
Frontiers in Virology

OPEN ACCESS

EDITED BY

So Nakagawa,
Tokai University, Japan

REVIEWED BY

Marco V. José,
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with intrinsic disorder-mediated
function enable RNA virus
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The functions of RNA-dependent RNA polymerases (RdRps) in RNA viruses are

demonstrably modulated by native substrates of dynamic and interconvertible

conformational ensembles. Many of these are populated by essential flexible or

intrinsically disordered regions (IDRs) that lack a stable three-dimensional (3D)

structure and that make up nearly 16% of the conserved RdRp domains across

Riboviria lineages. Typical structural models of RdRps are conversely generally

agnostic of multiple conformations and their fluctuations, whether derived from

protein structure predictors or from experimentally resolved structures from

crystal states or dynamic conformer sets. In this review, we highlight how

biophysics-inspired prediction tools combined with advanced deep learning

algorithms, such as AlphaFold2 (AF2), can help efficiently infer the

conformational heterogeneity and dynamics of RdRps. We discuss the use of

AF2 for protein structure prediction, together with its limitations and impacts on

RNA virus protein characterization, and specifically address its low-confidence

prediction scores, which largely capture IDRs. Key examples illustrate how

biophysical-encoded preferences of generic sequence–ensemble relationships

can help estimate the global RdRp structural diversity and RNA virus discovery.

The quantitative perception we present also highlights the challenging

magnitude of the emergent sequence-to-conformations relationships of

proteins and illustrates more robust and accurate annotations of novel or

divergent RdRps. Finally, the coarse-grained IDR-based structural depiction of

RdRp conformations offers concrete perspectives on an integrative framework to
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directly generate innovative avenues to better understand viral replication in the

early disease stages and the protein–protein affinities through the folding

dynamics of these viral proteins. Overall, tapping into the current knowledge of

RdRp conformational heterogeneity will serve further RNA virus discovery as

similarities in the global RdRp landscape emerge with more clarity.
KEYWORDS

RNA-dependent RNA polymerase, RNA virus discovery, conformational ensembles,
intrinsic disorder (IDP/IDR), structural biology, AlphaFold2 (AF2), folding dynamics,
modulome and artificial intelligence
1 Introduction: structure and function
of the hallmark RdRp module in viral
replication

Based on recent abundant metagenomics and in-depth

transcriptomics data, it has been unequivocally demonstrated that

RNA viruses display striking genetic diversity. Hence, their

sequence similarity is often too low to permit robust phylogenetic

inferences, making it challenging to identify highly divergent

viruses that embody the uncharted virosphere. Therefore, despite

a fast expansion in the number of reported viruses following the

advent of high-throughput sequencing (HTS), the identification

and the annotation of novel viral phyla or highly divergent RNA

viruses remain tedious (1–7).

RNA viruses (riboviruses) dominate the eukaryotic virome and

are the most abundant biological entities on earth (2, 8–11). The

accelerated emergence of new viral infections poses a significant

global health concern, exerting tremendous burdens on economies

and public health due to many cases arising with unknown etiology

(12), thus emphasizing a pressing need to address faster

advancements in RNA virus discovery. Most RNA viruses,

however, encode a unique category of non-structural proteins

named RNA-dependent RNA polymerases (RdRps). RdRps are

classified as template-dependent nucleic acid polymerase proteins

(13, 14). Upon host cell infection, transcription and replication are

governed by the RdRp as a single-subunit module or are mediated

by replication–transcription complexes (15). These complexes

regulate viral RNA synthesis and are therefore, in the case of

pathogenic viruses, proven potent druggable antiviral targets due

to their higher evolutionary stability (16–19). To transcribe and

replicate their genomes with optimized processivity (although with

a relative fidelity) (20), RNA viruses use the RdRp together with a

remarkably cooperative cohort of other replication enzymes and

stimulating cofactors (21, 22). One can thus argue that RdRps are

keystones to ensure translation by the host ribosomal machinery

and to balance the spatiotemporal modulation of the viral cycle

within the infected host cell (23, 24). This central enzyme therefore

essentially coordinates with other viral modules and host factors for
02
the production of both viral mRNAs and new genomes. Following

its genomic RNA translation and proteolytic maturation, the RdRp

initiates a relatively complex process of RNA synthesis and gene

expression. This process is dependent on the interplay between the

viral RNA and non-structural proteins on the one hand and the

host cell proteins and membranes on the other hand. These major

steps are assumed to be modulated by various accessory subunits

required to orchestrate the template unwinding and switching,

which are necessary for genomic RNA synthesis (25, 26). The

multiple interactions between these subunits and their cognate

regulatory viral RNA elements fine-tune the timely host- or

niche-specific replication processivity of their genomic repertoires

(27). Akin to other polymerases, RdRps use ribonucleoside

triphosphates (NTPs) as precursor substrates to catalyze the

incorporation of ribonucleoside monophosphates (NMPs) into

the nascent RNA product with conserved integrity based on the

genetic information provided by the template RNA (28–30). These

replication-associated non-structural proteins are either directly

implicated in nucleic acid metabolism or promote the efficient

catalytic regulation of other non-structural proteins (31–33). Viral

RNA synthesis relies on specific viral/host cofactor proteins. RdRps

are essentially soluble in the cytoplasm, but they reside in the host

cell as dynamic conformational ensembles that adapt to the

functional requirements of the viral cycle. Thus, RdRps also

participate in the formation of specific replication organelles, for

example through their membranous anchoring as viral replication

complexes (34, 35). Together with other cofactor proteins, RdRps

are major players in driving virus–host adaptation (36, 37). Thus,

providing better characterization of RdRps will enrich our

knowledge of the RNA virome and evolution.

RdRps are indeed prime antiviral targets (38). However, designs

in antiviral strategies are hindered by our incomplete understanding

of viral RNA synthesis, particularly at the structural level. A few

studies have focused on deciphering and contextualizing the distinct

and manifold conformational features including their dynamic

functioning at the interplay of RNA viral replication and

transcription complexes (39, 40), while others are burgeoning (19,

41–44). Determining the conformational diversity of RdRps and

their dynamic biophysical behavior can therefore provide essential
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knowledge for understanding the functional modulatory properties

of this class of proteins. Computational and structural

bioinformatics analyses are, thus far, based on the examination of

50 viral RdRps with experimentally determined well-folded

structures reported in the Protein Data Bank (PDB) spanning 10

taxonomic viral families (45). They generally define the polymerase

subunits into well-conserved sub-domains, including the terminal

domain and an interface region with the conserved structured

catalytic domain (core) of the RdRp (Figure 1). The core RdRp

domain is, despite the large structural variability of the surrounding

regions, delineated by a well-structured architecture analogous to

the typical right-hand configuration, shared by all viral RdRps and

composed of fingers, palm, and thumb. The residues responsible for

nucleotide selection and RNA-specific catalysis are located on the

inner interface of the core palm domain (45, 50). The active site is

further subdivided into critical functional features with relative

spacing and occasional permutations (51), known as catalytic

motifs (A–G) (45, 52–57). Among them, motifs A–F exhibit

strong conservation across all viral RdRps at the genus and family

taxonomic ranks. Motif G is defined as a hallmark of primer-

dependent RdRp in some positive-sense RNA viruses and interacts

with the primer strand to initiate RNA synthesis (58). Most ABC

motifs appear in a canonical suite within the primary sequence of
Frontiers in Virology 03
most known RdRps. In certain evolutionarily divergent lineages,

permutation in the active site sequence is observed into the CAB

order (56, 59). Our discussion in this review will mainly cover a

representative dataset of complete RdRps, including palmprint

sequences and their defined canonical ABC motifs (with

intervening variable segments V1 and V2; Figures 1A–C) (6, 48).

Current knowledge of the overall sequence–structure–function

relationship of RdRps remains relatively scarce, which can impact

our understanding of the biology and evolution of RNA viruses

(60). Recent detailed studies using molecular dynamics have

provided valuable insights into the stabilizing roles of these

conserved structural motifs. They operate as sequence-specific

conformational switches during the nucleotide incoming and

positioning cycle (44, 45, 58, 61, 62). Motifs A and C contain two

aspartic acid residues that contribute to coordinating interactions

with two divalent metal ions essential for the phosphoryl transfer

reaction. They are also required for other diversified classes of

polymerases (63–65). In motif B, the backbone flexibility of a

conserved glycine residue plays a critical role in recognizing the

hydroxyl group of the NTP substrate, while the corresponding

peptide bond flip accompanies an elusive conformational

conversion of the NTP-induced RdRp active site closure. Motif C

contains the critical catalytic residues, which reside in a turn loop
FIGURE 1

RNA-dependent RNA polymerase (RdRp) and conserved palmprint motifs from human, animal, and plant positive-strand RNA viruses. Full per-
residue prediction scores for AF2–ppLDDT or metapredict-ppLDDT, blue) in relation to intrinsically disordered regions (IDRs, red) (46) and early
folding (green) (47). The disorder and ppLDDT scores (metapredict-ppLDDT) are almost anti-correlated and correctly identify domain boundaries.
The early folding prediction score indicates which residues in the sequences will form structures first through local interactions between amino
acids. (A–C) The palmprint segment predicted by Serratus with the well-conserved ABC motifs in the active site of the polymerase domain and in
their corresponding PDB (A, B) and AF2-predicted structure (C) (left). The intervening V1 and V2 segments (gray) are more variable regions. (A)
Poliovirus (PDB:1RA6; Picornaviridae, Enterovirus, PV) cartoon representation with the conserved catalytic motifs colored from of the N to the C
terminal: motif A (red), motif B (green), and motif C (blue). (B) Classical swine fever virus (PDB:5YF5; Flaviviridae, Pestivirus, CSFV). (C) Tomato brown
rugose fruit virus (UniProt ID: A0A0S2T050; Virgaviridae, Tobamovirus, ToBRFV) (inlet: AF2 prediction with confidence scores). Cartoon
representation with the ABC motifs and intervening V1/V2 regions color coded as indicated in the corresponding palmprint segment identified by
Serratus (https://serratus.io/palmid) (48). Structure images were generated in PyMOL (49).
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connecting two adjacent strands. Motif F forms a fingertip that

protrudes into the catalytic chamber and interacts with the finger

extension loops and the thumb sub-domain to engage, via several of

its highly conserved basic residues (lysine and arginine), with the

triphosphate and base moieties of the NTP substrate.

