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The origins of viruses:
evolutionary dynamics of the
escape hypothesis
John T. O’Brien1,2, Asha M. George2 and Michael B. Bonsall1*

1Mathematical Ecology Research Group, Department of Biology, University of Oxford,
Oxford, United Kingdom, 2Bipartisan Commission on Biodefense, Washington, DC, United States
Introduction: Several hypotheses exist about how viruses first emerged on Earth.

Understanding whether viruses escaped from cells, remained from devolved

cells, or emerged before cells is key to comprehending the origins of viruses and

life in general.

Methods: Here, we analyze the evolutionary dynamics of the escape hypothesis

(as proposed by Forterre and Krupovic) for viral origins. We developed theoretical

and numerical approaches to investigate the dynamics of the virus escape

hypothesis and highlighted which parameters (e.g., maturation rate, infected

cell death rate, virus replication rate, infection rate) influence virus evolutionary

origins and reinfection dynamics.

Results: Critically, we demonstrate that viral death rate (mV) and infected cell

death rate (mI) must exceed a certain threshold for viruses to emerge and persist

through the escape hypothesis. Furthermore, we demonstrate that unfaithful or

unequal ribocell division is a necessary component of the escape hypothesis. We

also examined early virus strategies for proliferation by comparing budding and

lysing virus reproduction modes.

Discussion: Our results highlight the importance of certain biological

characteristics (e.g., maturation rate, infection rate, lysing rates, budding rates),

required for the emergence of viruses via the escape hypothesis. The model we

present here provides a sound basis for further work on the evolutionary

dynamics of virus origins.
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Introduction

Viral origins

Earth’s oceans contain about 1031 viral particles, magnitudes

more than the estimated number of stars in the known universe (1).

Viruses also outnumber bacteria by a factor of 10 (2). Viruses are

the most abundant and diverse biological entities in the biosphere

(3) and play a major role in biodiversity, evolution and ecosystem

function (4). Although viruses are ubiquitous, the evolutionary

origins of viruses remain unresolved.

As sequencing and metagenomic technologies matured, the

evolutionary relationships between cells and viruses became clearer,

indicating that viruses should have a place in the phylogenetic tree of

life (5). Interactions between cells and viruses often involve horizontal

gene transfer allowing for greater genetic diversity as they coevolve.

Viruses affect the interactions among all of these factors and adopting

an ecosystem perspective would enhance understanding of virus

evolution and emergence (6). Viruses can also transfer genetic

material within ecosystems and by influencing diversity, may affect

ecosystem health and resilience (7).

There are three classical hypotheses for the origins of viruses: 1)

progressive or escape; 2) regressive or reduction; and 3) virus-first. The

progressive or escape hypothesis suggests that viruses originated from

genetic material that gained the ability to move between cells and

acquire genes through horizontal gene transfer (8). The goal of this

paper is to explore the escape hypotheses theoretically, using a set of

ordinary differential equations to understand how different life-history
Frontiers in Virology 02
parameters and reproductive processes influence virus escape and

better explain the evolutionary origins of viruses.
The escape hypothesis

The escape hypothesis (Figure 1), where fragments of cellular

genomes became infectious and resulted in viruses, originated

following the discovery of proviruses and prophages in the 1960s (9).

The protovirus hypothesis, in which RNA viruses evolved from cellular

components, followed about a decade later (10).

There are two different versions of the escape hypothesis. The first

suggests that viruses arose from more modern cells such as eukaryotes

and prokaryotes that originated from the last universal common

ancestor. The second modifies this idea and suggests that viruses

predated modern cells and the last universal common ancestor, and

arose from ancient RNA-based ribocells (11).

Taking these hypotheses into consideration, we assumed that

ancient RNA-based ribocells existed before the last universal

common ancestor. These ribocells possessed selfish genome

fragments and translation machinery (i.e., ancestral ribosomes). For a

genome fragment to become autonomous in ancient RNA cells was

likely easier than in modern cells, since the different molecular

mechanisms were probably much simpler and less integrated.

The life of an ancient ribocell could have had three outcomes. The

cell could: 1) faithfully divide and continue replicating normally; 2) die;

or 3) go through unequal cell division, potentially giving rise to a

viroribocell (i.e., a ribocell harboring virions). In the latter case, the
FIGURE 1

A diagram representing the escape hypothesis for viral origins. First, an ancient ribocell divides faithfully or unfaithfully. If the ribocell divides
unfaithfully, it would produce two mini-cells with genetic material but no translation machinery. One of these mini-cells would die off due to the
lack of a protein coat, but the other would survive with a functioning protein coat. The mini-cell with a protein coat could then potentially transfer
into another cell, together becoming a viroribocell. Then the viroribocell becomes a virus if it successfully replicates and proliferates.
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ribocell would produce two mini-cells with genetic material but no

translation machinery. One of these mini-cells would die due to the lack

of a protein coat, but the other would survive with a functioning protein

coat. The surviving mini-cell could then transfer into another cell,

creating a viroribocell.

