulation of pro-inflammatory cytokines,

which can lead to epithelial cell damage or death (12), resulting in

the breakage of the physical epithelial barrier and increase bacterial

attachment and colonization (13). During the COVID-19 pandemic,

high numbers of SARS-CoV-2 patients had detectable bacterial co-

infection, and the most common bacterial agents identified were

Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella

pneumoniae (Kp) (14, 15). Even before the COVID-19 pandemic,

secondary infections and coinfections were recognized as significant

contributors to acute respiratory distress syndrome (ARDS) (16) and

leading up to 80.5% fatality in these patients (17). In summary, the role

of secondary and coinfections inworsening viral respiratory infections

emphasizes the necessity of pathogenesis studies to effectively address

these complications.

Kp causes hospital-acquired infections and is the third most

common gram negative infection (18). Clinical studies have also

identified Kp infection in COVID-19 patients with secondary

bacterial pneumonia and mortality (14, 19, 20). Kp was detected

in 37 to 55% of COVID-19 patients, and the highest incidence was

noted during early days of SARS-CoV-2 infection (14, 21). These

studies reveal that coinfections significantly increase severity and

mortality, often leading to exacerbated respiratory symptoms,

longer ICU stays, and a greater need for mechanical ventilation.

Despite the high rate of co-infection, the specific impact of Kp on

COVID-19 pathogenesis and clinical outcomes has yet to be

thoroughly evaluated, highlighting the need for further research,

including the use of mouse models. Murine models for SARS-CoV-

2 have been established that exhibit similar symptoms and immune

responses to human patients and are valuable tools for studying

pathogenesis (22, 23). These models have been used to study SARS-

CoV-2 co-infections, demonstrating the importance of secondary

bacterial infections that can lead to high lethality during SARS-

CoV-2 infection (24, 25).

In this study, we employed a mouse model to investigate the

impact of SARS-CoV-2 and Kp co-infection. Our findings revealed

a significantly higher mortality rate among co-infected mice

compared to those infected with SARS-CoV-2 or Kp alone.

Moreover, we observed a marked escalation in lung pathology,
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bacterial load, and infiltration of immune cells in co-infected mice.

This mouse model can serve as a crucial tool for unraveling the

intricate pathogenesis underlying both SARS-CoV-2 infection and

secondary bacterial infections.
Results

Klebsiella pneumoniae is the most
common coinfecting pathogen in
COVID-19 patients

We conducted a PCR assay to identify the presence of multiple

pathogens in samples from SARS-CoV-2 positive patients. We

screened 50 samples for various viral, bacterial, and fungal agents

using a PCR assay capable of detecting 32 of the most common

respiratory pathogens. We identified seven different pathogens in

54% (27 of a total 50) of the samples tested. The remaining 23

samples were negative for the pathogens included in the assay. The

seven pathogens were: Human Respiratory Syncytial Virus (HRSV)

A and B, Staphylococcus aureus (Sa), Klebsiella pneumoniae,

Enterovirus, Pneumocystis jirovecii, Salmonella sp., and Moraxella

catarrhalis (Figure 1A). Out of the 27 samples, 26 samples

contained at least one bacterial agent, 2 samples contained two

viruses (HRSV and Enterovirus), and 1 sample contained a fungal

agent (P. jirovecii) (Figure 1B). Of the SARS-CoV-2 positive

samples (27 samples), sixteen samples contained a single

infectious agent, 10 samples contained two pathogens, and 1

sample contained three pathogens (Figure 1C). The most

common bacterial agents observed were Kp (38%) and Sa (28%)

(Figure 1A). Additionally, we found that Kp was detected in 18% of

samples as a potential standalone infection. Due to its implications

in SARS-CoV-2 patients as a secondary bacterial infection (19, 20,

26), we focused on Kp for further studies.
Co-infected mice exhibit high rates of
morbidity and mortality

To further understand the impact of Kp on SARS-CoV-2

pathogenesis, we conducted in vivo experiments with a mouse

model. We infected BALB/cJ mice with SARS-CoV-2 on day 0 and

subsequently infected them with Kp on day 4, assessing disease

progression, clinical signs, and mortality rates in co-infected versus

single-infected groups. We observed a similar pattern of weight loss

until day 6 post-infection between the S-CoV-2 and S-CoV-2 + Kp

groups (Figure 2A), with both groups ofmice losing up to 20% of their

initial body weight. However, the S-CoV-2 + Kp group, 87.5% of mice

continued to lose body weight and succumbed to infection by day 7

(Figure 2C). In comparison, the S-CoV-2-only and Kp-alone group

had only 12.5% and 16.67%ofmice died, respectively, due to infection.