Across the globally known virome, most known RdRp

sequences are homologous throughout all phyletic lineages, thus

enabling multiscale automated and multiple sequence alignment

(MSA)-free comparative analysis. The features of RdRps, akin to all

proteins, can also be investigated with biophysics-inspired tools to

grasp a coarse-grained picture of their structural variability, which

is particularly useful for novel or poorly characterized proteins (66–

68). The overall variation of RdRps is indeed extreme among

viruses, indicating potential heterogeneous and unannotated

funct iona l features . Their dynamic ensemble-dr iven

conformational modulation to achieve their function is expected

to be governed by a combination of sequence-encoded short- and

long-range intramolecular interactions involving transient and

topologically diverse motif-rich secondary structures (69–71).

Defining the dynamic conformational behaviors and the

biophysical landscape of their ensembles may therefore help in

grasping and delineating the magnitude of this structural

heterogeneity within the RdRp boundaries. Furthermore,

identifying RdRp similarities between RNA viruses can address

knowledge gaps on the functional roles of conformational

ensembles populating the RdRp module. Linking the sequence

conservation to the sequence-encoded conformational

heterogeneity in their biophysical propensities can further provide

vital understanding of the general molecular bases and functional

modalities that govern this hallmark class of viral proteins,

including non-canonical RdRps.
2 Coarse-grained sequence-based
RdRp conformational landscape can
catalyze data-driven discovery in the
global RNA virosphere

In this review, we address the multiscale facets of the RdRp

conformational properties as sequence–ensemble–function

relationships and discuss their implications in RNA virus

discovery. The main purpose of this review was therefore to place

the current knowledge on RdRps in a broader conceptual context by

considering both global and local protein structural flexibility and

intrinsically disordered proteins (IDPs) and regions (IDRs)

[collectively termed intrinsically disordered regions (IDRs)

hereafter] (66, 71–75). These IDRs manifest as a repertoire of

hypervariable, natively dynamic, interconverting heterogeneous

conformations that can only be represented as conformational

ensembles. IDRs lack a stable autonomous primary (3D) folding,

but still mediate many functions (76), beyond the conserved

catalytic core, through quantifiable ensemble features (77, 78).

Exhaustive mapping of the IDRs and their features within RdRps

can therefore help improve the overall understanding of the
Frontiers in Virology 04
structure, function, and evolution of RdRps. By determining the

biophysical landscape of RdRps in terms of global IDR dimensions,

the distribution of the physicochemical properties and the inter-

residue distances within the catalytic motifs, as well as deriving their

local transient extended conformations, one can quantify the

disorder-mediated conformational diversity of the RdRp catalytic

module along its intramolecular interactions. These in turn serves

as reference points to predict additional functional regions beyond

the core catalytic module. The major strength of this conceptual

approach (coined the “modulome”) (79) hinges on unifying

sequence diversity and evolutionarily informed conformational

states into a single data-driven machine learning-based

quantitative sequence-to-function annotation. Inspired by seminal

reviews (45, 80), we employed a computational framework that

illustrates this pivotal concept via a comprehensive, representative

RdRp-based metaproteomic dataset across taxonomical and

evolutionary RNA viral lineages. Our framework integrates a suite

of established bioinformatics toolkits to identify and annotate these

sequences. By combining RdRp-specific biophysical propensities of

structure and disorder-centric conformational heterogeneity, we

used the modulome approach to survey the sequence-based

conformational diversity of RdRps with respect to their

taxonomical and evolutionary classification.
3 Methods

3.1 RdRp sequences and datasets

As a preliminary proof-of-concept, approximately 480,000

curated RdRp sequences from diverse published databases were

included, covering all known or available evolutionary clades of the

RNA viruses compiled in various recently published articles and

publicly available databases (10, 48, 81), including representative

RdRps assigned by the International Committee on Virus

Taxonomy (ICTV). For sequence retrieval and storage, PALMdb

(https://github.com/rcedgar/palmdb) served as the primary

repository of RNA virus RdRp amino acid sequences, therefore

providing the ground truth RdRp dataset (palmdb) (10). We also

downloaded the protein sequence entries contained in UniRef90

(82) on October 2, 2022, from UniProt (83). To discover the

diversity and evolutionary relationships of RNA viruses within

individual virus clades, all previously documented RNA viruses

from the palmID database were incorporated into the biophysical

analyses, including RefSeq, UniProt, and PDB RdRp sequences (45,

84). The palmID web server (https://serratus.io/palmid) was used

for searching, verifying, and classifying the amino acid sequences

containing RdRps (Supplementary Material). Sequences that failed

to cover these motifs were not considered. The palmprint segment,

an ~100-amino acid (aa) region in the active site of the polymerase

domain, was checked and collected. While motifs A, B, and C are

well conserved, the intervening V1 and V2 regions are more

variable. To verify the taxonomical assignation, the presence of

the three key RdRp motifs (namely, the A, B, and C motifs) was

verified through the built-in palmID alignment algorithm (https://
frontiersin.org
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serratus.io/palmid) to all RNA supergroups that possessed these

motifs (i.e., motif A [DxxxxD], motif B [(S/T)Gxxx(T/G)xxxN], and

motif C [(S/G/N)DD]) (see Supplementary Material).
3.2 Retrieval and processing of protein
structures

The 3D structures of viral proteins were obtained from the PDB

(https://www.rcsb.org). The selection criteria included high-

resolution structures (≤3.0 Å) determined through X-ray

crystallography or cryo-electron microscopy (cryo-EM), ensuring

structural accuracy for comparative analyses. The protein structures

were retrieved using their respective PDB identifiers and were

selected based on biological relevance, structural integrity, and the

presence of conserved catalytic motifs. The following representative

structures were analyzed: poliovirus RNA-dependent RNA

polymerase (PDB:1RA6; Picornaviridae, Enterovirus, PV) and the

classical swine fever virus (PDB:5YF5; Flaviviridae, Pestivirus,

CSFV). Each structure was downloaded in the PDB format (see

Supplementary Material). To facilitate structural analysis, non-

essential water molecules, ions, and ligands were removed. All

other functions were used under default parameters.
3.3 AlphaFold structure predictions

All AlphaFold2 (AF2) 3D structures were either downloaded

from the AlphaFoldDB database at the European Bioinformatics

Institute (EBI) or generated using v1.5.5 and its MMseqs2

implementation (https://alphafold.com/) (85–87) on the Vlaams

Supercomputer Centrum (VSC) infrastructure, with a cutoff date of

February 15, 2024, for the templates used. The AlphaFold 3 (AF3)

3D structures were generated using the web server (https://

alphafoldserver.com) under default settings. For each

representative, the highest-ranking structural model, determined

by the predicted local distance difference test (pLDDT) score,

was retained.

3.3.1 AF3 with respect to stereochemistry,
hallucinations, dynamics, and accuracy in RdRp
predictions

AF3 (v3.0.1) (88) represents a significant advancement over

AF2 in both the scope of biomolecular structure prediction and

modeling accuracy. While AF2 is primarily designed for the

prediction of the 3D structures of individual proteins and, to a

more limited extent, protein–protein complexes, AF3 extends its

capabilities to a broader range of biomolecular assemblies.

Specifically, while both models address IDRs by typically

producing unstructured, ribbon-like predictions where atomic

coordinates are uncertain, AF3, however, occasionally introduces

low-confidence secondary structural elements, such as spurious

alpha helices, within these disordered regions. These predicted

structures often have very low pLDDT scores and show poor

reproducibility across prediction runs, suggesting that they are
Frontiers in Virology 05
artifacts rather than biologically meaningful features. This

behavior reflects the increased expressive power of AF3, which,

while enabling broader modeling capabilities and parameters

(https://github.com/google-deepmind/alphafold3), may also

generate occasional noise in regions of structural ambiguity where

unstructured regions are typically represented by long extended

loops instead of compact structures. Indeed, while AF3 cross-

distillation greatly reduced its hallucination behavior, the switch

from the non-generative AF2 model to the diffusion-based AF3

model introduced the challenge of spurious structural order

(hallucinations) in disordered regions (88). Default parameter

settings were applied for both AF2 and AF3 implementations.

Moreover, structures were predicted using ESMFold through its

online implementation (https://colab.research.google.com/github/

sokrypton/ColabFold/blob/main/ESMFold.ipynb) (87). In

addition, the pLDDT score was collected for each structure

prediction as its per-residue estimate of the prediction confidence

on a scale from 0 to 100. The structure of each representative

sequence was then predicted using ColabFold based on its

corresponding MSA-based sequence coverage and the AF2 model.