The protovirus in this ribocell would not be a successful virus

unless it replicated and proliferated, creating some type of genetic

lineage. The viroribocell could die and fail to effectively spread its

virions. Alternatively, this cell could lyse and release virions that go on

to infect other cells (12). Finally, the cell could survive while infected

and spread virions through budding. Whether by lysing or budding,

the virions must continue the cycle of successful replication and

proliferation to be considered a bona fide virus. The viral lineage

could also die before it had infected enough cells to proliferate

successfully. A threshold likely exists at which a number of successful

cycles led to a virus.
Early virus strategies

Early viruses could have formed virions and proliferated

through two production strategies: 1) the production and

proliferation of virions via lysis of infected ribocells; or 2) the

production and proliferation of virions via budding of infected

ribocells. The preferred strategy for an early virus is unknown but

some studies suggest that different strategies may have emerged in

different lineages of ribocells (11). Recent work examined the

evolutionary dynamics of modern virus production strategies and

whether budding or lysis may provide selective advantage, taking

time delays into consideration (12). Results from this work

indicated that the length of delay before lysis is an important trait

in evolutionary dynamics. For fixed times to lysis, intermediate

delays resulted in lower virus fitness than compared to a short time

to lysis (resulting in a lysing strategy), and long times to lysis

(resulting in a budding strategy). We carried out similar analyses in

this study to explore the evolutionary dynamics of the escape

hypothesis for viral origins.

Using a theoretical evolutionary dynamic framework, we

explored the use of the escape hypothesis as a mechanism for the

evolutionary origins of virus. Here, we begin by introducing the

mathematical model and details about model analysis. We then

contrast results from invasion, deterministic, and stochastic

analyses of the escape hypothesis. Subsequently, we discuss the

importance of this hypothesis for understanding the ubiquity of

viruses, how certain parameters affect virus emergence and

persistence, and approaches for empirically verifying predictions

based on the hypothesis.
Methods

We used a set of four coupled differential equations to evaluate

the dynamics of early virus emergence via the escape hypothesis.

Ribocells (R), unfaithfully replicating ribocells (U), infected

ribocells (I), and virus (V) dynamics are represented by:
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dR
dt

=  −mRR + 2lR − l0R − bRV (1)

dU
dt

= l0R − mUU −mU (2)

dI
dt

=   bRV −  mI I −   bR(t − t)V(t − t)e−mIt (3)

dV
dt

= mU +   qbR(t − t)V(t − t)e−mIt + g I(t − t 0)e−mIt 0

−  mVV (4)

where mR is the ribocell death rate, l is the ribocell reproduction

rate, l’ is the unfaithfully replicated cell reproduction rate, b is the

infection rate, mU is the unfaithfully replicated cell death rate, m is

the maturation rate at which unfaithfully replicated cells become

virus, mI is the infected ribocell death rate, t is the lysing delay, t’ is
the budding delay, q is the lysis rate, g is the budding rate, and mV is

the virus clearance or death rate. We explored virus emergence via

the escape hypothesis using analytical (i.e., invasion analysis) and

numerical (i.e., sensitivity analysis) techniques, together with

investigation of both deterministic and associated stochastic

dynamics. Tables 1 and 2 contain model definitions, parameter

values, and ranges.
Invasion analysis

We used techniques from invasion analysis (12–14) to explore

the emergence of viruses from unfaithfully replicated cells. We

evaluated the effectiveness of lysing and budding strategies for early

virus by 1) assuming ribocells already exist at a constant density and

2) deriving a fitness function to determine whether viruses can

invade from rare. Technically, this involved linearizing the

dynamics around the trivial steady state (V=0) and then taking
TABLE 1 The 10 events for the stochastic dynamics of the escape
hypothesis and at what rates they occur within the model.

Event Rate

Ribocell death mRR

Unfaithfully replicated ribocell death mUU

Infected ribocell death mII

Virus death mVV

Replication of ribocells 2lR

Unfaithful replication of ribocells l’R

Infection of ribocells bR

Maturation of unfaithful ribocells
into virus

mU

Virus budding from infected cells g I(t − t 0)e−mI t 0

Virus lysis of infected cells bR(t − t)qV(t − t)e−mI t
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the determinant of the Jacobian matrix of these partial derivatives

for unfaithfully replicated cells (U), infected cells (I), and virus (V).

