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Plotting the major proteins of
borealpox virus

Sunil Thomas*

Lankenau Institute for Medical Research, Wynnewood, PA, United States

In an era marked by rapid environmental transformations, the viability of
numerous species hinges crucially on their ability to navigate and adjust to
shifting climatic conditions through migration. Yet, amidst this natural quest
for survival, a consequential and often overlooked consequence emerges: the
inadvertent transportation of a diverse array of parasites and pathogens
across landscapes. This phenomenon poses a substantial and tangible
threat to global health, particularly in the wake of recent outbreaks and
pandemics fueled by zoonotic viruses, which leap from animals to humans.
These viruses, originating in animals but capable of infecting humans, serve as
poignant reminders of the intricate relationship between human and wildlife
health, and the potential dangers of disregarding this delicate balance. In
2015, the borealpox virus (BRPV) [formerly Alaskapox virus (AKPV)], classified
as an Orthopoxvirus, was first identified in a woman living near Fairbanks,
Alaska. The BRPV causes borealpox disease. The first recorded fatality
attributed to BRPV infection occurred in January 2024. Current evidence
suggests that BRPV primarily targets small mammals, particularly red-backed
voles and shrews, as evidenced by sampling efforts in the Fairbanks North Star
Borough. However, it is likely that the virus is more widespread among
Alaska’s small mammal populations, potentially leading to undiagnosed
human infections. Additionally, domestic pets, such as cats and dogs, may
also contribute to the transmission of the virus. To date, no instances of
human-to-human transmission have been documented, but the lack of
diagnostics and vaccines for BRPV remains a concerning gap. This paper
aims to address this issue by reporting the structure and epitopes of the major
proteins of BRPV. This data could serve as a foundation for the development
of novel diagnostics and vaccines to combat BRPV, thereby mitigating its
impact on both human and animal populations.
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Introduction

The Orthopoxvirus is a genus of viruses within the Poxviridae
family, notorious for causing several significant diseases in humans
and animals. Among the most notable diseases caused by
Orthopoxvirus include smallpox, cowpox, camelpox, and
monkeypox. These diseases can indeed be debilitating, causing
severe illness and potentially fatal outcomes in some cases (1).
Orthopoxviruses are identified by their sizable brick-shaped viral
particles, housing a double-stranded DNA genome of roughly
200,000 base pairs (2).

The diseases caused by Orthopoxvirus are debilitating not only
because of their acute symptoms but also due to their potential for
long-term complications, including scarring, blindness, and
secondary infections (3). The eradication of smallpox through
vaccination campaigns stands as one of the greatest achievements
in public health, but vigilance against other Orthopoxviruses
remains important to prevent potential outbreaks and mitigate
their impact on human and animal populations (4).

Instances of human infection by orthopoxviruses are being
increasingly reported, partly due to the discontinuation of
smallpox vaccination and the subsequent decline in population-
wide immunity. In 2015, the borealpox virus (BRPV) [formerly
Alaskapox virus (AKPV)] (name changed on March 27, 2024) (5),
classified as an Orthopoxvirus, was first identified in a woman
residing near Fairbanks, Alaska (6). The first recorded fatality
attributed to BRPV infection occurred in January 2024 (7).

BRPV is genetically akin to other orthopoxviruses such as
smallpox, cowpox, and monkeypox (mpox). The BRPV has a
genome of 210,797 bp, containing 206 predicted open reading
frames (8). Presently, available evidence indicates that the BRPV
primarily targets small mammals, particularly red-backed voles and
shrews, as evidenced by sampling initiatives in the Fairbanks North
Star Borough. Nonetheless, it is probable that the virus is more
widespread among Alaska’s small mammal populations, potentially
leading to undiagnosed human infections. Domestic pets, including
cats and dogs, may also contribute to the transmission of the virus.
To date, no instances of human-to-human transmission have been
documented [Borealpox virus (9): https://health.alaska.gov/dph/
Epi/id/Pages/Borealpox.aspx)].

Typical symptoms of BRPV encompass one or more skin
lesions (bumps or pustules), in addition to swollen lymph nodes
and joint and/or muscle pain. Immunocompromised individuals
may face an elevated risk of developing severe illness if infected
(https://health.alaska.gov/dph/Epi/id/Pages/Alaskapox.aspx).

The major proteins of BRPV include surface glycoprotein,
hemagglutinin, major membrane protein, EEV membrane
glycoprotein, trimeric virion coat protein, core protein (8). As yet
the structure of the proteins of BRPV is not determined. Using
bioinformatic tools we determined the structure of the major
proteins of BRPV. This paper describes the structure and epitopes
of the major proteins of BRPV. Our study could lead to
development of diagnostics and vaccines for borealpox virus.
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Materials and methods
Protein sequence of borealpox virus

The sequences of the BRPV were downloaded from the NCBI
(https://www.ncbi.nlm.nih.gov/protein/) protein database. The
BRPV proteins, accession numbers and functions are shown in
Table 1.