Figures of the molecular structures were generated using PyMOL

software v2.5.5 (The PyMOL Molecular Graphics System,

Schrodinger, LLC; http://www.pymol.org/pymol) (89) and UCSF

ChimeraX (90) (see Supplementary Material).

To evaluate the structural similarity between viral RdRp protein

models, we employed the template modeling score (TM-score), a

widely used metric for evaluating the quality of protein structure

alignments by assessing their topological similarity (https://

zhanggroup.org/TM-align/, https://zhanggroup.org/TM-score/)

(91). The TM-score is particularly advantageous as it addresses

two critical aspects of structural comparison.
i. Distance error sensitivity: Unlike root mean square deviation

(RMSD), which treats all distance deviations equally, the TM-

score assigns greater weight to smaller distance errors. This

weighting enhances the sensitivity of the score to global

structural similarity rather than local structural variations. As

a result, the TM-score provides a more biologically relevant

assessment of fold similarity, making it particularly useful for

comparing protein structures with minor local variations but

preserved overall topology.

ii. Length-dependent normalization: The TM-score

incorporates a length-dependent scaling factor that

normalizes distance errors based on protein size. This

ensures that the score remains independent of sequence

length when comparing random structure pairs.
Consequently, the TM-score allows for meaningful

comparisons across proteins of different lengths without biasing

the evaluation based on structural size. The TM-score ranges

between 0 and 1, where 1 indicates a perfect structural match.

This normalization and weighting strategy makes the TM-score a

robust metric for determining the fold similarity between protein

structures, making it particularly useful in structural bioinformatics

and computational protein modeling.
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3.4 Biophysical features and disorder
predictions

On a subset of 250,081 RdRp target sequences, we primarily

used the bio2Byte Tools (92, 93) with sequence-based predictors,

namely, backbone dynamics (DynaMine; https://bio2byte.be/) (94),

DisoMine (95), and EFoldMine (96). Related side-chain dynamics

and conformational propensities (96) were predicted at the per-

amino acid and per-sequence levels using default parameters. These

methods are based on the per-residue characteristics (e.g., backbone

dynamics) derived from nuclear magnetic resonance (NMR)

chemical shift values and use a linear regression model for the

prediction. Concretely, with regard to backbone dynamics, higher

values denote that backbone movements are more likely to be

limited. Values >1.0 indicate membrane spanning regions, >0.8

rigid conformations, and <0.69 flexible regions. Residues with 0.80–

0.69 values are “context”-dependent and are capable of being either

rigid or flexible. For rigidity of the side chain, higher values indicate

that the side chain is more likely to be conformationally restricted.

These values are highly dependent on the amino acid type (i.e., a

Trp will be rigid and an Asp flexible). Early folding probabilities per

residue were predicted using EFoldMine, which uses as input

features the five previously mentioned DynaMine values for a

five-residue fragment, resulting in a 25-dimensional feature vector

that was trained using a support vector machine (SVM) on a set of

high-resolution per-residue hydrogen–deuterium exchange (HDX)

data from the NMR experiments. Early folding predictions indicate

the likelihood that this residue will adopt a persistent conformation

based on only local interactions with other amino acids. Values

>0.169 indicate residues most likely to start the protein folding

process. For the prediction of structure and disorder, the

metapredict python package v2.4 and the online server (https://

metapredict.netv3.0) (46) were used. Both the pLDDT predicted by

metapredict (metapredict-ppLDDT, also referred to as the AF2-

ppLDDT) and the disorder values frommetapredict were integrated

into a Python Pandas data frame. To predict disorder, metapredict

was used as it is considered one of the most robust, accurate, and

high-performance predictors of intrinsic disorder, which is also easy

to install and quick to generate predictions. It uses a machine

learning network to generate per-residue scores from amino acid

sequences that reflect the likelihood of the residue being disordered.

Metapredict v3 uses a new network to predict disorder that, in our

benchmarks, is the most accurate version to date. Although

metapredict v3 provides major improvements compared with

metapredict v2, the default v2 network is, by all metrics, better

for pLDDT prediction and is still recommended (https://

metapredict.readthedocs.io/en/latest/getting_started.html). The

original release of metapredict included the ability to predict the

AF2 per-residue pLDDT scores. Metapredict v2 was trained by

generating an initial hybrid score that combined the predicted AF2-

pLDDT scores (AF2-ppLDDT, i.e., the metapredict-ppLDDT), used

with consensus disorder along with some signal process algorithms

to make a new structure/disorder consensus prediction. In the

context of AF2, the pLDDT scores convey the confidence

associated with a given structure prediction. Metapredict was
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trained on the original AF2 and the Critical Assessment of

Protein Intrinsic Disorder (CAID) data to predict the pLDDT

scores (AF2-ppLDDT) from the sequence alone. Although low

pLDDT scores cannot strictly be interpreted directly as a given

region having a high likelihood of being disordered, the AF2-

pLDDT metric is nevertheless generally considered a reliable

predictor of protein disorder, showing, to some extent, a

correlation between the pLDDT scores and the low pLDDT

scores’ tendency of amino acids to be generally disordered (97,

98). Moreover, the DisProt-PDB dataset was also used to train

metapredict (v2) for accuracy analysis as it contains regions that

have been experimentally determined to be either disordered or not

disordered, allowing for the identification of true positive, true

negative, false-positive, and false-negative predictions generated by

metapredict v2 and v3 to integrate these predictions with either the

predicted (v2.4, used here in this systematic review) or the actual

(v3) (99) pLDDT obtained from AF2. The pLDDT scores represent

confidence for the very local structural predictions obtained from a

structure prediction model (in our case, AF2 or AF3).

When the predicted pLDDT scores for these proteins were

examined (46), it was found that the metapredict-ppLDDT

predictor did not give these regions predicted pLDDT scores as

high as the actual AF2-generated pLDDT scores (46, 99). This

suggests that the metapredict-ppLDDT predictor does not always

produce high pLDDT scores for some disordered regions, even

though the actual AF2-pLDDT scores for the same regions are

relatively high. However, it remains noteworthy that this is not

always the case, as metapredict authors were able to identify some

known disordered protein regions where the metapredict-ppLDDT

predictor generated high ppLDDT scores (46). Therefore, the

metapredict-ppLDDT scores were suggested to provide an

orthogonal mean to examine whether a protein region is likely to

be disordered. The scores used to make metapredict (v2) were the

predicted pLDDT scores (metapredict-ppLDDT scores), which

were generated using a bidirectional recurrent neural network

(BRNN) trained on the AF2-pLDDT scores from 21 proteomes.

Thus, if there are any consistent circumstances where AF2 generates

a high pLDDT score for a given disordered region or type of

disordered region, metapredict (v2) will be unlikely to predict the

region to be disordered. Indeed, a recent report highlighted a case

where known disordered proteins or protein regions had high AF2-

pLDDT scores, which was found to be at least in part due to the

disordered regions undergoing conditional folding (100).

Metapredict exploits ways of combining the predicted consensus

disorder scores with the ppLDDT scores such that one could

improve the accuracy of the predicted disordered regions. When

evaluating the accuracy of metapredict v2 in comparison to 33 other

disorder predictors (including legacy metapredict), metapredict v2

was found performing as the second most accurate disorder

predictor, with the difference between metapredict v2 and the

most accurate currently available predictors (46). In addition,

metapredict is orders of magnitude faster in execution time

compared with the other high-performing predictors (46).

Nonetheless, metapredict (v2) still offers a substantial

improvement in accuracy over legacy metapredict. Therefore,
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metapredict v2.4 was used to predict intrinsic protein disorder as

metapredict-ppLDDT provides an ideal balance of dual metric

speed, accuracy, and availability. To accurately benchmark and

evaluate metapredict v2 sequence-based prediction of IDRs against

the top state-of-the-art protein intrinsic disorder predictors, 44

metapredictors were utilized using an ensemble approach that

averages the predictions from the top-performing neural

networks, sorted by their optimized (on DISORDER-NOX) F1

binary scores threshold. These are freely available through the

CAID prediction server (https://caid.idpcentral.org/portal,

accessed April 18, 2025) (101–103).

In addition to the mapping of IDRs, we considered AF2 (85) and

other recent structure-based prediction metadata to further

contextualize the biophysical signals that underlie the possible

modulating roles of RdRp-associated IDRs in functional viral

replication. By focusing on hallmark residues of the RdRp module

and referencing the available structural and functional data in the

recent literature, we attempt to estimate the diversity of conformations

adopted by this unique module across the evolutionary landscape.

Since we cover a broad range of the RNA virome, this review may, in

turn, serve as a reference basis for the investigation of novel unexplored

functional RdRp features that go beyond their static structure

representations and that may orchestrate host-specific functional

replication in viruses. Although other functional non-structural

proteins are also involved in replication, they are outside the scope of

this review. We hope that the discussions presented hereafter may cast

impetus for addressing future fundamental and applied innovative

research lines in RNA virus discovery.
4 Results and discussion

4.1 RdRp intrinsically disordered regions as
functional modulators of local
conformational ensemble dynamics and
their implications for computational
structural inference

4.1.1 The biophysical foundations for RdRp
structural malleability and function

AF2 has propelled RNA virus discovery into a new era where

virologists can visualize hitherto unresolved protein folds at atomic-

level accuracy, unlocking the RdRp structures, functions, and inter-

residue flexibilities solely from their amino acid sequences (104).

The sequence-based wealth of new RNA viruses often relies on

RdRp sequences generated from HTS studies and metagenomics

(105–108). However, fast and accurate standardized methods to

support this approach are currently lacking. Moreover, RdRp

functions emerge from a diverse set of function-determining

structural motifs and their cognate conformational space.