Thedifference in outcome canbe observed inFigure 2B,which shows a

continued increase in clinical score for co-infectedmice compared toS-

CoV-2-only infection. These findings demonstrate that SARS-CoV-2

co-infection with Kp significantly increases clinical signs, disease

severity, and mortality.
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SARS-CoV-2 infection promotes Kp growth
in the lungs

Given the highmorbidity andmortality in the co-infection group,

we investigated the cause of this phenotype. We determined bacterial

load in the lungs of single- (Kp) and co-infected mice (S-CoV-2 + Kp)

and viral load in the lungs of S-CoV-2-only as well as co-infected

mice (S-CoV-2 + Kp) on 6th dpi. The day 6 post S-CoV-2 was selected

because of the significant percentage of death in co-infected mice

(Figure 2C) on that day. We also wanted to examine whether these
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groups of mice had Kp in the bloodstream indicative of septicemia.

The number of mice with Kp in their heart blood was higher in S-

CoV-2 + Kp group (Figure 3C; Kp =1/8 vs S-CoV-2 + Kp =7/8). A

comparison of bacterial load in the lungs of Kp and S-CoV-2 + Kp

showed a significant difference (p = 0.0343) with Kp mice having

mostly no bacterial growth in the lung (Figure 3A). Virus titer in the

lungs of S-CoV-2 and S-CoV-2+ Kp groups, did not show significant

difference (Figure 3B). Thus, the high mortality rate in the S-CoV-2 +

Kp groups are associated with increased Kp replication rather than

increased SARS-CoV-2 replication.
FIGURE 1

Most common co-infections in SARS-CoV-2 patients. (A) FTD-33 Real-time PCR assay demonstrating pathogens that are detected in SARS-CoV-2
positive nasopharyngeal swabs. The blue bars represent the total number of patient samples positive for SARS-CoV-2, the pathogen listed on the X-axis
and other pathogens included in the assay. The red bars represent the number of patient samples positive for only the listed pathogen and SARS-CoV-2.
Pie charts demonstrating distribution of co-infecting pathogen type (B) and multiples of infection (C) along with SARS-CoV-2.
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Co-infection causes excessive infiltration
of neutrophils and macrophages into
the lungs

Since COVID-19 patients with ARDS contain a higher

percentage of neutrophils (27) as well as their phagocytic role in

bacterial infection, we wanted to quantify the neutrophil response

in the lungs. Neutrophil recruitment in the lungs was significantly

higher in the S-CoV-2 + Kp co-infection group compared to the

other groups (Figures 4A–C). Furthermore, we wanted to quantify

inflammatory macrophages/monocyte changes in the lungs due to

infection because of their pathogenic role in mice infected with a

lethal dose of SARS-CoV and MERS-CoV (28, 29). The percentage

of inflammatory macrophages/monocytes (IMMs) was not

significantly different between all the groups (Figures 4D, E),

however, there were significantly higher numbers of IMMs in the

S-CoV-2 + Kp group compared to all other groups (Figure 4F).

These increases in inflammatory cells indicate a response to the

infection, however, it appears that co-infected mice are recruiting

more cells due to the secondary infection, which could be causing

immunopathology to epithelial cells.
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Co-infection of SARS-CoV-2 and Kp
induces severe inflammation in the lungs

Following the gross diagnosis of bronchointerstitial pneumonia as

well as the recruitment of large numbers of inflammatory cells to the

lungs (Figure 4F), we performed histopathology on the lung at 6 dpi (2

days post-Kp infection). Bronchointerstitial pneumonia, thrombosis,

fibrin, epithelial cell necrosis, perivascular cuffing, edema, and

hemorrhage were the most common lung lesions (Figures 5A–D).