Protein modeling

A thorough understanding of biological systems relies on
comprehending how protein complexes and networks function,
which necessitates a detailed exploration of protein interactions and
the overall quaternary structure. Protein plots, also known as snake
diagrams, provide a 2-D representation of a protein sequence,
offering insights into properties such as secondary structure (10).
To generate a protein’s snake diagram model, we utilized Protter
(11) ver. 1.0 (http://wlab.ethz.ch/protter), an interactive web-based
application (12-15). Protter facilitates the integration and
visualization of annotated and predicted protein sequence features
alongside experimental proteomic evidence for peptides and post-
translational modifications onto the protein’s transmembrane
topology. Users can select from various annotation sources,
incorporate their own proteomics data files, choose suitable
peptides for targeted quantitative proteomics applications, and
export high-quality illustrations (12).

For the three-dimensional homology modeling we employed
the iterative threading assembly refinement [I-TASSER (16)]
(https://zhanglab.ccmb.med.umich.edu/I-TASSER/) and Phyre2
(17) (ver. 2.0) (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?
id=index) with default settings. The protein sequences of BRPV
were entered in FASTA format (13, 14).

Phobius (18) was used for the prediction of transmembrane
topology and signal peptides from the amino acid sequence of
proteins (https://phobius.sbc.su.se/) (15).

The B-cell epitope and T -cell epitope (MHC-II allele, HLA-
DRB1) was predicted using IEDB Analysis Resource (19)
(http://tools.iedb.org).

Sequence alignment is a pivotal technique utilized in
bioinformatics to elucidate the relationships between different
protein sequences. It involves arranging these sequences in a
manner that highlights regions of similarity, thereby uncovering
potential functional, structural, or evolutionary connections among
them. By aligning sequences, researchers can discern conserved
motifs, elucidate evolutionary pathways, and infer the functional
significance of specific residues or domains within proteins. This
process serves as a fundamental step in comparative genomics,
aiding in the understanding of genetic variation, protein function,
and evolutionary dynamics across diverse organisms (20). The
BRPV proteins underwent a comparative analysis with variola
proteins through the UniProt platform (21) (uniport.org/align).

frontiersin.org


https://health.alaska.gov/dph/Epi/id/Pages/Borealpox.aspx
https://health.alaska.gov/dph/Epi/id/Pages/Borealpox.aspx
https://health.alaska.gov/dph/Epi/id/Pages/Alaskapox.aspx
https://www.ncbi.nlm.nih.gov/protein/
http://wlab.ethz.ch/protter
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
https://phobius.sbc.su.se/
http://tools.iedb.org
https://doi.org/10.3389/fviro.2024.1451810
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org

Thomas

10.3389/fviro.2024.1451810

TABLE 1 The borealpox virus (BRPV) major proteins, accession numbers and its function.

BRPV Protein

Accession Number

Function

Hemagglutinin QED21144 Attachment of virus to cell
Surface glycoprotein QED21095 Virus entry into cell, immunomodulation
IMV membrane protein QED21174 Host cell fusion
EEV membrane glycoprotein QED21170 Virus dissemination, immunomodulation
Major membrane protein QED21171 Attachment of virus to cell
Membrane protein QED21184 Virus entry and host cell fusion
CD47-like putative membrane protein QED21182 Invasion of host immune response
Major envelope protein QED21148 Virus entry and immune evasion
Trimeric virion coat protein QED21128 Involved during virus assembly
Core protein QED21221 Protects viral DNA
EEV maturation protein QED21115 Virus dissemination, immunomodulation
A-type inclusion protein QED21098 Protect against environmental stress
A6 protein QED21149 Virion morphogenesis
mutT-like protein QED21195 Prevention of A-G mispair during replication
Kelch-like protein QED21132 Virus-host interaction
Schlafen-like virulence protein QED21131 Viral virulence
DNA polymerase QED21099 Replication of viral genome

The predicted solvent accessibility was determined using
NetSurfP-3.0 (22) (https://services.healthtech.dtu.dk/services/
NetSurfP-3.0/). NetSurfP 3.0 is an advanced tool for predicting
solvent accessibility, secondary structure, structural disorder, and
backbone dihedral angles for individual residues in an amino acid
sequence. This latest version leverages recent advancements in pre-
trained protein language models, resulting in a significant reduction
in runtime—improving it by two orders of magnitude compared to
its predecessor—while maintaining comparable prediction
accuracy (23).

NetSurP 3.0 estimates surface accessibility, secondary structure
elements, intrinsic disorder, and the phi (¢) and psi (y) dihedral
angles. By analyzing the amino acid sequence, the server provides
insights into how the protein may fold and function in a biological
context. Surface accessibility predictions help identify which
residues are exposed to the solvent, indicating potential
interaction sites or functional areas. The secondary structure
predictions categorize regions of the protein into alpha-helices,
beta-strands, and coil structures, offering a clearer picture of the
protein’s overall architecture (23).

Additionally, the server assesses intrinsic disorder, which is
crucial for understanding regions of the protein that may lack a
fixed or stable structure but still play important roles in molecular
interactions and signaling pathways. The phi and psi dihedral angle
predictions give detailed information about the backbone
conformation, helping researchers visualize the three-dimensional
arrangement of the protein (23).
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Results

The Orthopoxvirus BRPV is characterized by its substantial size,
with a repertoire of 206 unique proteins. Despite its significance, the
structural details and epitopes of these proteins remain elusive. In
this research endeavor, we aim to elucidate the structure and
epitopes of the key proteins within BRPV. By unraveling these
crucial aspects, we anticipate opening new avenues for the
development of innovative diagnostics and vaccines tailored
specifically for BRPV. This study holds promise for advancing
our understanding of BRPV pathogenesis and fostering strategies
for effective disease management and control.