Nonetheless, not all RdRp proteins, or regions thereof, have a

well-defined 3D structure. The functional dynamic behavior of

flexible regions is indeed difficult to assess from experimentally

determined 3D structures and molecular dynamic simulations

using these folds (109).
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Importantly, many highly divergent viral RdRps or remote

homologs remain poorly detectable in a metagenomics context

even with the use of more advanced sequence comparison or

traditional computational methods such as BLAST (110–112) or

custom-built hidden Markov models (113–115). The increased

content in IDRs, which are linked to extensive conformational

heterogeneity and sequence diversity, can contribute significantly to

this major barrier (116). This can be mediated by taking into

account the conservation of compositional biases that corroborate

conserved composition–function relationships (117–119). AF2-

generated models underscore the importance of mapping the

properties of these IDRs with atomic-level accuracy to better

interpolate the key sequence–function relationships and their

function-bearing motifs (99, 120). In the context of the protein

structure prediction of AlphaFold, the term “atomic-level accuracy”

refers here to the high precision from the PDB from which AF2 has

learned and is more likely to dominate in the overall structure

prediction. While AF2 is thus capable of detecting a hard order/

disorder boundary (97), it does not capture the dynamic

propensities of a residue. This limitation is expected given its

training data, which predominantly consisted of folded and

crystallized proteins and analyzed under cryogenic conditions,

thus blind to the conformational flexibility observed in solution

(121). AF2 tends to predict the bound states of proteins if present in

the training data, and while disordered regions are typically missing

X-ray diffraction PDB structures, they are visible when adopting a

single defined conformation upon interaction with another protein

or ligand. With this distinction in mind, IDRs adopt structurally

ubiquitous, interconvertible heterogeneous states of conformation

(71, 122–125), reflecting extensive sequence variation and low

hydrophobicity. Despite the lack of a well-defined stable and

persistent 3D structure, IDRs are essential for viral processes

ranging from transcriptional control to replication and viral

assembly (126). Through their wide-ranging conformational

tunability and biophysical adaptiveness, IDRs extend the

repertoire of functional interactions by being readily malleable by

their long-lived plasticity and hypervariable topology, making their

underlying scattered charge decoration, chemical moieties, and

hydropathic cores ultimate evolutionary drivers of molecular

signaling and recognition (78, 127–133).

Perhaps more importantly, recent progress in protein science has

deepened our understanding of the relationship between the linear

protein sequence and the multiple dynamic conformational behaviors

of IDRs (96, 118, 134, 135). However, the link between sequence and

IDR function is less tangible and more difficult to define (136), with the

magnitude of their potential roles in viral replication and pathogenesis

demanding more systematic structural and conformational

investigations. This is undeniably evident for RdRps, where the low-

confidence regions predicted by AF2 often overlap with structurally

transient regions that are predicted to be IDRs.

4.1.2 Conserved RdRp motifs have hypervariable
IDR-mediated folding dynamics

Deep learning-driven metapredictors that enable accurate

identification of IDRs (46, 76, 137–139) and their IDR-specific
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physicochemical propensities are now available and can, with

reasonable accuracy, identify transitions such as disorder-to-

order, order-to-disorder, and disorder-to-disorder upon chemical-

or context-dependent coupled interactions (140, 141), including

regions predicted to be enriched in intrinsic disorder and prone to

liquid–liquid phase separation (142, 143). While the few

experimentally determined RdRp structures are remarkably

conserved and their globular 3D structures are well defined, the

multifaceted functional ensemble nature and biophysical properties

of IDRs in RdRps, including the extent of their context-sensitive

modulation, remain poorly characterized. The RdRp folding

dynamics is a complex process that can lead to the dysfunction of

RdRp when it fails. Particularly ill characterized are the very early

stages of RdRp folding within the core catalytic domain, which are

likely defined, on one hand, by intrinsic local interactions between

amino acids close to each other in the protein structure and, on the

other hand, by the local interaction with already folded template

regions. These local amino acid interactions are often governed by

the initial conformational states of the backbone and side-chain

dynamics and the secondary structure propensities as features.

Accurate prediction of these statistically highly dynamic

ensembles at atomic-level accuracy provides valuable insights into

the overall folding process, complementing qualitative comparisons

with independent experimental observations. In addition, locally

involved structural elements are inclined to become the folding

chain residues that are the most probable to interact within the

folded structure or IDRs exhibit evolutionary preservation at the

sequence level. From a mechanistic vantage, this context-sensitive

process appears to be directed by an equilibrium between kinetically

determined local residue interactions, which remain important in

folded proteins (47, 96, 144), and its topological complexity.

To concretely showcase with clear examples, Figure 1 shows the

predicted relationship between AF2-fueled structure metrics, the

pLDDT. Throughout this review, two similar but distinct per-residue

confidence scores of structural predictions are used and must be clearly

distinguished: the pLDDT from AF2 (i.e., AF2-pLDDT) and the

predicted pLDDT (AF2-ppLDDT, i.e., the metapredict-ppLDDT;

used as in 46). The main difference between AF2-pLDDT and

ppLDDT is that the latter is not a direct assessment of AF2

prediction and can be different from AF2-pLDDT. ppLDDT is a

per-residue confidence score that is scaled between 0 and 100 and

estimates how well the predicted structure would agree with the

experimental structure. Together with the AF2-pLDDT, the disorder

propensities of three different RdRps from human, animal, and plant

single-stranded RNA viruses are shown, along with their predicted

early folding fluctuations. In the RdRp sequence of poliovirus

(PDB:1RA6; Picornaviridae, Enterovirus, PV) (Figure 1A), the VI

and V2 variable regions within the RdRp palm domain exhibit two

of the highest early folding predicted values in the vicinity of a low peak

of predicted disorder at the 5′ start of motif B.

Comparatively, in the RdRp of the classical swine fever virus

(PDB:5YF5; Flaviviridae, Pestivirus, CSFV) (Figure 1B),

significantly more early folding propensities populate the

corresponding V1 variable region, whereas the V2 region

similarly exhibits two conserved peaks.
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In this RdRp palm domain, a considerably higher AF2 anti-

correlated IDR signal is predicted directly adjacent to motif B. In a

last example, the AF2-predicted RdRp of the plant-infecting tomato

brown rugose fruit virus (Virgaviridae, Tobamovirus, ToBRFV)

(Figure 1C), the V1 and V2 variable regions within the RdRp

palm domain similarly display two well-marked early folding peaks

in the absence, as evidenced by the low score, of any detectable

disorder propensity. More precisely, the local and global

conformational heterogeneities that RdRp proteins might adopt

through the intricate modulation of folding pathways during viral

replication entangle the interpretation of the structural diversity

across the RdRp evolutionary and taxonomical landscape (145).

Furthermore, RdRps show comparatively salient disparities

between the underlying fine-tuned dynamic features of early

folding propensity and their secondary structure elements, which

relates well to experimental observations (22, 62). Thus, it is

expected that comparative analysis of the parameters describing

the modulation of various RdRp folding pathways will bring to light

additional elements for better clarification of the evolutionary and

taxonomic landscape of these enzymes.

The evolution of the biophysical features governing protein

folding may provide such insights (146), particularly given the

evolutionary hallmark nature of the RdRp protein family. From that

evolutionary vantage, it may be more informative to examine where

related proteins adopt specific conformations based on local

interactions rather than focusing on the conservation of

individual amino acids. While early folding residues are more

conserved than the non-early ones, this is largely due to their

amino acid composition—residues such as Cys, Phe, and Trp,

which are inherently more conserved, are enriched in early

folding positions. Protein dynamics is another potential key

feature. Although the relationship between both conservation and

adaptation in protein dynamics and folding has been established

(146), no information on RdRp early folding has been reported yet.

Protein folds (tertiary structure) are often conserved across broad

evolutionary distances, allowing folding pathways to become

reliable hallmarks at higher taxonomic ranks, where structural

constraints drive the folding routes. Therefore, predictions of the

RdRp folding pathways are especially informative at the class or the

phylum level, where structural conservation persists despite

sequence divergence (primary structure). Even at shallower

taxonomic levels, the evolutionary patterns in RdRp folding

initiation can be captured, supporting functional biophysical

annotation where sequence similarity alone may be insufficient.

Predictions of early folding residues that are based on per-residue

backbone dynamics estimated from experimental data on proteins

in solution, capturing the full range of conformational behavior—

from disordered to fully folded—including local events such as

flexible loops or helix fraying, can help quantify these trends (96,

146). To summarize these aspects, the results (Supplementary

Figure S1A) showed the distribution of the early folding mean

values across various RNA virus phyla/classes, indicating variability

in the early folding propensities among RdRp sequences. RdRp

sequences with low early folding predicted scores may adopt diverse

and often extended conformations, while those with high early
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folding scores are structurally more compact and constrained.

Overall, taxonomic groups differ in their early folding profiles,

suggesting evolutionary shaping of the folding pathways and

structural compactness across viral lineages. Taxa such as

Picornaviruses and Hypoviruses show lower early folding means,

suggesting higher structural dynamic variability, whereas groups

such as Tombus–Nodavirus exhibit higher values, suggesting a

more restricted protein expansion. Such cautious interpretation is

essential to improve our understanding of how context-dependent

RdRp functional folding behavior is conserved across

Riboviria lineages.