The lesions were graded on a scale of 0 to 4, with 0 being nonexistent

and 4 being severe. Control and Kp-infected mice lungs had open

alveoli and few histopathological changes (Figures 5A, C). The lung

infected with S-CoV-2 had multifocal, moderate interstitial

pneumonia (black triangle, Figure 5B) and perivascular cuffing

(black arrow, Figure 5B). The alveoli showed moderate edema and

fibrin deposition. Conversely, the pathologic lesions in the co-infected

mice were the most severe (Figure 5D). The alveoli and bronchioles

were densely packed with neutrophils and macrophages and were

admixed with edema and fibrin (bronchopneumonia, black

arrowhead, Figure 5D). There was multifocal thrombosis in small

caliber vessels. Innumerable bacteria were also observed in the lesions
FIGURE 2

Co-infection with SARS-CoV-2 and Kp increases disease severity. Percent body weight loss calculated based on day 0 body weight is presented on
y-axis. The data is represented as mean ± SEM. (B) Clinical scores for each group are represented as mean ± SEM (C) Survival of the animals was
monitored for 12 days post infection. Data represent n = 18 to 31 mice per group with two-three independent experiments. Statistical significance
was determined in (A) using the Tukey-Kramer mean separation technique (Control v.s. S-CoV-2 + Kp, Control v.s. S-CoV-2, S-CoV-2 v.s. S-CoV-2
+ Kp; (B) Kruskal-Wallis test (Control v.s. S-CoV-2, Control v.s. S-CoV-2 + Kp, S-CoV-2 v.s. Kp, S-CoV-2 v.s. S-CoV-2 + Kp, Kp v.s. S-CoV-2 + Kp
and (C) Kaplan-Meier survival curve with a Mantel-Cox test. ****P < 0.0001.
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(white arrow). Overall, S-CoV-2 + Kp mice showed significantly

higher lesion scores than control, Kp, and S-CoV-2 (Figure 5E).
Discussion

Respiratory co-infections pose a significant risk of exacerbating

disease processes, primarily due to the overwhelming burden placed

on the immune system by multiple pathogens. Each pathogen elicits

a unique immune response, and the dysregulation that occurs in co-

infections can impair the body’s ability to mount an effective

defense against both viral and bacterial invaders. This further

complicates accurate diagnosis and treatment (30), as the clinical

manifestations of co-infections can be intricate and challenging to

interpret. Therefore, gaining insight into the influence of co-

infections on disease progression becomes crucial in guiding

appropriate diagnostic and therapeutic approaches. Given the

prevalence and severity of secondary bacterial infection during

COVID-19, there is a growing need to understand the

pathogenesis and impact of co-infections. In this study, we aimed

to investigate the pathogenesis of co-infection with SARS-CoV-2

and Kp using a mouse model. We chose Kp for coinfection studies

based on its prevalence in multiple hospital reports (19, 20, 31) and

our patient cohort (Figure 1) as well as its potential for drug

resistance (18). We discovered that sublethal doses of Kp and

SARS-CoV-2 can be lethal to mice when co-infected (SARS-CoV-

2 followed by Kp). The mice exhibited severe clinical signs and

weight loss along with increased mortality after 2-4 days of Kp

infection. Histopathology demonstrated severe pneumonia along

with a large influx of neutrophils, macrophages, and innumerable

bacteria. Flow cytometric analysis also demonstrated a significant

increase in the neutrophil and inflammatory monocytes/

macrophage population.
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In the case of COVID-19, coinfection with other respiratory

viruses or bacteria can increase the risk of respiratory failure and

death (17). Furthermore, co-infection with SARS-CoV-2 and other

viruses may also result in changes in the way the body responds to

treatment. For example, studies have suggested that influenza virus

co-infection may interfere with the effectiveness of SARS-CoV-2

antiviral medications (32).