The BRPV structural proteins include hemagglutinin, surface
glycoprotein, IMV membrane protein, major membrane protein,
membrane protein, EEV membrane glycoprotein, CD47-like
putative membrane protein and major envelope protein. The
non-structural proteins include trimeric virion coat protein, DNA
polymerase, EEV maturation protein, A-type inclusion protein,
Kelch-like protein, Schlaen-like virulence protein, A6 protein,
core protein and mutT-like protein.

Hemagglutinin

Orthopoxviruses encode a functional hemagglutinin, a protein
that facilitates the binding of viruses to host cell receptors, although
it’s deemed non-essential for virus growth in cell culture (24). The
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hemagglutinin expressed on the surface of these viruses plays a
crucial role in their interaction with host cells (25). Utilizing
bioinformatics tools such as Protter and Phobius, modeling
studies have revealed that the hemagglutinin of BRPV is a
transmembrane protein (Figures 1A, B). The predicted protein
structure of BRPV hemagglutinin (ribbon diagram) is shown
in Figure 1C.

Furthermore, through predictive analysis using the Immune
Epitope Database (IEDB), B-cell epitopes of BRPV hemagglutinin
have been identified, underlined in black; the most promiscuous and
high affinity binders to MHC-II allele HLA-DRBI are shown shaded
in yellow. The high affinity MHC-II binders are the most probable T-
cell epitopes. Surprisingly, data unveiled that over 80% of the BRPV
hemagglutinin protein comprises epitopes, implying its potential
significance in immune recognition and response (Figure 1D).

A comparative analysis of the amino acid sequences between
the hemagglutinins of BRPV and Variola viruses showed a sequence
identity of 57.55%. This finding shed light on the evolutionary
relationships and functional similarities/differences between these
viral strains, providing valuable insights into their pathogenic
mechanisms and potential antigenic properties (Figure 1E).

10.3389/fviro.2024.1451810

Relative solvent accessibility tends to differentiate between
exposed and buried regions, often favoring the latter. This bias
results in higher prediction accuracy for buried regions compared to
exposed ones. Exposed regions may be more variable and subject to
environmental influences, which complicates predictions. In
contrast, the more stable nature of buried regions allows for more
reliable assessments, leading to better accuracy in predictive models
(26). The predicted solvent accessibility of BRPV hemagglutinin is
shown in Supplementary Figure SI.

Surface glycoprotein

The surface glycoprotein is the largest structural protein of
BRPV. They have a signal peptide at the N-terminal and a
transmembrane domain near the C-terminal (Figures 2A, B). The
predicted protein structure of BRPV surface glycoprotein (ribbon
diagram) is shown in Figure 2C. The major B-cell and T-cell epitope
is shown in Figure 2D. The comparative analysis of the amino acid
sequences between the surface glycoprotein of BRPV and Variola
viruses showed a sequence identity of 82.06% (Figure 2E). The
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The topology of hemagglutinin of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using the software Phyre2.
(D) The B-cell (underlined) and T-cell epitope (yellow shaded). (E) Alignment of BRPV hemagglutinin (QED21144) and Variola hemagglutinin

(AAY19513) shows a percentage identity of 57.55%.
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The topology of surface glycoprotein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using I-Tasser. (D) The
B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV surface glycoprotein. (E) Alignment of surface glycoprotein of BRPV (QED21095) and
Variola (DAA80705) shows a percentage identity of 82.06%.
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predicted solvent accessibility of BRPV surface glycoprotein is
shown in Supplementary Figure S2.

IMV membrane protein

The less complex of the two infectious variants of the poxvirus,
known as the intracellular mature virus (IMV), demonstrates a
lower efficiency in infecting cells compared to its counterpart, the
extracellular enveloped virus (EEV). This discrepancy in infectivity
between IMV and EEV highlights the diverse strategies employed
by the virus to exploit host cells for replication and dissemination.
While IMV operates predominantly within the confines of host
cells, its capacity for efficient cell-to-cell spread is somewhat limited.
In contrast, EEV, encased in a lipid envelope derived from host cell
membranes, possesses enhanced capabilities for intercellular
transmission, facilitating its dissemination throughout the host
organism. This distinction underscores the intricate interplay
between viral morphology and infectivity dynamics, elucidating
the multifaceted nature of poxvirus pathogenesis (27). Our study
demonstrated that the IMV membrane protein is a transmembrane
protein as determined by Protter and Phobius (Figures 3A, B). The
predicted protein structure of BRPV IMV membrane protein
(ribbon diagram) is shown in Figure 3C. The epitopes of the
protein were found in the extracellular domain (Figure 3D). The
comparative analysis of the amino acid sequences between the IMV
membrane protein of BRPV and Variola viruses showed a sequence

10.3389/fviro.2024.1451810

identity of 82.51% (Figure 3E). The predicted solvent accessibility of
BRPV IMV membrane protein is shown in Supplementary
Figure S3.