Our large-scale exploration of the folding initiation predictions

for the RdRp palm domain revealed that early folding-prone amino

acids i) tend to involve residues that make the most backbone

interactions in the variable regions of the native fold, and ii) that

because of their relative conservation, these are likely to be the

results of co-evolution. Moreover, given the vicinity of context-

sensitive IDRs, this also suggests that iii) the local intramolecular

interactions in the RdRp palm domain are likewise highly context-

specific, i.e., atomic-level interactions between residues can only be

shaped in the presence of template- or taxon-dependent local

structural elements. These unique RdRp features should greatly

contribute to refined structural analyses of the diversity of RdRps.

They should assist in unveiling emerging relationships between the

dynamic folded and flexibility states, where allosteric characteristics

might appear to be important additional RdRp features for function

in viral replication (147–151). Finally, addressing the RdRp local

conformational preferences of early folding sites is further expected

to unravel uncharted relevant overall folding behaviors in the

vicinity of the RdRp palm domain and their potential modulation

of natively conserved folding/binding pathways. Taken together, we

hypothesize that these functional modulators of RdRp will expand

our structure/disorder-based knowledge of virus discovery and

assist innovative strategies toward disruptive antiviral protein

drug design.

4.1.3 Delineating biophysical flavors of RdRp
protein intrinsic disorder: on the importance and
implications of benchmarking ensemble-
approach metapredictors

Predicting IDPs/IDRs is a challenging task, primarily because

protein dynamics cannot be described by a limited set of fixed

conformations (103). Several IDR prediction methods have been

published, each with its own limitations and biases (152), and both

the predicted and experimentally derived properties of IDRs, as well as

the annotations related to their function, are stored in dedicated

databases (76). Rather, proteins with multiple conformations, as

observed for IDRs and IDPs, require ensemble-based representations

to better characterize their structural heterogeneity (98). Despite this

complexity, many accurate and robust disorder predictors have

emerged over the years (101, 152). Early efforts in identifying IDRs

have been driven by bioinformatics, with initial tools enabling the

distinction between disordered and folded domains.

Experimental methods in structural biology—such as X-ray

crystallography, circular dichroism, and NMR spectroscopy—have
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been used to derive information about intrinsic disorder (153).

However, direct measurement of the highly dynamic behavior of

IDRs remains very difficult (24, 101, 103, 138, 152, 154). IDRs,

which do not adopt a fixed 3D fold in isolation under physiological

conditions, are now a well-established concept in structural biology.

They are characterized by their ability to sample a vast array of

conformations, forming a continuum between fully disordered

states and folded states with long dynamic regions (150). This

complexity makes it difficult to establish a universal “ground truth”

for IDRs. Moreover, intrinsic disorder is often context-dependent,

with proteins undergoing order-to-disorder transitions in response

to specific conditions, such as binding a partner molecule. This

dynamic behavior distinguishes them from protein switches, which

alternate between a limited number of conformations in response to

defined stimuli. Adding to the complexity, IDRs also exhibit diverse

functional mechanisms—often referred to as disorder “flavors”—

including flexibility, folding-upon-binding, and conformational

heterogeneity. These characteristics further complicate the

development of accurate prediction models, particularly in the

absence of a universally accepted definition or dataset

encompassing all IDR variants. To tackle this, numerous

computational methods have been developed to predict IDRs

from protein sequences. Their performance is evaluated through

initiatives such as the CAID (101). Over the past 25 years, disorder

predictors have become increasingly accurate. In 2021, the first

CAID competition was held, comparing various tools based on

prediction accuracy and performance. CAID addresses the

relatively simpler problem of identifying residues within protein

sequences that are likely to be intrinsically disordered. Predictors

are required to assign a probability score to each residue, which can

be converted into binary predictions using a defined cutoff. The

resulting predictions, along with experimentally validated IDRs and

functional annotations, are stored in dedicated databases (97).

While CAID evaluates both the predictive accuracy and software

implementation, assessment of the true predictive power of tools

remains a challenge. Many predictors are not publicly available,

exist only as stand-alone executables, or are limited to web-based

interfaces. Moreover, even when available, these methods lack

standardization and often require expert knowledge for proper

interpretation, which usually involves careful reading of the

associated literature and nuanced understanding of the output

formats. The CAID2 challenge highlighted varying performances

across different predictors and benchmarks, reinforcing the need for

more versatile and efficient prediction tools. Depending on the

research context, users must balance accuracy with computational

efficiency. For instance, methods based on AF2 have shown promise

in predicting intrinsic disorder, but they tend to detect the absence

of order rather than capture IDRs as defined in the DisProt database

(155, 156). To facilitate access, CAID2 metapredictors are freely

available through the CAID Prediction Portal (https://

caid.idpcentral.org/portal), and CAID will serve as the official

platform for future challenges. Nonetheless, the sheer variety of

available predictors can overwhelm users, making it difficult for

virologists to compare performance and make informed decisions.

Moreover, measuring both local (e.g., helicity and NMR chemical
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shifts) and global (e.g., radius of gyration and end-to-end distance)

IDR ensemble properties for the same IDR can be time-consuming

and challenging. Instead, integrative biophysical studies—in which

several methods measure distinct properties of a single IDR—have

played key roles in enhancing our current understanding of

sequence–ensemble relationships (71). Notwithstanding these

substantial computational challenges, directly interpretable

accurate and robust IDR predictors are essential to identifying

and understanding the role of IDRs. These tools must be jointly

considered to grasp the underlying functional and biophysical

principles of divergent or newly sequenced RdRps. Finally, while

substantial challenges remain in achieving highly accurate

predictions across the conformational diversity of IDRs, it is

crucial to emphasize the importance of using multiple or

ensemble-based approaches of robust and accurate IDP

metapredictors (Supplementary Figure S1B). These tools must

provide strong coverage and generalization for all IDRs, both in

well-characterized and newly discovered viral RdRps, and help

virologists make informed choices and build new hypothesis.
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4.2 AlphaFold3 et al.: predictors of static
protein structures—potential advances and
flurry of intractable limitations in capturing
RdRp conformational heterogeneity

4.2.1 Potential misleading inferences from RdRp
protein folding pathways

In the future, structural features of 3D protein folding captured

by deep learning algorithms will likely generate new knowledge that

enables the identification of key conformations from a single RdRp

sequence. In the meantime, predicting and annotating RdRp

structures with high accuracy remain critical challenges for the

RdRp community, as for proteins in general for the broad life

sciences. Overall, the AlphaFold deep learning models have

provided a transformative advance to the field of structural

biology and its community (88, 157–160). These neural networks

use attention-based components to inject long-range contact

information from the PDB and MSAs into vector representations

(161), successfully constructing a complete single-state structure
FIGURE 2

Illustrative examples of AlphaFold3 (AF3)-predicted RNA-dependent RNA polymerase (RdRp) structures with disorder-rich palmprint domains and
long intrinsically disordered regions (IDRs) in newly discovered RNA viruses. Structures: AF3-derived structure prediction colored by the predicted
local distance difference test (pLDDT) scores (see Methods). Plot: Full per-residue color coding based on the AlphaFold 2 (AF2) model confidence
score (AF2-ppLDDT) along the sequence. Comparison of disorder (red) vs. AF2-ppLDDT predicted pLDDT (blue) (also termed Metapredict-ppLDDT;
divided by 100 to place it on the same scale as in 46) and early folding (green). Regions highlighted in pink represent IDRs. Predictions provide a
linear assessment of whether a residue falls within a disordered or a structured region (as described in Figure 1). RdRp sequences from publicly
available repositories (see Supplementary Material for all RdRp sequences and palmprint analysis). (A) Beet chlorosis virus (BChV) (GenBank:
AAK49956.1/RefSeq: NP_114361.2, Pisuviricota, Sobelivirales, Solemoviridae, Polerovirus). (B) Megalopteran phenui-related virus OKIAV286 (GenBank:
QPL15334.1 Negarnaviricota, Bunyavirales, Phenuiviridae). (C) Picornavirales RdRp (SRR12149956, Nepovirus, Secoviridae, Picornavirales, AAL36026.1).
(D) Weivirus RdRp (SRR7109325; closest palmID hit: Beihai weivirus-like virus 4, unclassified Riboviria, YP_009337162.1). (E) Yanvirus RdRp
(SRR11679702; closest palmID hit: Tombusviridae sp., unclassified Kitrinoviricota). (F) Lenarviricota RdRp (SRR5215309; closest palmID hit: Apple
ourmia-like virus 2, Lenarviricota, QIC52828.1). Structures were analyzed and figures were generated using PyMOL (49) and UCSF ChimeraX (173).
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reaching near-perfect experimental coverage and providing

virologists with a highly informative influx of biological insights

into protein function that are extendable to large-scale structural

evolutionary knowledge. The striking high-level prediction

performance of AF2 persistently outperforms that of existing

state-of-the-art computational tools (162), also demonstrating

high accuracy in determining protein evolutionary covariations

(163–169). Nonetheless, despite the outstanding performance of

AF2, there are still some targets for which the prediction results are

rather mixed, particularly in cases when the quality and depth of

MSAs are insufficient for the proper modeling of inherent or

induced protein IDRs (170).