Gram-positive bacteria such as Streptococcus pneumoniae (Sp)

are commonly found in COVID-19 patients (33). Similarly, gram-

negative bacteria were detected in 64% of COVID-19 patients with

pulmonary bacterial infection (26), which highlights their potential

to cause secondary bacterial pneumonia. K. pneumoniae is a gram-

negative bacterium capable of causing various diseases, such as

pneumonia, urinary tract infections, and sepsis. It is often found in

healthcare settings where it can be transmitted through contact with

contaminated surfaces or medical equipment. Coinfection with

both SARS-CoV-2 and Kp has been shown to cause severe illness

(15, 19, 20, 31). The emergence of drug-resistant Carbapenemase-

producing Kp is a growing concern, with a high prevalence (34%) in

intensive care unit patients in Italian hospitals (19). Additionally,

there have been reports of patients hospitalized for SARS-CoV-2

infection who subsequently developed hypervirulent Kp strain

infection, resulting in fatal outcomes (20, 34). The global spread

of antimicrobial resistance Kp (20, 35) and frequent reports of

hospital-acquired infection (36, 37), underscores the need to study

Kp pathogenesis in the context of COVID-19.

Mouse models of co-infection are key to understand the complex

interactions between viruses, bacteria, and host innate and adaptive

immunity. Several pathogens, such as influenza virus and respiratory

syncytial virus (38), Mycobacteria (39), Human immunodeficiency

virus (40), and Streptococcus pneumoniae (41), have been studied for

co-infection with SARS-CoV-2. However, there are few animal

models developed to understand the pathogenesis of SARS-CoV-2
FIGURE 3

SARS-CoV-2 co-infected mice exhibit increased Kp propagation in the lungs. SARS-CoV-2 infected mice were coinfected with Kp or Kp-alone on
day 4 and lungs were collected on day 6 to examine the viral and bacterial loads. Bacterial count (A) and viral titers (B) in the lungs of respected
group are presented. Data is presented as mean ± SEM of 2 independent experiments (n = 6-11). For graph (A), the mice did not contain bacteria in
the lungs were assigned a random value below the level of detection (LoD). (C) Presence of Kp in the heart blood; 1 = present and 0 = absent
(n = 8). Y-axis represent individual mice in each group. Statistical significance was obtained with Welch’s test with *P < 0.05. ns, non significant.
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and coinfections (24, 25, 42, 43). Recent co-infection studies

demonstrated increased susceptibility and lethality due to Sp and

SARS-CoV-2 co-infection (24, 25). In these studies, mice showed

reduced survival rates due to increased bacterial loads in the lungs.

Notably, mortality was observed regardless of whether the SARS-

CoV-2 challenge occurred before or after Sp infection (24). The

increased bacterial levels after co-infection were associated with

reduced alveolar macrophages, making co-infection more severe

than either infection alone (24). Neutrophil and macrophage/

monocyte dysfunction have been reported in SARS-CoV-2
Frontiers in Virology 06
infections (44). These cells are at the forefront of an antibacterial

immune response; thus, dysfunctional phenotype in these cells

predisposes COVID-19 patients to secondary bacterial infections.

Neutrophils and monocytes isolated from critically ill SARS-CoV-2

patients failed to clear Sp and Sa (45), demonstrating impairment of

antibacterial function (46). These findings suggest that viral infection

can impair antibacterial defense and enhance bacterial load, and this

effect seems to be independent of whether the bacteria are gram-

positive or gram-negative (24, 25). Hence, we anticipate that the

dysfunctional phenotype of inflammatory cells may also contribute to
FIGURE 4

Neutrophil and inflammatory monocytes and macrophages (IMM) responses to coinfection. Representative FACS plots (A, D), quantification of
percent (B) and total neutrophils (C), percent CD11b+Ly6Chi IMMs (E) and total CD11b+Ly6Chi IMMs (F) in the lungs on day 6. Data were pooled
from 2 independent experiments with 3 to5 mice/group/experiment. **P ≤ 0.01, and ****P ≤ 0.001, by One-Way ANOVA. ns, non significant.
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the pathogenesis of SARS-CoV-2 and Kp coinfection, necessitating

further investigations to elucidate the underlying mechanistic basis.