EEV membrane glycoprotein

Viral glycoproteins play a pivotal role as a key constituent of the
outermost envelope of viruses, engaging actively in essential phases
of the viral lifecycle. These glycoproteins govern the intricate
relationship between viruses and their hosts, primarily through
interactions with host cell receptors. Consequently, alterations such
as deletion or mutation of these glycoproteins, present in the viral
envelope, can significantly affect crucial processes including host
cell entry, host range determination, and pathogen recognition. It is
noteworthy that while extracellular enveloped viruses (EEVs) have
surface proteins extensively adorned with sugar molecules
(glycosylation), this feature is absent in the surface proteins of
intracellular mature viruses (IMVs). This distinction underscores
differing strategies employed by viruses to interact with their host
environments. The absence of glycosylation in IMV surface
proteins suggests potential differences in their mode of interaction
with host cells compared to glycosylated counterparts in EEVs.
Such distinctions may influence the efficiency and specificity of viral
entry, as well as the range of host cells susceptible to infection.
Moreover, variations in glycosylation patterns between EEVs and
IMVs could impact how these viruses are recognized and targeted
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The topology of IMV membrane protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The
B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV IMV membrane protein. (E) Alignment of membrane protein of BRPV (QED21174) and
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by the host immune system (28). Bioinformatics analysis
demonstrated that the EEV membrane glycoprotein of BRPV is a
transmembrane protein as determined by Protter and Phobius
(Figures 4A, B). They have a signal peptide at the N-terminal and
a transmembrane domain near the C-terminal. The predicted
protein structure of BRPV EEV membrane glycoprotein (ribbon
diagram) is shown in Figure 4C. The epitopes of the protein were
found in the extracellular domain (Figure 4D). The comparative
analysis of the amino acid sequences between the EEV
membrane glycoprotein of BRPV and Variola viruses showed a
sequence identity of 58.6% (Figure 4E). The predicted solvent
accessibility of BRPV EEV membrane glycoprotein is shown in
Supplementary Figure S4.

Major membrane protein

Bioinformatics analysis revealed that the major membrane
protein of BRPV is a transmembrane protein, as confirmed by
Protter and Phobius (Figures 5A, B). This protein possesses a
signal peptide located at the N-terminal and a transmembrane
domain in close proximity to the C-terminal region. The predicted
protein structure of BRPV major membrane protein (ribbon
diagram) is shown in Figure 5C. Notably, epitopes of the protein
were identified within the extracellular domain (Figure 5D).
Alignment of major membrane protein of BRPV and Variola

Frbiun posterior probbilities for UNWEED

10.3389/fviro.2024.1451810

shows a percentage identity of 80.13% (Figure 5E). The predicted
solvent accessibility of BRPV major membrane protein is shown in
Supplementary Figure S5.

Membrane protein

Membrane proteins of the Vaccinia virus serve as promising
candidates for Orthopoxvirus subunit vaccines and represent
potential targets for therapeutic antibodies. Bioinformatics
analysis revealed that the membrane protein of BRPV is a
transmembrane protein, as confirmed by Protter and Phobius
(Figures 6A, B). The predicted protein structure of BRPV
membrane protein (ribbon diagram) is shown in Figure 6C. The
epitopes of the membrane protein are depicted in Figure 6D. The
comparative analysis of the amino acid sequences between the
membrane protein of BRPV and Variola viruses showed a high
sequence identity of 97.07% (Figure 6E). The predicted solvent
accessibility of BRPV membrane protein is shown in
Supplementary Figure S6.

CD47-like putative membrane protein

Some of the poxviruses gene expresses a five-membrane
spanning cell surface protein with significant amino acid
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The topology of EEV membrane glycoprotein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2.
(D) The B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV EEV membrane glycoprotein. (E) Alignment of EEV membrane glycoprotein
of BRPV (QED21170) and Variola (NP_042219) shows a percentage identity of 58.6%.
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The topology of major membrane protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2.
(D) The B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV major membrane protein. (E) Alignment of major membrane protein of BRPV

(QED21171) and Variola (APR62767) shows a percentage identity of 80.13%.

homology to the cellular CD47 proteins. The BRPV has a five-
membrane spanning cell surface CD47-like putative membrane
protein (Figures 7A-C). The protein has only a single B-cell
epitope (Figure 7D). The comparative analysis of the amino acid
sequences between the CD47-like putative membrane protein of
BRPV and Variola virus showed a sequence identity of 87.64%
(Figure 7E). The predicted solvent accessibility of BRPV CD47-like
putative major membrane protein is shown in Supplementary
Figure S7.

Major envelope protein

The major envelope protein of poxvirus is a major target of
neutralizing antibodies (29). The major envelope protein of BRPV is
a non-transmembrane structural protein as determined by Protter
and Phobius (Figures 8A, B). The predicted protein structure of
BRPV major envelope protein (ribbon diagram) is shown in
Figure 8C. The B and T-cell epitopes of the major envelope
protein are shown in Figure 8D. The comparative analysis of the
amino acid sequences between the major envelope protein of BRPV

Frontiers in Virology 08

and Variola virus showed a sequence identity of 88.98% (Figure 8E).
The predicted solvent accessibility of BRPV major envelope protein
is shown in Supplementary Figure S8.