This matrix takes the form of:

J =  

−mI − f bR(1 − e−mIt(1 − tf)) 0

e−mIt
0
g (1 − ft 0) −mV − f + e−mItbRq(1 − tf) m

0 0 −mUU −m − f

0
BB@

1
CCA
(5)

where f is virus strategy fitness (i.e., the dominant eigenvalue from

the matrix). Taking the determinant of this matrix, Setting the

determinant of this matrix equal to zero and solving for f, yields the
following virus fitness function:

f¼ ðmI −     mV +   e−mIt−mIt 0bg Rt − e−mItmIbqRt

− e−mIt0bg Rt 0 + e−mIt−mIt 0bg Rt +
ffiffiffiffi
((

p
mI + mV − e−mItbqR

−   e−mIt−mIt 0bg Rt + e−mIt
0
mIbqRt + e−mIt

0
bg Rt 0

− e−mIt−mIt 0bg Rt 0)2 − 4(mImV − e−mIt 0bgr + e−mIt−mIt 0bg R

− e−mItmIbqR)(1 + e−mItbqRt

+ e−mIt−mIt 0bg Rtt 0 )))   =   (2(1 + e−mItbqRt

+ e−mIt−mIt 0bg Rtt 0 )) (6)

We set terms contributing to budding (g) at zero, in order to

investigate the dynamics of a virus only using a lysis strategy. The

matrix then becomes:
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J =  

−mI − f bR(1 − e−mIt(1 − tf)) 0

0 −mV − f + e−mItbRq(1 − tf) m

0 0 −mUU −m − f

0
BB@

1
CCA (7)

The virus fitness function is then:

f =  −
emItmV − bqR
emIt +   bqRt

(8)

We set the lysis rate (q) to zero in order to investigate the

dynamics of a virus using a budding strategy only. Then, the matrix

becomes:

J =   (

−f − mi Rb(1 − e−tmi (1 − tf)) 0

e−mit 0g (1 − ft 0) −f − mV m

0 0 −m − f − UmU

)

0
BB@

1
CCA
(9)

The virus fitness function is then:

f = (e−tmi−mit 0Rbgt − mi − mV − e−mit
0
Rbgt 0 + e−tmi−mit 0Rbgt 0

+ √ (( − e−tmi−mit
0
Rbgt + mi + mV + e−mit 0Rbgt 0

− e−tmi−mit 0Rbgt 0)2=(2(1 + e−tmi−mit 0Rbgtt 0))

− 4( − e−mit
0
Rbg + e−tmi−mit 0Rbg + mimV )

(1 + e−tmi−mit 0Rbgtt 0)))

(10)

We simplified the matrix, only including equations for virus (V)

and infected ribocells (I), and leaving out unfaithfully replicated cells

(U), in order to explore reinfection dynamics after viruses had already

emerged. Making the system behave as if virus had already emerged

allowed us to explore how early virus might replicate and proliferate in

the absence of emergence dynamics. This matrix then becomes:

J =  
−mI − f bR(1 − e−mIt(1 − tf))

e−mIt
0
g (1 − ft 0) −mV − f + e−mItbRq(1 − tf)

 !
(11)

The virus fitness function is then:

f = (mI −     mV +   e−mIt−mIt 0bg Rt − e−mItmIbqRt

− e−mIt
0
bg Rt 0 + e−mIt−mIt 0bg Rt +

ffiffiffiffi
((

p
mI + mV

− e−mItbqR −   e−mIt−mIt 0bg Rt + e−mIt0mIbqRt

+ e−mIt
0
bg Rt 0 −   e−mIt−mIt 0bg Rt 0)2 − 4(mImV − e−mIt

0
bgr

+ e−mIt−mIt 0bg R − e−mItmIbqR)(1 + e−mItbqRt

+ e−mIt−mIt 0bg Rtt 0 )))   =(2(1 + e−mItbqRt

+ e−mIt−mIt 0bg Rtt 0 )) (12)

This function is the same as that derived for the 3x3 matrix

(Equation 6).

We initially set the parameters used in these analyses to the

values listed in Table 2.
TABLE 2 Parameter descriptions, ranges, and values used for analyses.

Parameter Description Range Value

R Ribocell population 2 - 200 200

mU Unfaithfully replicated
ribocell death rate

0.005 - 0.5 0.01

mI Infected ribocell death rate 0.001 - 0.5 0.01

mV Virus death rate 0.001 - 0.5 0.01

q Lysis rate 0.005 - 0.5 0.042

g Budding rate 1 - 500 1

t Lysis delay 1 - 200 1

t’ Budding delay 2 - 72 2

m Maturation rate of
unfaithfully
replicated ribocells

0.001 - 1.0 0.2

b Infection rate 0.000001 - 0.5 0.1

l Ribocell reproduction rate Not analyzed 0.05

l’ Unfaithfully replicated
ribocell reproduction rate

Not analyzed 0.005

mR Ribocell death rate Not analyzed 0.0083
Sensitivity analyses were carried out on parameters R, mU, mI, mV, q, g, t, t’, m, and b using
these ranges. Invasion, deterministic, and stochastic analyses were carried out using
these values.
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Sensitivity analysis