Respiratory viruses can trigger a cytokine storm, which can

result in damage to the alveoli increasing leakage of fluid from the

vessel (47) as well as systemic effects of inflammation and damage to

other organs (48). In severe cases of SARS-CoV-2 pneumonia, 42%

patients had ARDS, leading to hypoxia (49). Individuals with severe

COVID-19 demonstrate interstitial pneumonia with alveolar

damage and hyaline membrane formation (50). We observed

rubbery firm lungs (gross pathology) with interstitial pneumonia,

lung consolidation, infiltration of mononuclear cells, perivascular
Frontiers in Virology 07
cuffing, and thickened alveolar septa in the lungs of SARS-CoV-2-

infected mice. These lesions were consistent with other mouse

models of SARS-CoV-2 infection (23, 51) indicating that our co-

infection model largely mimicked the lung pathology associated

with COVID-19. The absence of typical ARDS-like changes in the

SARS-CoV-2-only group may be attributed to two factors: firstly,

mice seldom exhibit hyaline membrane formation due to the

relatively shorter duration of the disease; secondly, this represents

a sublethal challenge, with the morphological features of the disease

varying based on the severity and duration of the infection.

Nevertheless, in the case of co-infection with Kp, the pathological
FIGURE 5

Lung pathology in co-infected mice: Photomicrographs of Lungs (A: Control, B: S-CoV-2, C: Kp, and D: S-CoV-2 +Kp at day 6 post-infection
demonstrating lung pathology (Hematoxylin and Eosin stain). (B) black arrow indicates perivascular cuffing and blank arrowhead indicates interstitial
pneumonia. (D) black arrowhead indicates neutrophil and blank arrow indicates intralesional bacteria. (E) Average of total lung pathology scores
from two board-certified pathologists, n = 3-8 mice per group. *P value < 0.05 based on an ANOVA with a Tukey-Kramer mean separation, S-CoV-
2 vs S-CoV-2 + Kp, Control vs S-CoV-2 + Kp.
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alterations became notably severe with the lungs exhibiting a

substantial presence of inflammatory cells, along with an

abundance of fibrin, numerous bacteria, and necrosis.

In summary, we have developed a mouse model of co-infection

with SARS-CoV-2 and Kp and our study provides insights into the

disease pathogenesis. The findings highlight the significance of

monocyte and neutrophil dysfunction in secondary bacterial

infections, leading to increased lung pathology and mortality.

Strategies aimed at restoring the antibacterial activity of these

cells may hold promise in preventing clinical complications

associated with secondary bacterial infections in COVID-19

patients. Further research is needed to uncover the underlying

mechanisms of COVID-19 severity following co-infection and

develop targeted therapeutic approaches to mitigate the impact of

secondary bacterial infections in COVID-19 patients.
Experimental procedures

Respiratory pathogens PCR array

Deidentified and leftover SARS-CoV-2 positive nasopharyngeal

swabs (n = 50) collected from human patients (IRB-20-357-STW)

received at the Oklahoma Animal Disease Diagnostic Laboratory

(OADDL) for COVID-19 testing between April 2020 – July 2020

were used in this study. Total RNA was extracted from these patient

samples using the KingFisher Flex platform (Thermo Fisher

Scientific, MA) and a commercially available kit (MagMax viral/

pathogen nucleic acid isolation kit; Thermo Fisher Scientific)

following the FDA Emergency Use Authorization protocol

provided by the manufacturer. A commercially available

multiplex real-time PCR-based kit (Fast Track Diagnostics,

Sliema, Malta) was used for detecting other respiratory pathogens.

The list of pathogens includes influenza A virus; influenza B virus;

influenza C virus; influenza A (H1N1) virus (swine-lineage); human

parainfluenza viruses 1, 2, 3, and 4; human coronaviruses NL63,

229E, OC43, and HKU1; human metapneumoviruses A/B; human

rhinovirus; human respiratory syncytial viruses A/B (HRSV);

human adenovirus; enterovirus; human parechovirus; human

bocavirus; Pneumocystis jirovecii; Mycoplasma pneumoniae;

Chlamydophila pneumoniae; Streptococcus pneumoniae;

Haemophilus influenzae B; Staphylococcus aureus; Moraxella

catarrhalis; Bordetella spp.; Klebsiella pneumoniae; Legionella

pneumophila/longbeachae; Salmonella spp. The PCR results were

interpreted as detected or non-detected.
Bacteria

K. pneumoniae subspecies pneumoniae (Schroter) Trevisan (Cat

#8045 ATCC, Manassas, VA) was used for mice infection studies.