Trimeric virion coat protein

Trimeric virion coat protein is a non-structural capsid protein
of BRPV. Analysis of the sequence of the trimeric virion coat
protein by Protter and Phobius confirmed that the protein is a
non-transmembrane protein. The comparative analysis of the
amino acid sequences between the trimeric virion coat protein of
BRPV and Variola virus showed a sequence identity of 94.74%
(Figure 9). The predicted solvent accessibility of BRPV trimeric
virion coat protein is shown in Supplementary Figure S9.

Core protein

The core of the poxvirus contains a peanut shaped shell
encompassing the genetic material-DNA and other proteins.
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The topology of membrane protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The B-cell
(underlined) and T-cell epitope (yellow shaded) of BRPV membrane protein. (E) Alignment of membrane protein of BRPV (QED21184) and Variola

(ABF25626) shows a percentage identity of 97.07%.

Bioinformatics analysis by Protter and Phobius confirmed that the
core is a non-transmembrane protein (Figures 10A, B). The
predicted protein structure of BRPV core protein (ribbon
diagram) is shown in Figure 10C. The B and T-cell epitopes of
the core protein are shown in Figure 10D. The amino acid
comparison between BRPV and Variola core protein show
sequence identity of 90.48% (Figure 10E). The predicted solvent
accessibility of BRPV core protein is shown in Supplementary
Figure S10.

EEV maturation protein

The EEV maturation protein is a non-structural non-
transmembrane protein as confirmed by Protter and Phobius
(Figures 11A, B). The predicted protein structure of BRPV EEV
maturation protein (ribbon diagram) is shown in Figure 11C. The B
and T-cell epitopes of the EEV maturation protein are shown in
Figure 11D. The amino acid comparison between BRPV and
Variola EEV maturation protein show sequence identity of
89.73% (Figure 11E). The predicted solvent accessibility of BRPV
EEV maturation protein is shown in Supplementary Figure S11.

Frontiers in Virology

A-type inclusion protein

The gene of A-type inclusion protein is used to distinguish
members of orthopoxviruses by PCR (30). Protter and Phobius
predicted A-type inclusion as a non-transmembrane protein
(Figures 12A, B). The predicted protein structure of BRPV A-type
inclusion protein (ribbon diagram) is shown in Figure 12C. The B-
cell epitope covered more than 80% of the protein sequence
(Figure 12D). The amino acid comparison between BRPV and
Variola A-type inclusion protein show sequence identity of 73.51%
(Figure 12E). The predicted solvent accessibility of BRPV A-type
inclusion protein is shown in Supplementary Figure S12.

A6 protein

The A6 protein of poxvirus is a key member of the viral
membrane assembly proteins and is an essential factor for virion
morphogenesis (31). The Protter, Phobius and Phyre2 structure of
A6 protein is shown in Figures 13A, B. The predicted protein
structure of BRPV A6 protein (ribbon diagram) is shown in
Figure 13C. The B and T-cell epitopes of the A6 protein are
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The topology of CD47-like putative membrane protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using
Phyre2. (D) The B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV CD47-like putative membrane protein. (E) Alignment of CD47-like

putative membrane protein of BRPV (QED21182) and Variola (ABF27737) shows a percentage identity of 87.64%.
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The topology of major envelope protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The
B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV major envelope protein. (E) Alignment of major envelope protein of BRPV

(QED21148) and Variola (ABF24404) shows a percentage identity of 88.98%.
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FIGURE 9

The topology of trimeric virion coat protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The
B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV trimeric virion coat protein. (E) Alignment of trimeric virion coat protein of BRPV
(QED21128) and Variola (DAA80609) shows a percentage identity of 94.74%.

shown in Figure 13D. The amino acid comparison between BRPV
and Variola A6 protein show sequence identity of 93.82%
(Figure 13E). The predicted solvent accessibility of BRPV A6
protein is shown in Supplementary Figure S13.

mutT-like protein

MutT is known as a mutator gene because mutations within it
specifically increase the rate of AT: GC tranversions (32). The
Protter, Phobius and Phyre2 structure of mutT-like protein is
shown in Figure 14. The amino acid comparison between BRPV
and Variola mutt-like protein show sequence identity of 95.55%
(Figure 14E). The predicted solvent accessibility of BRPV mutT-like
protein is shown in Supplementary Figure S14.
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Kelch-like protein

Kelch-like protein genes typically exist in multiple, divergent,
and occasionally fragmented forms, situated in variable and
nonessential regions near genomic termini. This positioning
suggests their involvement in virus-host interactions. Despite
maintaining domain structure, there is generally low amino
acid identity between poxviral and cellular kelch-like proteins.
Studies exploring the function of poxviral kelch-like genes in
virus replication and pathogenesis have primarily focused on
orthopoxviruses. Deletion of single or multiple kelch-like genes
in these viruses has been shown to impact factors such as lesion
size, inflammatory cell infiltration, virulence in mouse models, as
well as vascularization and virus yield in chorioallantoic
membrane infection models (33). These findings suggest a
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FIGURE 10

The topology of core protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The B-cell
(underlined) and T-cell epitope (yellow shaded) of BRPV core protein. (E) Alignment of core protein of BRPV (QED21221) and Variola (UXO31088)

shows a percentage identity of 90.48%.

potential role for kelch-like genes in poxvirus virulence and host
range, possibly through the modulation of inflammatory
responses (33). The Protter, Phobius and Phyre2 structure of
kelch-like protein is shown in Figure 15. The amino acid
comparison between BRPV and Variola kelch-like protein show
sequence identity of only 16.92% (Figure 15E). The predicted
solvent accessibility of BRPV kelch-like protein is shown in
Supplementary Figure S15.