As computational structure prediction is significantly impacted

by the quality of MSAs, the superiority of template information

does not guarantee the improvement of the final structure. Hence,

template information refers to known structures of proteins (PDB

or MSAs) that can serve as templates for the prediction of the

structure of a related sequence (171). While template information is

valuable, it is not always sufficient to guarantee accurate predictions,

particularly if the MSAs used to generate these templates are of low

quality or shallow in coverage. In other words, even if the template

information is superior, if the underlying MSAs are flawed, the

predicted 3D structure may still be of low resolution. Therefore,

large margins still exist for further progress in deep neural network

models, both in terms of the accuracy and quality of the predicted

structures (172). Figure 2 shows a sampling of RdRp structures

predicted by AF2. The regions with very low confidence, as

indicated by the pLDDT scores, are particularly relevant. For

example, in Figures 2A, B, F, the model coloring (by AF2-

pLDDT) shows the majority of residues with >90, whereas the

ppLDDT in the plots for the AF2-pLDDT confident regions

indicates lower scores, such as with <80, and some even low–very

low range. On the other hand, in Figure 2C, the high–very high

confident regions indicated by the ppLDDT in the plot for aa 1–400

are inconsistent with the low AF2-pLDDT confidence coloring of

the regions outside motifs A–C in the model. The BRNN (46) used

to generate the ppLDDT scores was trained on the AF2-pLDDT

scores from the proteomes of 21 organisms; however, viral

proteomes were not mentioned (46). These differences and

inconsistencies between AF2-pLDDT and ppLDDT highlight

potential important limitations in the context of IDRs in viral

proteins and, in particular here for the RdRps. i) Structural

interpretation of IDRs: the AF2-pLDDT scores for IDRs are

generally low due to their inherent flexibility and lack of fixed 3D

structures. However, these low scores could reflect true intrinsic

disorder or inaccurate modeling.

This ambiguity is compounded when the ppLDDT scores

contradict the AF2-pLDDT coloring, as seen in Figure 2C. Then,

the misclassification of IDRs as poorly modeled structured regions

(or vice versa) can obscure functional insights into viral RdRps,

where IDRs often play critical roles, such as RNA binding or

replication complex assembly. ii) Training bias toward viral

proteins: AF2 and AF2-ppLDDT predictors are primarily trained

on structured protein datasets and non-viral proteomes. Viral

proteins, including RdRps, often exhibit unique sequence features
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and functional intrinsic disorder, which are underrepresented or

absent in these datasets. For example, the BRNN used for the

ppLDDT score training (v2) does not mention the inclusion of viral

proteomes (in contrast to its current version, v3), limiting its

reliability when predicting residue confidence in viral proteins. In

contrast, AF2 was trained on the PDB, which, while limited in viral

protein representation, is not devoid of them. The discrepancies

between the AF2-pLDDT and ppLDDT scores highlight critical

limitations in confidence score interpretation for viral RdRps,

particularly for ambiguous IDRs or low disorder regions, which

imposes, as mentioned above, use of multiple or ensemble-based

approaches of robust and accurate IDP metapredictors (see

Supplementary Material for CAID benchmarking multiple

disorder prediction methods on experimentally validated PDB

structures; Supplementary Figures S3A–C). This is particularly

significant for IDRs, where the inherent flexibility and lack of

training on viral proteins introduce additional challenges.

Given these potential caveats, virologists should exercise greater

caution when interpreting the AF2-pLDDT or ppLDDT scores in

viral RdRps, complementing these predictions with disorder-aware

predictors and experimental validation to mitigate these limitations

and avoid misleading or inconsistent predictions.

In particular, enhancing the accuracy of side-chain modeling

appears to be a cornerstone for more accurate modeling of the

physiologically preferred low-energy state (174–176), especially in

prevalent long IDRs or natively unfolded regions (Figures 2A–F).

During the writing of this review, major efforts in structural biology

have been made to improve the average prediction performance of

AF2 in diverse manners since its publication by addressing diverse

bottlenecks in its new implementation (see AF3) (88). One of the

major advantages of AF3 is its capability to predict multiple types of

biological molecules as a complex. In addition, AF3 improves the

structure prediction in IDRs by addressing hallucinations (spurious

structural order) through distillation training from AF2, which

encourages ribbon-like predictions. This can significantly benefit

the prediction of RdRps as it would assist in the enhanced

identification of amino acid residues involved in substrate

recognition, catalysis, and template binding.

4.2.2 Advancing protein structure prediction to
account for the conformational space

One major path is to tackle the efficiency of training and

inference speed. RoseTTAFold (177), ColabFold (86), and

OpenFold (178) are the three initial works in this category. While

ColabFold is a cloud-based, slightly re-implemented AF2 model

with its own training system, OpenFold is a retrained version of

AF2 with accelerated training/inference time. A number of works

have attempted to build models that alleviate certain restrictions of

AF2. ESMFold (87), a large language-based model (LLM), presents

end-to-end MSA-free models that can predict complete structures

without templates, which is impossible via AF2. Figure 3 illustrates

the structural similarity prediction scores for RdRp from TuMV

(Pisuviricota), a plant virus for which no experimentally determined

RdRp structure is currently available, like for many plant viruses

underrepresented in structural databases (such as PDB) compared
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with their animal or human counterparts, comparing the top-

per forming s t ruc ture pred ic t ion methods f rom the

aforementioned predictors. Palmprint domains, motifs, and the

overall structure similarity predictions of the RdRp-TuMV

predicted using AF2 (Figure 3A) were compared: AF2 vs.

DeepFolding, AF2 vs. ESMFold, AF2 vs. PEZYFolding (DF),

DeepFolding vs. ESMFold, PEZYFolding (DF) vs. DeepFolding,

and PEZYFolding (DF) vs. ESMFold (Figures 3B–G). Metrics

such as the global distance test for tertiary structure (GDT-TS),

which is a standard measure of modeling accuracy, are used to

evaluate the accuracy of the global backbone trace of the structure.

In addition, the TM-score measures the similarity of the predicted

structure to the native structure on a scale from 0 to 1, where higher

scores indicate better structural alignment. The root mean square

deviation for Ca atoms (RMSD-Ca) evaluates the average deviation
of backbone Ca atomic positions between the predicted and the

reference structures, with lower values indicating higher accuracy.

ESMFold also exhibits potentially improved average performance

(181). For example, when benchmarked against AF2 (Figures 3B,

C), these LLMmethods revealed promising performance in terms of

accuracy and effectiveness (TM-score = 0.9386; GTS-TS-score =
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0.9086), but still show relative limitations in contrast with AF2-

based models (182, 183). More generally, another major hurdle of

the top-performing machine learning-based predictors lies in their

inability to account for folding kinetic pathways, specifically in

some RdRps, where dynamic functions can be governed by

stringent RNA template-dependent heterogeneous conformational

states (43, 184–186).

More prominently, one of the overwhelming innovations for

current computational structural biology is to combine natural

language processing (NLP) algorithms to implement global (re-)

optimization tools that capture the biophysical dynamics of the

backbone foldability and their more accurate side-chain torsions

including for IDRs at both local and global conformations.

Their biologically relevant states may foster learning how the

linear amino acid sequence folds into space, which still lies out of

reach (187). These pitfalls, which are likely to be resolved in the

future, can currently lead to naive or erroneous mechanistic RdRp

models with untestable hypotheses. Notwithstanding the

tremendous advance recently witnessed in sequence homology

and sequence-based protein structure prediction (188–190), the

modeling accuracy of the ever-increasing number of viral proteins
FIGURE 3

RNA-dependent RNA polymerase (RdRp) conformational heterogeneity within the conserved motifs predicted with AlphaFold2 (AF2) and
benchmarked with other structural predictors and their 3D representations. AF2 prediction of the RdRp from Turnip mosaic virus (Pisuviricota,
Patatavirales, Potyviridae, Potyvirus; TuMV-Nib, GenBank: BAA11836.1) with the per-residue local distance difference test (LDDT)-Ca and the
predicted LDDT (pLDDT). The pLDDT score is colored by model confidence. (A) Palmprint domains, motifs, and overall structure similarity
predictions of the RdRp-TuMV using AF2 vs. DeepFolding (B); AF2 vs. ESMFold (C); AF2 vs. PEZYFolding (DF) (D); DeepFolding vs. ESMFold (E);
PEZYFolding (DF) vs. DeepFolding (F); and PEZYFolding (DF) vs. ESMFold (G). The globular domain is well predicted, but the extended interface
exhibits low pLDDT and is incorrect apart from some of the secondary structure amino acids (orange and yellow). The global distance test for
tertiary structure (GDT-TS) and the template modeling score (TM-score) were calculated using the TM-Align program. The AF2 predicted protein is
shown in magenta color, with the motifs highlighted in colors. Predicted structures are superimposed over models with the greatest TM-scores. The
references for each of the predictors used are as follows: Oda et al. (179) [PEZYFolding (DF)]; Zheng et al. (180) [Yang-Server (DF)]; Mirdita et al. (86)
(ColabFold); Lin et al. (87) (ESMFold), Ahdritz et al. (178) (OpenFold); and Lee et al. (181) (DeepFold). The top scores in each metric are shown in bold.
Protein structures were visualized in PyMOL (49).
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lacking fold homologs still requires improvements to better capture

the IDR-mediated functional behaviors of dynamically

heterogeneous multiple states. While these methods are currently

unable to predict the effects of missense mutations on structural

pathways (191, 192), it is conceivable that the incorporation of such

physics-based experimental data from the known RdRp global

mutational landscape will enable circumventing major unsolved

optimization problems in future versions of protein structure

prediction programs (193).
4.3 Emergent disorder-based sequence-
to-ensemble relationships bring novel
insights into the discernible conformational
foldability dynamics of RdRps and their
topology preferences

The RdRp functions are borne of the intimate set of dynamics

and conformational fluctuations. Upon analysis of the palmprint

database, our study revealed that the prediction of disorder

propensities can exhibit substantial fluctuations across most RdRp

functional domains (Figure 4) and is implicated in a variety of

essential roles in viral molecular functions and diseases (78, 195).