We used sensitivity analyses of the fitness functions to

determine the effects of changes in model parameter values on

virus fitness (f). This analysis aimed to evaluate the positive and

negative impacts of parameters such as the constant ribocell density

(R), unfaithful ribocell replication rate (mU), infected ribocell death

rate (mI), virus death rate (mV), lysis rate (q), budding rate (g), lysis
delay (t), budding delay (t’), maturation rate (m), and infection rate

(b) on virus fitness. Using Latin hypercube sampling and assuming

a uniform distribution for each parameter, we generated 2000

parameter sets with the ranges provided in Table 2. We plotted

the distribution of a parameter’s range against virus fitness to

identify obvious trends. If there were deviations or significant

correlations in these relationships, we assumed that the parameter

influenced virus fitness.
Deterministic dynamics

We analyzed deterministic dynamics to evaluate how viruses

emerge from unfaithfully replicated cells when either reinfection

dynamics are restricted or occur. We also used this analysis to

evaluate the effects of different parameter combinations on virus

fitness. In order to evaluate the deterministic dynamics of the escape

hypothesis, we used numerical integration (with a modified Runge-

Kutta fourth order (RK4) method) to solve, deterministically, the set

of delayed differential equations for the escape hypothesis dynamics

(Equations 1-4). The modified RK4 method included a quadratic

interpolation algorithm to account for time lags. The model was

initialized with 200 ribocells. The model ran for 1300 iterations,

with an integration step of 0.005, a buffer length for past values of

5000, and a start time of 0. We chose buffer length values to ensure

we had sufficient past history of deterministic dynamics for the

numerical simulations. We initially set parameters used in these

analyses to the values listed in Table 2.
Stochastic dynamics

We analyzed stochastic dynamics probabilistically to evaluate

how viruses emerge from unfaithfully replicated cells with restricted

and recurrent reinfection dynamics. We also used the analysis to

evaluate the effects of different parameter combinations on virus

fitness. As the stochastic model is probabilistic, this analysis

provides more fidelity into the dynamics of the escape hypothesis.

We investigated stochastic analyses of escape hypothesis dynamics

using a modified Gillespie algorithm (15, 16). This algorithm

provides a numerical approach for generating realizations of

temporal trajectories of stochastic equations for known reaction

rates. In general, this algorithm accounts for two key assumptions in

solving these sorts of stochastic processes (17), that the: 1) time-to-
Frontiers in Virology 05
the-next-event was exponentially distributed; and 2) probability of

the next event is proportional to the rate.

The second assumption implies, however, that the change in the

system occurs instantaneously. We adapted the algorithm to

account for this by stacking up delayed events (where such an

event will effect a change in the system that will not be realized for

some time-step equivalent to the length of the lag).

In the escape hypothesis model, there are 10 events (Table 1).

The last two potential events in the escape hypothesis model

(budding and lysis) were delayed in time (with potentially different

lagged effects). The modified algorithm checks to see if a lagged

event is scheduled to occur in the interval (t → t + t   or   t →
t +   t 0 ). If so, then the time to the next event is set to this lagged

event and the algorithm initiates a new sequence to determine the

next event and when it occurs. We set the number of observations to

150 and the number of iterations per model run to 100. We set the

parameters used in these analyses to the values listed in Table 2.

Source code and scripts for the analyses completed in this study are

available from the Open Science Framework (https://osf.io/pdut2/).
Results

The following provides findings from invasion, deterministic,

and stochastic analyses about how model parameters affect virus

fitness and emergence under the escape hypothesis scenario.
Invasion analysis

Invasion analyses were used to explore the dynamics of virus

emerging from unfaithfully replicated cells. The differences between

the early infection dynamics of lysing and budding strategies under

these early virus conditions were evaluated using the virus fitness

functions (Equations 5-12). Virus fitness was higher with lysis,

indicating that lysing could be a preferred early virus strategy

(Figure 2). However, this could also be due to the budding delay

being longer than the lysis delay. See analyses and discussion below

for when budding is more likely to be a predominant early

virus strategy.

The effectiveness of the budding and lysing strategies was then

evaluated once virus had emerged to determine the fitness of these

different strategies when associated with early reinfection dynamics.

While one strategy may have been preferred immediately following

the emergence of virus, the other may be more preferred when it

comes to the virus persisting through the (re)infection of ribocells.

The effectiveness of lysing and budding strategies for virus

reinfection was evaluated using the virus fitness functions

(Equations 5-12). The resulting fitness functions remained

unaltered, indicating that lysing could be a preferred reinfection

strategy. This analysis also indicated that the maturation rate (m)

and the unfaithfully replicated cell death rate (μU) may not have a

large impact on the fitness of emerging virus.
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Virus fitness

Using Latin hypercube sampling, sensitivity analyses were

conducted to determine the effects of certain parameters on virus

fitness. See Table 2 for the ranges evaluated for each parameter.