Schlafen-like virulence protein

Schlafen-like virulence protein of poxviruses is involved in
virulence of the virus (34). The Protter, Phobius and Phyre2
structure of schlafen-like virulence protein is shown in
Figures 16A, B. The predicted protein structure of BRPV
Schlafen-like virulence protein (ribbon diagram) is shown in
Figure 16C. The B and T-cell epitopes of the Schlafen-like
virulence protein are shown in Figure 16D. Gubser et al. (34)
reported that the N-terminus of the protein was more active
compared to the other regions. The predicted solvent accessibility
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of BRPV schlafen-like virulence protein is shown in Supplementary
Figure S16.

DNA polymerase

Poxvirus DNA synthesis can usually be detected within 2 hours
after infection and occurs in the cytoplasm. Proteins crucial for
DNA synthesis in poxviruses comprise a 117-kDa polymerase, a
helicase-primase complex, an uracil DNA glycosylase, a
processivity factor, a single-stranded DNA-binding protein, a
protein kinase, and a DNA ligase (35). The DNA polymerase of
the poxvirus, coded by the E9L gene, falls under the B family of
replicative polymerases. It possesses essential polymerase and 3'-5
exonuclease activities crucial for sustaining virus replication (36).
The Protter, Phobius and Phyre2 structure of kelch-like protein is
shown in Figures 17A, B. The predicted protein structure of BRPV
DNA polymerase (ribbon diagram) is shown in Figure 17C. The B
and T-cell epitopes of the DNA polymerase are shown in
Figure 17D. The amino acid comparison between BRPV and
Variola DNA polymerase show sequence identity of 96.42%
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FIGURE 11

The topology of EEV maturation protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The
B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV EEV maturation protein. (E) Alignment of EEV maturation protein of BRPV (QED21115)

and Variola (APR62774) shows a percentage identity of 89.73%.

(Figure 17E). The predicted solvent accessibility of BRPV Dna
polymerase is shown in Supplementary Figure S17.

Discussion

Climate change plays a significant role in the emergence and
spread of zoonotic diseases, which are infections that can be
transmitted from animals to humans. As global temperatures rise,
patterns of precipitation shift, and extreme weather events become
more frequent, the dynamics of infectious diseases are altered in
complex ways. The complex interplay between environmental
factors, human activities, and ecological dynamics creates
conditions that facilitate the transmission of these diseases. Climate
change-induced disruptions to ecosystems can result in changes to
species composition, biodiversity, and food web dynamics. These
alterations can influence the prevalence and transmission of zoonotic
pathogens by affecting the abundance and behavior of reservoir hosts,
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such as rodents, bats, and certain bird species, as well as their
interactions with humans and domestic animals (37).

Recent research indicates that the number of virus species
capable of infecting humans exceeds 10,000, with the majority
currently remaining dormant within wild mammal populations
(38). However, as climate patterns and land utilization evolve,
these conditions are increasingly fostering opportunities for viral
exchange among wildlife species that were once isolated by
geography. This phenomenon is significantly escalating the
potential for zoonotic spillover events, establishing a direct
mechanistic connection between global environmental
transformations and the emergence of infectious diseases (39).

The ongoing alterations in climate and land use patterns are
anticipated to break down natural barriers that historically
prevented interactions between different species of wildlife. As
habitats shift and species migrate in response to changing
environmental conditions, formerly distinct viral populations are
encountering new hosts and environments, setting the stage for
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The topology of A-type inclusion protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The
B-cell (underlined) and T-cell epitope (yellow shaded) of BRPV A-type inclusion protein. (E) Alignment of A-type inclusion protein of BRPV
(QED21098) and Variola (ABG45329) shows a percentage identity of 73.51%.

cross-species transmission. This environmental reshaping not only
enhances the likelihood of viruses crossing species barriers but also
increases the opportunities for these viruses to adapt and potentially
become infectious to humans (40, 41). The implications of these
environmental changes extend beyond ecological dynamics to
profound public health concerns. The interconnectedness of
ecosystems underscores the urgent need for comprehensive
surveillance and management strategies to monitor emerging
infectious diseases. By understanding the ecological drivers of
zoonotic spillover, researchers and policymakers can better
anticipate and mitigate the risks posed by novel viral infections.
Poxviruses represent a diverse family of large, pleomorphic, and
double-stranded DNA viruses capable of infecting a broad spectrum

Frontiers in Virology

14

of hosts, spanning from vertebrates, including humans, to
arthropods. Variola virus, notorious as the causative agent behind
the devastating smallpox outbreaks, stands prominently within the
Poxviridae family. Another prominent member is Vaccinia virus
(VACV), celebrated for its pivotal role as the prototypical and
extensively studied poxvirus. Remarkably, VACV also served as an
attenuated vaccination strain instrumental in the successful
eradication of smallpox during the late 1970s (42).