However, the observation of this variability depends on the specific

criteria and algorithms used for disorder prediction (see Methods

and Supplementary Material), which may yield variable outcomes.

Therefore, the prediction and functional relevance of IDRs in viral

RdRp proteins should be interpreted with caution, benchmarked

accurately (101, 103, 152) and ideally validated through
Frontiers in Virology 13
experimental approaches. The computational dissection of RdRp

folds and IDR determinants—and, hence, their ensemble properties

—can be deployed for the quantitative assessment of

conformational magnitude and comparative sequence feature-

based protein analysis to understand how functional evolution

operates (119, 124, 196, 197). Arguably, one strategy for

understanding hypervariability conservation in RdRps is by

capturing the generic and emerging ensemble properties that can

contribute to function, enabling the decoding of sequence–

ensemble–function relationships (78, 99, 198).

4.3.1 Distinct patterns of sequence-to-
conformational ensemble determinants in the
RdRp module

Traditionally, our appreciation of how evolution has

functionally diversified RdRps has relied on two main data

sources: the primary protein amino acid sequence and the overall

protein fold (199, 200). In contrast, the lack of knowledge about the

conformational properties of RdRps is due to both the

hypervariable fraction of disordered regions within proteins (201,

202) and the scarce record of RdRps that have been experimentally

characterized (203, 204). Moreover, like most proteins in their

cellular context (109, 205–208), part of the RdRp module is

expected to bear highly dynamic structurally ambiguous

ensembles of conformers embedded in intricate topologies.

Although experimental structure models derived from NMR or

electron paramagnetic resonance (EPR) data are currently the best

means of providing a reasonably accurate experimental estimation

of conformational ensembles (209, 210), RdRps still suffer from
FIGURE 4

Distribution of the intrinsic disorder propensities in the functional RNA-dependent RNA polymerase (RdRp) domain across the RNA virus landscape.
Per-sequence intrinsic disorder levels in the RdRp proteins from the Serratus RdRp palmprint database (48). Bars represent the mean protein-
average disorder scores [the predicted local distance difference test predicted by AlphaFold 2 (AF2-ppLDDT, or the metapredict-ppLDDT)] in the
corresponding RdRp lineages (n = 250,081sequences), whereas error dots reflect the corresponding standard deviations (see Supplementary Material
for all RdRp sequences). All statistical analyses were performed using the Numpy and Scipy package in python (194).
frontiersin.org

https://doi.org/10.3389/fviro.2025.1501616
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Tahzima et al. 10.3389/fviro.2025.1501616
incomplete representation of their traditional rigidly fixed set of

static coordinates and/or from the prediction of the most dominant

single-folded AF2-assumed conformer. Similarly, residues that exist

or are absent for the same protein in various X-ray structures

exhibit a fractional or restricted disorder in distinctive experimental

setups while being rarely statically disordered (109, 211). The

overarching premise of our assumption to infer RdRp

conformational diversity based on sequence–ensemble

relationships is that, as amino acids co-evolve in the context of

3D dynamic (mis)folding in patterns reflective of their underlying

structural functionality (212–214), then, sequence–ensemble

relationships must also evolve in the context of the multiple

conformational substates (conformers) that they adopt. While

AF2 reached experimental accuracy at single-structure prediction,

more dedicated efforts need to be garnered to improve its limited

ability to predict and annotate multiple conformations of proteins

(147, 215, 216). This is mainly because, for the reasons explained

above, AF2 predictions find their root in complex experimental

PDB data of proteins at cryogenic temperatures packed in crystals,

from which it recognizes folding patterns, and do not incorporate

the biophysical properties of prevalent multiple conformers (217,

218). Despite these hurdles, recent research has revealed that AF2

provided a single low-energy state for a given protein sequence can

provide foldability information about the local regions of clustered

proteins that may fold conditionally based on the CAID prediction

dataset (97, 219, 220). This supports the relevance and impact of

capturing alternative dynamic conformers through dedicated

probabilistic biophysical analysis (78, 100, 221), as we are tackling

here in our exploratory effort across the evolutionarily distributed

RdRp landscape.

Notably, AF2-assigned low-to-very low per-residue confidence

scores (pLDDT) are of particular biophysical interest as they may

indicate IDRs that populate diverse sets of transiently formed

structures; however, any low-confidence scores resulting from

poor MSA should not be misinterpreted as IDRs (93, 121). One

of the key innovations of AlphaFold is its ability to leverage

evolutionary covariations derived from large-scale MSAs (222).

However, the conformational “clouds” observed in AlphaFold

predictions can be attributed to certain aspects of its underlying

methodology (167). This is particularly important to acknowledge

as IDRs pose a unique challenge due to their hypervariability across

orthologs, making it difficult to uncover evolutionary constraints

from alignments alone. When valid, MSAs play a critical role in the

prediction of residue–residue distances. However, IDRs evolve

much faster than structured regions, making their MSAs less

reliable for structure prediction. This rapid evolution often results

in alignments with large gaps or extended gaps due to the high

variability and wide sequence lengths of orthologous IDRs.

Consequently, distance restraints within IDRs, as well as

between IDRs and folded domains, are often poorly defined. The

lower quality of information from MSAs for IDRs compared with

intrinsically foldable domains likely contributes to the formation of

diffuse “clouds” of predicted conformations around ordered

domains in proteins with long IDRs. Such IDRs challenge the

conventional sequence–structure–function relationships and limit
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our functional understanding as it is challenging to situate their

molecular interactions across their evolutionary histories (78, 223).

This lack of knowledge can be alleviated by exploiting biophysically

informed computational tools used to model the emergent

properties of marked or latent ambiguous protein behavior, such

as secondary structure propensity, therefore adding relevant

annotations to the AF2 predictions (224).

Delineating the diversity of RdRp conformers is a challenging

task and necessarily entails an oversimplistic interpretation of

complex and often elusive conformational states, including

probabilistic descriptions of different interactions and (locally)

diverse conformations at any given time point, prior or after

various posttranslational modifications (225, 226). While

accounting for these hurdles and the increasing amount of

metagenomic data, we wanted to demarcate, in the most accurate

and robust way possible, the spectrum of RdRp conformational

behavior. Through an ensemble of machine learning-based

methods that generate a wide set of biophysical features from

protein sequences, combined with AF2 predictions, we attempted

to identify conditional intrinsic disorder-mediated folding in order

to survey the RdRp common properties and conformational

specificities within a representative dataset (Figure 5A). Indeed,

given the ensemble nature of proteins, RdRp conformers within

their native ensemble could display similar backbone dynamics, yet

diverge in the conformations of some IDR-promoting residues

(196, 205, 227–229).

In terms of the overall properties and modes of intramolecular

interactions of RdRps, we were interested in whether the

biophysical dissection of RdRps via sequence–ensemble

relationships could help us discern whether, beyond the per-

residue local arrangements, certain sequence determinants are

more dominant than others. For example, the relative positioning

of hydrophobic and charged residues—referred to as patterning—is

a key determinant of the ensemble properties in IDRs as it provides

repulsive and attractive electrostatic interactions coupled with

favorable free energies of solvation (230, 231; 232), involving the

stabilization and possible regulation of RNA binding in RdRps

(233). Order-promoting residues mostly include strong

hydrophobic amino acids, which mainly enrich regular secondary

structures and motifs that participate in the densely packed cores of

globular domains and cellular membrane rearrangements (234,

235). More disordered segments, in contrast, are more often

enforced by hydropathic residues, polar and/or charged residues.

Examining the (non)foldability of pervasive peptides and the

intramolecular hydrophobic topological patterning associated

with their aliphatic residues therefore offers an efficient way to

determine the impact of these emerging ensemble properties on

disorder-based conformational signatures, even in remotely related

sequences (236–238).

In line with this, capturing the regular distribution of hydrophobic

motifs through systematic analysis can broaden our understanding of

the driving roles of these transitory intramolecular interactions within

regular transient secondary structures and reveal novel stabilization

factors without prior knowledge of homogeneous sequences or

consideration of pre-calculated properties (239). Hence, this offers
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useful proven elements to distinguish cases where AF2 low-confidence

scores identify foldable IDRs from cryptic or ill-predicted structured

regions (100, 240) and ultimately may help decipher the evolutionary

constraints of RdRp conformational plasticity more effectively. We take

advantage of this knowledge and our sequence-based RdRp ensemble

approach to explore the correspondence between the clustering and

patterning of these different residues and their impact on the structural

diversity of RdRps (Figure 5B). This is consistent with previous studies

on polymer scaling behavior (132, 231, 241–243), which combines

hydropathy and charge patterning. These sequence features can enable

the unique comparative characterization of the RdRp conformational

distribution properties embedded in both conditionally foldable and

transient linear IDR residues, therefore enabling in-depth analysis of

the structural landscape of RdRps, beyond classical methods. In

another example, shown in Figure 5C, interconnecting the RdRp

backbone and side-chain dynamics with the propensity for

polyproline II (PPII helices), as previously done for other proteins

(244), can aid in understanding the molecular mechanisms of the

structural plasticity of RdRps and their tethered IDR-based

conformations. While side-chain dynamics provides a continuous

and subtle picture of residue behavior with regard to their backbone

rigidity and, by extension, to residue order and disorder (94), PPII

helices have been frequently observed in disordered regions of proteins.