Results from this sensitivity analyses (Figure 3) highlight that

virus death rate (mV), budding delay (t’), and infected cell death rate

(mI) – all parameters associated with reinfection – influence virus

fitness. The budding delay (t’) has the most pronounced effect, with

virus fitness exponentially decreasing as time delay increases. There

are also thresholds where virus fitness is expected to decrease

depending on values of mV and mI.
Deterministic dynamics

Deterministic analyses were used to explore further the

parameters identified in the sensitivity analyses. As noted,
Frontiers in Virology 06
baseline parameter values are given in Table 2 and the simulated

model output are shown in Figure 4. In this analysis, unfaithfully

replicated cells (U) remain at a very low level, virus (V) increases

exponentially with time, and infected cells (I) follow an epidemic

curve over time, with infected cell numbers initially increasing

before declining. This figure is used as a comparison for when

parameter values are changed in later analyses.

The potential for reinfection was restricted (i.e., the (re)infection

rate (b) was set to 0) to determine how virus emerges via maturation

from unfaithfully replicated cells. The maturation rate (m) was then

decreased by differing orders of magnitude to explore the lower bounds

under which virus emergence occurs. Decreasing the maturation rate

(m) by one order of magnitude to 0.02 resulted in nearly no virus being

formed while decreasing it further guaranteed no virus emergence.

Therefore, in order for virus to emerge from unfaithfully replicated cells

alone, the maturation rate must be above a certain critical threshold

(essentially when dU
dt > 0):

l0R − mUU −mU > 0 (13)
FIGURE 3

Sensitivity analyses were carried out on parameters relating to ribocell population (R), unfaithfully replicated cell death rate (mU), infected cell death
rate (mI), virus death rate (mV), lysis rate (q), budding rate (g), lysing time delay (t), budding time delay (t’), maturation rate (m), and infection rate (b)
using the ranges provided in Table 2. The virus death rate (mV), budding delay (t’), and infected cell death rate (mI) influence virus fitness more than
other parameters.
FIGURE 2

(A) Virus fitness when terms contributing to budding are set to zero and lysis is the only early virus strategy). (B) Virus fitness when terms
contributing to lysis are set to zero and budding is the only early virus strategy. In both cases, virus fitness increases as the lysing or budding rate
increases. However, there is a higher magnitude of virus fitness when using a lysing strategy.
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Importantly, this threshold in maturation is neither

independent of ribocell or unfaithfully replicated cell density, nor

independent of life-history parameters of unfaithful cell replication

and death rate.

With the infection rate (b) set at zero and the maturation rate

(m) fixed at 0.2, values of the cell reproduction rate (l) and

unfaithful cell emergence rate (l’) were altered to determine how

these parameters affect virus emergence. When the cell

reproduction rate (l) is equal to the unfaithful cell emergence

rate (l’), virus emerges at an exponential rate. Similarly, if the cell

reproduction rate (l) is less than the unfaithful cell emergence rate

(l’), again, virus emerges exponentially. When the cell reproduction

rate (l) is two orders of magnitude greater than the unfaithful cell

emergence rate (l’), unfaithfully replicated cells do not emerge, and,

therefore, neither does virus. This contrasts with when the cell

reproduction rate (l) is only one order of magnitude greater than

the unfaithful cell emergence rate (l’), in which virus does emerge

but at a slower rate than when these rates are equal or when the

unfaithful cell emergence rate (l’) is greater.
With the propensity for reinfection, budding delay (t’) plays a

critical role in virus fitness. This suggests that budding may be an

early virus strategy. To investigate this, while fixing all other

parameters constant, t’ was adjusted to evaluate the effect of

budding time delays on virus emergence (Figure 5). Initially the

budding delay was set to a value of 2.0, and then t’ was varied from

0.5 and to 1.0 to assess the results when t’ (budding delay) was less
than t (lysis delay). Next budding delay was increased to a value

greater than the lysis delay (t), such that t’ = 5.0. These results

showed that the shorter the budding delay, the more rapidly virus

emerges and the longer the budding delay, the slower infected cells

emerge and die out.

Subsequently, the effect of virus clearance rate (mV) on virus

fitness was evaluated. The value was first increased over an order of

magnitude from 0.01 to 0.1, which had little effect on virus fitness.
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To investigate the effect of virus clearance rate, the effects of a higher

bound of mV on virus emergence were explored (mV = 0.9). Under

these conditions, virus emerges at a slower rate and reaches a

maximum population threshold before declining. Lower bounds of

virus clearance rate on virus fitness were investigated by decreasing

mV (to a limit of mV = 0.0001) but, again, there was little change to

the results and, hence, little effect on virus fitness. With increasing

values of mV, there was a negative impact on the propensity of virus

to emerge. This change is evident when virus clearance rate is

greater than 0.2. These results indicate that there is a critical

threshold in the virus clearance rate which can impact the early

evolution of virus emergence and persistence.