The resurgence of monkeypox virus, leading to localized
outbreaks of monkeypox (mpox) globally, has reignited the
urgency for a deeper comprehension of the intricate lifecycle of
poxviruses. Mpox transmission rates are influenced positively by
environmental factors such as temperature, relative humidity, and
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FIGURE 13

The topology of A6 protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The B-cell
(underlined) and T-cell epitope (yellow shaded) of BRPV A6 protein. (E) Alignment of A6 protein of BRPV (QED21149) and Variola (NP_042154)

D

A6 protein (QED21149)
1 mdklrvlyde fvtiskenle retglsvsdv dldfdlnilm tlvpvlekkv cpitpttedd
61 kivammkycs ygsfsfwflk sgavvksvyn kledekkegf vttfrdmmln vgtilslnsm
121 ytrlrgdted ivsdskkime ivsglrastt enaaygvlgg nssfiistln kilsdenyll
181 kiiavfdskl iseketlney kglytisses liygircvsn ldissvglsn nkyvlfvkkm
241 lpkiilfgnn dinaggfanv iskiytliyr gltsnvdvgc lltdtiesak tkisvekikg

301 tginnvgsli kfisdnkkey ktiiseeyls kedriitilg nivnehdiky dnkllnmrel
361 ivtfrerysy kf

ferens I-I-l-E--II"III‘II-‘-.-II’-’-IH‘I“
e ouses D] Al M Vi 1 MM <
a1 K a.u 1L 132
s H (o] 132
QED21149.1 Q) 198
NP 0421541 H N 198
QED21149.1 1 264
o user v 264
qeniers Al | 330
s T F 330
i K 3 2
o oases N o 72

shows a percentage identity of 93.82%.

FIGURE 14

The topology of mutT-like protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The B-cell
(underlined) and T-cell epitope (yellow shaded) of BRPV mutT-like protein. (E) Alignment of mutT-like protein of BRPV (QED21195) and Variola

i sonerie srasiition for e

Urmesirne e en pspiamic . sigal i

mutT like Protein (QED21195)
1 mnfyrssils giikynrrla ksiickddsq iitltafvng ylwcnkrvsv saillttdnk
61 ilvenrrdsf lyseiirtrn msrkkrllln ysnylnnger silssffsld lattdnerid
121 aiypggipkr genvpeclsr eikeevnidn sfvfidtrff ihgiiedtii nkffeviffv
181 grisltsdgi idtfksnhei kdlifldpns gnglgyeiak yaldtaklkc yghrgcyyves
241 lkkltdg

E

QED211951 L K b4 N 66

UX0310631 1 E C H 66

QEp211951 L N L 1y E 132
UX0310631 F K P A D 132
Qeansss 198
Ux0310631 198
e EARBENE R B R A E VY RSB AR B BBV AT R
UX0310631 EDD 248

(UXO31063) shows a percentage identity of 95.55%.

Frontiers in Virology

15

frontiersin.org


https://doi.org/10.3389/fviro.2024.1451810
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org

Thomas

D

Kelch-like Protein (QED21132)
1 mesititvgk siirsnadkl insssyfaei
61 ikienakdae smilhakglg vesllkecql
121 rnfildnill iytdpdfmyl pkyiiidlls

1k

vE
dd

cgetnnii
lrilcvhn
hlnvfned

lydfgediis
cleiyritni
nvvkiiykyi

rvigfintdi
nslsyiyndv
stdiykdisd

181 ilpvirwnyl spewlndmew klgnvdktii hk

krcycgiv

tvnynkdkgl

miiskhgsal

241 etefvfsikt divdefetiy lnkkiyiigg ik
301 rmgstatvin griyvigggd gsnylntves
361 fvtggslidd snnmivinnm
421 tkgygnleks

neiscynprt
481 awkvvhdslr airafstspy

E

Q021121 MES I TITVGKS I IRSNADKL
ABF28357.1

Qe0211321 I.E S
mmmFSGNIIE KE
Y

RITNl. IS
LFYKE RN -

Q21121 STDIYKDISDILP
ABF28397.1

PD
DQ

QED211321
ABF28597.1

s -0

FIGURE 15

ENE

pngessng

INSSSYFAEILKCGETNNIIL DFQED J

MYLPKY I I
LKFDVDSVC

KLGNVDKT I

vlsidistkr

wkpmdntwry dtpinykrsn
ekldvyedkg wsiiempmar vhhgidstfg
nmwfdisytn ykrsmsslck lnnvfyvfsk

AKYLNNEKLKDVVIERMDYVIKYI IGKD wWYT

HLNVFNEDNVVKIIVKYIm
... -3

ltiepslndk
asaisvnnti

mlylagglsy
dmgyvekydg

R---A M

—<<
r-g—

lLISD
TENN

10.3389/fviro.2024.1451810

oiBe HAERS
H 123

CLE

210
139

The topology of kelch-like protein of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The B-cell
(underlined) and T-cell epitope (yellow shaded) of BRPV kelch-like protein. (E) Alignment of kelch-like protein of BRPV (QED21132) and Variola