Unlike common helical structures, PPII helices have little to no

hydrogen bonding capacity and have been observed to play a role in

interactions between the protein domains. As natively unfolded
Frontiers in Virology 15
peptides possess some degree of local order in their backbones, we

examined the relationship between RdRp sequence-encoded PPII

propensities and conformational dynamics. Proline possesses

unique and distinct structural properties, such as the ability to

disrupt the propagation of regular secondary structural elements,

promoting a-helix nucleation and coil formation and locally

contributing to backbone stiffening (245, 246). PPII is therefore

an interesting multifaceted candidate for the detection of specific

local conformational preferences across the RdRp sequence

landscape of RNA viruses. The downstream responses of protein

dynamics and related functions are also often dictated by signaling

cascade cues that are triggered by posttranslational modifications,

particularly within the proline-rich short linear motifs (184).

Thereby, as previously evidenced, the conformational properties of

IDRs prior to and following multisite phosphorylation (Ser/Thr/Tyr)

are directly relevant to disentangling the functions of RdRps. In

particular, divergent RdRps folds that are globally well predicted by

AF2, therefore capturing the main folded state, but that yet harbor

enhanced conformational plasticity, remain difficult to examine using

standard methods. We further speculate that the accessibility and

downstream binding of RdRps to specific substrates is dictated by

the sequence-encoded interplay of local and global conformational

properties, including IDRs prior to and following phosphorylation

(247–249).

Although the effects of (non-)local expansion and compaction

involving synergistic long-range conformational relationships can
FIGURE 5

Emergent RNA-dependent RNA polymerase (RdRp) sequence-to-conformational ensemble relationships and their structural determinants across the
RNA virus landscape. Per-sequence relations and propensity predictions between the predicted scores of the protein structure [the predicted local
distance difference test predicted by AlphaFold 2 (AF2-ppLDDT, or metapredict-ppLDDT] (structure; see details in Figure 2) vs. protein intrinsic
disorder (IDP) (A); fraction of charged residues (FCR) vs. hydropathy (B); backbone dynamics vs. polyproline II (PPII) (C); and side-chain dynamics vs.
PPII (D) (see Supplementary Material for all RdRp sequences). All statistical analysis and R2 calculation were performed using the Numpy and Scipy
package in python (194).
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leave global dimensions rather unperturbed, the manner in which

various RdRp regions react to multisite phosphorylation is sequence

context-dependent and strongly relies on the pattern of specific

amino acid residues therein. As previously reported (231), no

correlation between global PPII occupancy and the measurable

global dimensions of protein conformations (e.g., Rg or polymer

radius of gyration) can be found, advocating compensatory effects

where sequences with similar PPII propensities can have very

different effects on the ensemble average structure of the polymer

(176). Remarkably, our exploratory survey revealed a strong anti-

correlation between the RdRp side-chain dynamics and PPII

(Figure 5D), which recapitulates the sequence-local effects of the

interplay between backbone and side-chain dynamics motions that

is often critical for optimizing protein–ligand interactions in the

substrate-specific binding affinity of function-bearing motifs (250).

Notably, intrachain segregation patterns driven by repulsions

are encoded by the RdRp amino acid sequence, which directs the

overall conformational properties prior to and upon multisite

phosphorylation. Interestingly, the proline-patterning and charged

residue decorations with respect to all other residues change only

slightly upon multisite phosphorylation (118). Such effects can be

very important in the context of, for example, human health, where

single mutations may lead to protein instabilities and malfunctions

that cause human pathologies (251, 252).

In summary, our initial exploration highlighted the need for

further investigation to fully characterize the effect of PPII-rich

structures through experimental observables and to unravel the

biological significance of these trends in viral replication. Through

selected examples and a large sequence–ensemble dataset, this section

only touched the surface of how the coexistence of charge decoration

and hydrophobic cores, folding dynamics, and ensemble dimensions

of well-folded regions and disordered contexts can constitute major

factors in the cross-interaction-driven interplay of emerging

synergistic or competing modulators of RdRp conformation.

Furthermore, we anticipate that, with all recent major model

updates of AF2/ColabFold to better capture cross-configuration

(253, 254), the challenge in systematically relating the various

computational tools and diverse data sources will be in this respect

invaluable for the direct interpretation of RdRps spanning a diverse

range of secondary structures affected by diverse conformational

ensembles, as previously underlined. Consequently, understanding

the hierarchical impacts of sequence determinants and structural

contexts on the conformational properties of RdRps remains an open

challenge. More crucially, accurate identification of fold-switching

regions would aid in identifying new or cryptic (un)folded RdRp

structures and promiscuous interactions that are targetable by

antiviral therapeutics. Large-scale automated annotations and

predictions will illuminate the foundational principles of context-

sensitive RdRp folding dynamics, host-dependent functionalities, and

trace molecular innovations over co-evolutionary histories that

underlie the known and unknown RNA virosphere yet to

be characterized.
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5 Conclusion: outlooks on
perspectives for RNA virus discovery
and RdRp conformational diversity

The hallmark RdRps are among the best-studied proteins that

modulate viral replication and many disease processes. RdRps,

similarly to most native proteins, are often treated as rigid

polypeptides, as observed in their crystal-packed conformation.

However, this single homogeneous conformation does not capture

the functional ensemble exploited by viruses and is not necessarily the

most populated one in solution, with crystal structures likely altered by

crystallization effects. The main thesis of this review is that RNA virus

discovery can benefit from considering the evolution of the RdRp

protein as structural ensembles—a continuum between multiple folded

and disordered states under functional constraints (120)—which is a

conformational sampling mechanism commonly exploited by viruses

(77). Tapping into the broadly distributed ensembles of this

conformational flexibility during replication provides viruses with

selected adaptive solutions as a competent biological response to

modulate cognate binding partners or disfavor unwanted interfaces,

and more generally to adapt to their changing environment.

In our systematic review, we have underlined that structural and

conformational variability analyses of the RdRp core domain and

hypervariable IDRs are central to gaining a more nuanced

probabilistic understanding of the mechanisms of RdRp-based

RNA synthesis adopted by viruses of different taxonomical

categories and evolutionary lineages. This also helps in capturing

commonalities and generic themes defined by biophysical feature

fluctuations of diverse magnitude.

In addition, these various prominent RdRp biophysical

properties suggest other modulatory clues for the adaptive co-

evolution of viruses in relation to hosts. Within this framework,

we also succinctly reviewed the recent state-of-the-art

computational progress in these domains, which allowed

addressing the challenging new biological insights through large-

scale structural analyses of RdRp sequences, elaborating on prior

experimentally and computationally driven investigations in this

landscape (255). Aware of its infancy, we expect rapid progress on

multiple fronts, including virus discovery (84). On a first front, the

prediction speed and memory efficiency remain bottlenecks,

particularly when predicting multiple conformations, which must

be applied at scale to assemble a comprehensive picture of the global

RdRp modulome.

On another front, in many novel RdRps, little is known with

regard to the repertoire of tolerated amino acids in proteins when

only a few or no sequence homologs are available or that are MSA-

recalcitrant. Although the surge of novel RdRp-based RNA virus

discovery has expanded our understanding of the molecular

mechanisms of viral replication and evolutionary diversity, the

foundations of our current knowledge of these processes still

remain primarily built on previous sequence-based research on
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RNA viruses and phylogenetic inference. The ability of AF2, and of

artificial intelligence-based methods in general, to accurately

provide an accounting of the conformational landscape of

proteins remains limited. Recent appealing advances in a range of

more proficient deep learning-based algorithms might emerge.

More accurate, memory-cheap, and stable AF3-aware re-

implementations could make it possible to tackle richer

multipurpose representations of the RdRp sequence-to-

conformation space. We stress that corroborating our

understanding with more structural and conformation-driven

information will likely reveal novel properties and processes

shared between viral species, which are better informed and of

potential value not only for novel AF3-modeled structural diversity

(88) and evolutionary analysis but also for the design of efficient

antiviral strategies.

Next, and of paramount importance, is the relevance of

highlighting poorly understood biophysical properties that can have

intricate and fluctuating effects on the spatiotemporal propensities

that tune the function of RdRps in their evolving cellular context. For

example, the drivers of dramatic conformational and structural

switches are still largely understudied, including the repertoire of

sequence-to-conformation determinants directly involved in

operating the viral replication cycle. How these factors may direct,

via spatial seclusion, dedicated virus-induced subcellular

compartments and membranous vesicles to finally serve as

replication factories is not clear, despite this feature being shared

among many emerging or pandemic positive-strand RNA plant,

animal, and human viruses during the earliest infection stages prior

to viral propagation. Our review has some limitations. Among these,

RdRp-based RNA virus discovery at diverse evolutionary scales is

challenging due to the high sequence divergence, which makes RdRp

sequence-to-conformation biophysics insufficient to reflect the true

evolutionary histories of Riboviria. This highlights the importance of

integrating complementary approaches to gain mechanistic residue-

level insights into the RdRp sequence determinants.

Together, this systematic review emphasized, through multiple

examples, emerging concepts on the complementary power of recent

advances in sequence-based resources that are directly anchored in

experimental data and closely connected fundamental principles of

protein side-chain dynamics, early folding, and disorder-based

conformational dimensions. To conclude, we hope to have

provided better-informed and well-suited directly applicable

investigational routes to infer the diversity features of RdRps across

the Orthornavirae classification in light of their biological

significance. This strengthens the foundations of bridging these

concepts with the One Health outstanding challenges and paves

ways for convenient generalizable routes to mitigate future viral

outbreaks of uncharacterized or newly discovered viruses while

anticipating the forthcoming vast expansion of the global

RNA virosphere.
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