The infected cell death rate (mI) was also evaluated by varying

the parameter values. Increasing infected cell death rate by an order

of magnitude from 0.01 to 0.1 had little influence on the emergence

of virus. Investigating upper bounds on the infected cell death rate

(mI = 0.9) resulted in less virus emerging at a slower rate. Exploring

the lower bounds of infected cell death rate (mI = 0.0001) revealed

no significant alteration in the emergence of virus. As above,

increasing values of mI negatively impacted virus emergence

beyond the threshold (mI > 0.2).

The relationship between the maturation rate (m) and infection

rate (b) was examined through different parameter combinations

(Figure 6A). Initially, the maturation rate was set to half the infection

rate (m = 0.1; b = 0.2) rather than double in the default parameter set.

Then the maturation rate (m) and infection rate (b) were set to be

equal (m = 0.1; b = 0.1). Neither of these alterations significantly

effected virus fitness and, thus, virus emergence (Figure 6A).

The interaction between maturation rate and reinfection rate

were further examined by changing their values by differing orders

of magnitude. By keeping maturation rate constant (m = 0.2),

infection rate was evaluated at different values (b = 0.01; 0.001;

0.0001). As the infection rate decreases, virus emergence and

infected cell emergence occur at a slower rate. Below a threshold

value (b < 0.01), virus emergence is severely restricted with less

virus being produced (and only occurring through maturation of

unfaithfully replicated cells) and infected cell emergence does not

occur (Figure 6B).

By keeping infection rate constant (b = 0.1), the effects of

maturation rate on virus emergence were evaluated at different

values (m = 0.01; 0.001; 0.0001) (Figure 6C). When the maturation

rate was low (m = 0.01), infected cells and virus emerge and grow

exponentially, but unfaithfully replicated cells eventually stabilize.

As maturation rate decreases (m = 0.001), while infected cells and

virus emergence grow exponentially, they take longer to emerge.

Finally, further decreasing the rate (m = 0.0001) negatively impacts

virus emergence occurring at later time steps. Interestingly, infected

cell emergence still grows exponentially with continuing reinfection

of ribocells.
Stochastic dynamics

Stochastic models were used to determine the probability of the

emergence of unfaithfully replicated cells (U), infected cells (I) and
FIGURE 4

Deterministic model outputs with default parameters values from
Table 2. Unfaithfully replicated cells (U) remain at a very low level,
virus (V) exponentially increases with time, and infected cells follow
a parabolic structure with time increasing initially before decreasing
again. This figure is used as a comparison for when parameter
values are changed later on.
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virus (V) using different parameter combinations (Table 2) for the

escape hypothesis. These results provided insight into how different

combinations of maturation rate (m) and infection rate (b) affected
virus emergence probability.

The infection rate (b) was set to 0 to determine how often virus

emerges via maturation from unfaithfully replicated cells. We define

emergence probability as the number of instances the model

successfully produces emerging virus over the runtime of the

model. This yielded a 99% probability of the emergence of

unfaithfully replicated cells (U), a 91% probability of the

emergence of virus (V), and, as expected, no probability of the

emergence of infected cells. The maturation rate was then decreased

by differing orders of magnitude to explore the lower bounds of

virus emergence. When m = 0.02, the probability of emergence of

unfaithfully replicated cells (U) remains constant, but the

probability that virus emerges decreased to 25%. Supporting this

trend, when m = 0.002, the probability of virus emerging further

decreases to 5%.

With the infection rate still negligible (b = 0) and the

maturation rate (m) set to 0.2, values of the cell reproduction rate

(l) and unfaithful cell emergence rate (l’) were varied to determine

how these processes affect virus emergence. When these values were

set to an equal value of 0.05, there was a 100% probability of both

unfaithfully replicated cell (U) and virus (V) emergence. When l =

0.005 and l’ = 0.05, there was a 100% probability of both
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unfaithfully replicated cell (U) and virus (V) emergence. These

results indicated that when l’ ≥ l, viruses will always emerge

through maturation of unfaithfully replicated cells. To verify this, l
was set higher than l’ by three orders of magnitude. With this

parameter, there was only a 3% probability of unfaithfully replicated

cells (U) and a 1% probability of virus (V) emergence.

When the maturation rate was double the infection rate (m =

0.2; b = 0.1), there was a high likelihood of emergence for U (87%), I

(88%), and V (88%). When the maturation rate was half the

infection rate (m = 0.1; b = 0.2), there was a higher likelihood of

emergence for U (91%) and a lower likelihood of emergence for I

(75%), and V (75%). When the maturation rate was equal to the

infection rate (m = 0.1; b = 0.1), there was an even higher likelihood

of emergence for U (97%) and a slightly lower probability for I

(73%), and V (75%). These results indicate that if the maturation

rate is greater than the infection rate by at least twofold, there is a

higher probability for the emergence of viruses and infected cells.