(ABF28597) shows a percentage identity of 16.92%.
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The topology of DNA polymerase of BRPV. (A) Protter diagram. (B) Phobius diagram. (C) Ribbon diagram determined using Phyre2. (D) The B-cell
(underlined) and T-cell epitope (yellow shaded) of BRPV DNA polymerase. (E) Alignment of DNA polymerase of BRPV (QED21099) and Variola

(NP_042094) shows a percentage identity of 96.42%.

surface pressure. These variables play crucial roles in shaping the
dynamics of the disease, affecting both its prevalence and
spread (43). Temperature is a key determinant as it influences the
survival and replication rates of the virus. Warmer temperatures
generally create more favorable conditions for viral activity,
potentially increasing transmission rates among susceptible
populations. Similarly, relative humidity affects viral stability in
the environment and can facilitate the persistence of infectious
particles. Higher humidity levels may prolong the viability of the
virus on surfaces or in the air, thereby enhancing the chances of
transmission. Understanding the interplay between these
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environmental factors is crucial for predicting and managing
outbreaks of mpox. Climate variability and changes in land use
can further complicate these dynamics by altering the habitats and
behaviors of reservoir hosts or vectors involved in the transmission
cycle (43). The emerging threats underscore the critical necessity for
comprehensive research aimed at elucidating the mechanisms
underlying poxvirus pathogenesis, transmission dynamics, and
host interactions. Such endeavors are pivotal in the development
of effective preventive and therapeutic strategies to combat
emerging poxvirus infections and mitigate potential public health
crises (42).
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The emergence of the Borealpox virus (BRPV) marked a
significant event in 2015 when it was initially identified in Alaska.
Since its discovery, the virus has continued to pose a notable threat,
with multiple incidents of circulation reported within the state (6).
Tragically, the gravity of its impact was underscored by the first
reported death attributed to BRPV in January 2024 (7). BRPV is
believed to primarily infect voles, shrews, and other rodent species
indigenous to Alaska, raising concerns about its potential
implications for both wildlife populations and human health. As a
zoonotic pathogen, the virus has the capacity to spill over from its
natural reservoir hosts to humans, posing risks of transmission and
potential outbreaks.

The persistence and spread of BRPV underscore the urgent need
for enhanced surveillance, research, and public health interventions to
mitigate its impact. Understanding the dynamics of its transmission,
host range, and potential for human infection is crucial for developing
effective prevention and control strategies. Furthermore, as climate
change and human activities continue to influence ecological
landscapes, the risk of emerging infectious diseases like BRPV
amplifies, emphasizing the importance of proactive measures to
safeguard both wildlife and human populations from such threats.

Most viruses rely on one or two proteins to facilitate cell
binding, membrane fusion, and entry. However, poxviruses are
distinct due to their utilization of an unusually high number of
proteins, which could be linked to their capacity to infect a diverse
array of cells. Among poxviruses, the vaccinia virus exists in two
primary infectious forms: the mature virion (MV), possessing a
single membrane, and the extracellular enveloped virion (EV),
characterized by an additional outer membrane that is dismantled
prior to fusion (44). In this study we include proteins from different
growth phases of BRPV.

Investigating the structure of proteins and pinpointing specific
epitopes represents a pivotal step toward the development of effective
vaccines and diagnostics (45). In our study, we conducted a
comprehensive analysis to elucidate the structure and epitopes of
BRPV’s key proteins. Additionally, we performed a comparative
alignment of the amino acid residues of BRPV proteins with those
of Variola virus to discern similarities and variations between the two.
This multifaceted approach not only enhances our understanding of
BRPV’s molecular architecture but also sheds light on potential
targets for vaccine design and diagnostic development. By
uncovering similarities and differences between BRPV and Variola,
we gain valuable insights into the evolutionary relationship and
antigenic profiles of these viruses, further informing the strategic
design of interventions to combat BRPV and related pathogens.

Hemagglutinin and A-type inclusion protein exhibit a striking
feature in their protein structure: a substantial 80% of their
composition is comprised of epitopes. These epitopes play a pivotal
role in various biological processes, particularly in the context of
immune responses and molecular recognition. Epitopes, often
referred to as antigenic determinants, are regions on the surface of
proteins that are recognized by the immune system, eliciting specific
antibody responses. This abundance of epitopes within the protein
structure underscores their significance in mediating interactions
with other molecules, such as antibodies, receptors, or other
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proteins, ultimately influencing the protein’s function and
biological activity. This characteristic highlights the potential
importance of hemagglutinin and A-type inclusion protein in
immune recognition and molecular signaling pathways, warranting
further investigation into their structural and functional properties.
We name those proteins that has >80% of their structure composed
of epitopes as octogintope protein (Latin, octoginta, eighty). This
classification not only underscores the significance of epitope-rich
proteins in diagnostic and vaccine design but also provides a practical
framework for prioritizing targets in the development pipeline.

Our study represents a significant advancement in the
understanding of BRPV biology and the development of
countermeasures against this emerging pathogen. By unraveling
the intricacies of protein structure, epitope identification, and
comparative genomics, we pave the way for the design of more
efficacious vaccines and diagnostics, ultimately bolstering our
preparedness against future viral threats.
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