Bacteria were grown in nutrient broth (BD, Franklin Lakes, NJ) to

an exponential growth curve (OD600 = 0.6). The bacterial stock was

diluted in phosphate-buffered saline (PBS) pH 7.4 (Gibco,

Evansville, IN) and prepared to a final range of 100-200 colony-

forming units (CFU) per mouse (in 50 µl) and transported on ice
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until inoculation. After mice infection, 50 mL of remaining stock

was plated on nutrient agar (NA) (BD, Franklin Lakes, NJ) and

grown at 37°C overnight to obtain an estimate of bacteria delivered

to each mouse.
Virus

Mouse-adapted (MA) SARS-CoV-2 strain obtained from Dr.

Stanley Perlman (University of Iowa) was used in this study. The

virus was propagated in Vero E6 TMPRSS2 T2A ACE2 cells (Cat

#NR-54970 BEI, Manassas, VA) which were maintained in

Dulbecco’s Modified Eagle’s Medium supplemented with 10%

fetal bovine serum (GIBCO, Evansville, IN) and 10 µg per mL

puromycin (InviovGen, San Diego, CA) at 37°C in a humidified 5%

CO2 incubator. The infected cells were clarified by centrifuging at

2000 rpm for 5 minutes. Serial dilutions were prepared from

supernatants and 100 µl was added to the Vero E6 cell (ATCC,

CRL-1586) monolayers for 1 hour with gentle agitation every 10

minutes. After an hour of incubation, the media was removed and

replaced with 1 ml of overlay composed 2.4% Avicel (Du Pont),

2XDMEM (Millipore Corp., Burlington, MA), and DMEM with a

10% FBS (Gibco, Evansville, IN). The ratio of each component was

1:1:1. Cells were incubated at 37°C in a humidified 5% CO2

incubator for 3 days. After 3 days of incubation, Avicel overlay

was removed, and cells were fixed with 10% formalin for 5 minutes

and stained with 0.05% crystal violet to visualize plaques. All tests

were performed in duplicate. The viral load in mouse lungs was

estimated using a similar plaque assay. The left lung lobe was

homogenized in 500 mL of Opti-MEM using a bead mill and

centrifuged at 2000 rpm for 5 minutes. Ten-fold serial dilutions

were used for plaque assay. To prevent the growth of Kp in the Vero

E6 cells during plaque assay, 40 mg/mL of Gentamicin (GIBCO,

Evansville, IN) was used during virus incubation and in

overlay media.
Mice studies

Eight to 9-weeks-old female BALB/cJ mice were purchased from

Jackson Laboratories (Jackson Research Laboratories, Bar Harbor,

ME). Mice were housed in biosafety cages in an animal BSL-3 facility

at Oklahoma State University. All the experiments were approved by

the Oklahoma State University Institutional Animal Care and Use

Committee (Protocol #20-68). Mice were divided into the following

groups: control (PBS), S-CoV-2 (S-CoV-2), K. pneumoniae (Kp), and

S-CoV-2+ K. pneumoniae (S-CoV-2 + Kp). On day 0 under

isoflurane anesthesia, the S-CoV-2 and S-CoV-2 + Kp groups were

intranasally inoculated with 250–1000 PFU of MA-SARSCoV-2,

whereas the control and Kp groups were administered 50 mL PBS.

Days post infection (dpi) were based on SARS-CoV-2 inoculation

day. On 4 dpi, the Kp and S-CoV-2 + Kp groups were inoculated

intranasally with 100–135 CFU of Kp under isoflurane anesthesia.

Mice were weighed and scored daily for clinical signs for 12 dpi.