The maturation rate and infection rate were further examined

by adjusting their values by orders of magnitude to define the

relationship these parameters have on emergence. First, the

maturation rate was held at constant value (m = 0.1) while the

infection rate was continually decreased. If the maturation rate is

one order of magnitude higher than the infection rate (b = 0.01),

there is an almost guaranteed emergence of U (99%), while the

probability of emergence of V (67%) and I (63%) remains lower.
FIGURE 5

The effect of differing values of the budding delay (t’) on virus emergence. (A) The impact on virus emergence when t’ = 2 (as in Figure 4) is included
for comparison to other values of t’. (B) When the budding delay t’ is ¼ of the default value such that t’ = 0.5. (C) When the budding delay t’ is ½ of
the default value such that t’ = 1. (D) When the budding delay t’ is greater than the default value such that t’ = 5. .
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Decreasing b by another order of magnitude (b = 0.001) leads to a

100% probability of the emergence of unfaithfully replicated cells.

Interestingly, these parameters yielded a 78% chance of virus

emergence, but only 37% of infected cell emergence. This

indicated that while virus emergence was likely with these

parameters, it rarely became successful enough to infect cells.

Lowering the infection rate (b = 0.0001) more again results in

100% probability of the emergence of unfaithfully replicated cells,

while the chance of virus emergence is 75% and the chance of

infected cell emergence drops to 6%.

Next, the infection rate was held constant (b = 0.1) while the

maturation rate was decreased by different orders of magnitude.

When the maturation rate was set to 0.01, interestingly there was a
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100% probability of unfaithfully replicated cell emergence, but only

a 16% probability for the emergence of both virus and infected cells.

When the infection rate was decreased by another order of

magnitude (m = 0.001), there was still a 100% probability for

unfaithfully replicated cell emergence but only a 1% chance of

emergence of virus or infected cells. After decreasing the maturation

rate by one more order of magnitude (m = 0.0001), results showed a

100% probability of unfaithfully replicated cell emergence and a 0%

probability of virus and infected cell emergence. These results

indicated that the maturation rate needs to be sufficiently high to

produce viruses capable of infecting cells.

The model parameters were also adjusted to determine if virus

emergence was more likely through lysing or budding strategies,
m = 0.01 m = 0.001 m = 0.0001

E�ect of Maturation Rate on Virus Emergence 
C)

β = 0.01 β = 0.001 β = 0.0001

E�ect of Infection Rate on Virus Emergence 
B)

m = 0.2; β = 0.1 (default) m = 0.1; β = 0.2 m = β  = 0.1

E�ect of Maturation and Infection Rate on Virus Emergence 
A)

FIGURE 6

The effects of maturation rate (m) and infection rate (b) on virus emergence. (A) The impact on virus emergence: when maturation rate is greater
than infection rate (m > b) with default parameter values (as in Figure 3) for comparison (left); when m < b (middle); and when m = b (right). (B) The
impact on virus emergence when maturation rate is constant (m = 0.2) and the infection rate (b) decreases by orders of magnitude such that b =
0.01 (left); b = 0.001 (middle); and b = 0.0001 (right). (C) The impact on virus emergence when the infection rate b is constant (b = 0.1) and the
maturation rate (m) decreases by orders of magnitude such that m = 0.01 (left); m = 0.001 (middle); and m = 0.0001 (right).
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using the default parameters above for maturation rate and

infection rate (m = 0.2; b = 0.1). When setting the lysis rate (q)
to 0 and keeping the budding rate (g) at 1, there is an 89%

probability of virus emergence, 90% probability of infected cell

emergence, and 88% probability of unfaithfully replicated cell

emergence (Figure 7). When keeping the lysis rate (q) at 1 and

changing the budding rate (g) to 0, there is a 91% probability of
Frontiers in Virology 10
virus emergence, 91% probability of infected cell emergence, and

93% probability of unfaithfully replicated cell emergence (Figure 8).

Out of all the stochastic model runs, specific parameter

combinations lead to the most probable outcomes for the

emergence of unfaithfully replicated cells (U), virus (V), and

infected cells (I). While several parameter combinations lead to

the emergence of unfaithfully replicated cells (U), two in particular
FIGURE 7

Virus emergence with a budding strategy where the lysis rate (q = 0) and the budding rate (g = 1). For unfaithfully replicated cells (U), the mean =
2.64, the variance = 3.42, and the coefficient of variation (CV) = 0.70. For infected cells (I), the mean = 32.47, the variance = 266.29, and the CV =
0.50. For virus (V), the mean = 1.6, the variance = 0.89, and the CV = 0.59. (A) A histogram representation of the frequency per model iteration of
the number of unfaithfully replicated cells, infected cells, and virus produced. (B) Ribocell (R), unfaithfully replicated cell (U), infected cell (I), and virus
abundance (V) over time. Each positive line represents emergence and dynamics of R, U, I and V for an iteration of the model run.
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are most successful. The first case was when the infection rate (b)
was set to zero, the ribocell reproduction rate (l) and unfaithfully

replicated ribocell reproduction rate (l’) were equal (0.05), and all

other parameters were set to the values in Table 2. With this

parameter combination, there was a 100% chance of unfaithfully

replicated cell emergence, a mean of 29.57 unfaithfully replicated

cells, and the lowest coefficient of variation (CV) of all other model

runs for U (CV = 0.159).