Clinical score parameters were: 1 = normal skin and active in the cage

before handling; 2 = ruffled fur and alert; 3 = hunched posture, skin
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tent and decreased resistance to handling; 4 = piloerection with severe

skin tent, only moves when touched; 5 = failure to right itself,

nonresponsive. Mice were humanely euthanized if they lost more

than 25% of their starting weight or if they had a clinical score of 4 or

more. Survival was defined as an animal not losing 25% of the starting

body weight, sick, or dead. Animals assigned a day for sacrifice were

included in the count if they fit the criteria. Necropsies were

performed on sick mice and mice that were assigned for sample

collection. The lung lobes were collected for histopathology, flow

cytometry, and bacterial, and viral load analysis.
Determination of bacterial load in lungs
and heart blood

Approximately 10 mL of heart blood was collected aseptically

and plated directly on NA plates during necropsy. The plates were

incubated at 37°C and 5% CO2 overnight. The left lung was

homogenized using a bead mill (Fisher, Hampton, NH) in 500 mL
of Opti-MEM (Gibco, Evansville, IN). Ten microliters (in triplicate)

of 10-fold serially diluted lung homogenates were plated on NA

plates. The plates were incubated overnight at 37°C and 5% CO2

and CFUs were counted.
Flow cytometry

The phenotypic profile of lung-infiltrating immune cells was

analyzed in the left lung lobe. For this, lungs were treated with

collagenase-D and DNAse1, and isolated cells were surface-

immunolabeled for alveolar macrophages (AM) (CD45+ CD11b-

CD11c+ SiglecF+), neutrophil (CD45+ CD11b+ Ly6Ghi),

inflammatory monocyte (CD45+ CD11b+ Ly6chi), dendritic cell

(CD45+ CD11c+ MHCII+), natural killer cell (CD45+ CD3−

NKP46+), and T-cell markers, and analyzed by flow cytometry.

For cell surface staining, lung cells were labeled with the following

fluorochrome-conjugated monoclonal antibodies: PECy7 a-CD45
(clone: 30-F11); FITC a-Ly6G (clone: 1A8, BD Biosciences); PE/

PerCp-Cy5.5 a-Ly6C (clone: AL-21 [BD Biosciences or clone:

HK1.4); V450 a-CD11b (clone: M1/70); APC a-F4/80 (clone:

BM8) (unless otherwise stated, all from eBioscience). The labeling

of the cell surface and intracellular markers was performed as

previously (52). All fluorochrome-conjugated antibodies were

used at a final concentration of 1:200 (antibody: the FACS buffer),

except for FITC-labeled antibodies used at 1:100 concentration.
Histopathology

The lung lobes were perfused with 200 µl of 10% formalin and

stored for 72 hours to inactivate the virus. Lungs were then trimmed

and processed for hematoxylin and eosin (H&E) staining.

Histopathological lesions were scored by two American College of

Veterinary Pathology Board-certified pathologists in a blinded

fashion. One H&E section per mouse was used for analysis. The
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lesions categories scored included bronchiolitis, thrombosis, fibrin,

necrosis, interstitial pneumonia, edema, and hemorrhages. The

lesions were scored on a scale of 0-4; 0 = no lesion, 1 =

minimum, 2 = mild, 3 = moderate, and 4 = severe. The sum of

all lesion category scores for each mouse was used for data plotting

and analysis.
Data analysis

The data for the body weight was collected over time, therefore,

we employed a repeated measures design. Before comparing the

significance of mean body weight percentages and clinical score

changes for each treatment group using ANOVA (Analysis of

variance), we carefully examined the variance-covariance

structure of the dataset. An autoregressive variance-covariance

structure was recommended as it yielded smaller AIC (Akaike

Information Criterion), AICC (Corrected AIC for smaller

samples), BIC (Bayesian Information Criterion), and other

indicator values. The Tukey-Kramer mean separation technique

was used to determine the significant differences in body weight and

Kruskal-Wallis test for clinical score changes. Analyses were

performed using SAS 9.4 (Cary, NC) and GraphPad Prism 9 (San

Diego, CA). Respective statistical tests are mentioned in the

corresponding figure legends.
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