The second case was when the infection rate (b) was set to zero,
the ribocell reproduction rate (l = 0.005) was lower than the

unfaithfully replicated ribocell reproduction rate (l’ = 0.05), and

all other parameters were set to the values in Table 2. With this

parameter combination, there was a 100% chance of unfaithfully

replicated cell emergence, a mean of 30.87 unfaithfully replicated

cell emergence (the highest value of all model runs for U), and the

second lowest coefficient of variation (CV) of all other model runs

for U (CV = 0.181).

One parameter combination most successfully gave rise to virus

(V). This combination was the same as the previous, where

infection rate (b) was set to zero, the ribocell reproduction rate (l
= 0.005) was lower than the unfaithfully replicated ribocell

reproduction rate (l’ = 0.05), and all other parameters were set to

the values in Table 2. With this parameter combination, there was a

100% chance of virus emergence, a mean of 41.43 virus particles

emergence (the highest value of all model runs for V), and the

lowest coefficient of variation (CV) of all other model runs for V

(CV = 0.095). This set of results corroborated those found in the

deterministic analyses – that in order for unfaithfully replicated cells

(and, therefore, virus) to emerge, the unfaithfully replicated cell

production rate (l’) should be equal to or greater than the ribocell

reproduction rate (l). Virus emerging via the escape hypothesis

would most likely have to originate from ribocells with

similar characteristics.

Three parameter combinations most successfully gave rise to

infected ribocells (I). The first combination was when the maturation

rate (m = 0.2) was double the infection rate (b = 0.1) and all other

parameters were set to values in Table 2 (note that the values for m and

b are also consistent with the values in Table 2). This parameter set led

to an 88% chance of infected ribocell emergence, with a mean of 29.85

infected ribocell emergence (the second highest of all model runs for I),

and the second lowest coefficient of variation (CV) of all other model

runs for I (CV = 0.541).

The second parameter combination of interest for infected

ribocells was when the lysis rate (q) was set to zero and the

budding rate (g) was set to 1, and all other parameters were set to

the values in Table 2 (Figure 7). In this case, there was a 90% chance

for the emergence of infected ribocells, with a mean of 32.47

infected ribocell emergence (the highest of all model runs for I),

and the lowest coefficient of variation (CV) of all other model runs

for I (CV = 0.503).

The third parameter combination of interest for infected

ribocells also involves the lysis and budding rates, except this

time the lysis rate (q) was set to 1 and the budding rate (g) was
set to zero (Figure 8). In this case, there was a 91% chance for the

emergence of infected ribocells, with a mean of 24.44 infected
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ribocell emergence (the fourth highest of all model runs for I),

and the third lowest coefficient of variation (CV) of all other model

runs for I (CV = 0.620). These results suggest that while budding is

slightly more likely to give rise to infected ribocells, a lysing strategy

would yield a higher mean of infected ribocells.
Discussion

In this study, we developed theoretical approaches to

understanding the evolutionary dynamics of the escape hypothesis

for viral origins as proposed by Forterre and Krupovic (11). Our model

allowed for the analyses of early virus emergence and the generation of

results about which parameters impact virus fitness and emergence

most. We also examined early virus strategies for proliferation by

comparing budding and lysing virus reproduction methods.

Over 50 years ago, Eigen (18) introduced hypercycle models of

self-replicating molecules, where each molecule catalyzes the

creation of the next. Our study’s model similarly links events

leading to virus emergence. Eigen and Schuster (19) expanded on

the hypercycle concept, proposing quasi-species – a given

distribution of macro-molecular species with interrelated

sequences, dominated by master copies. External constraints

selected the best adapted distribution, and our model also used

external constraints to drive virus emergence.

Further work (20) proposed that viruses are quasi-species and

examining them in the context of hypercycles could reveal clues to

understanding and defeating them. Eigen (21) leveraged RNA virus

systems in his hypercycle model to explore the origins of genetic

information to support this idea. Recent studies on RNA virus

quasi-species dynamics show the concept helps in understanding

virus populations, pathogenicity, and therapeutic countermeasures

against pandemics (22). The methods developed in our study to

evaluate the escape hypothesis are similar to those comprising a

modified Eigen hypercycle and build on the ideas of hypercycles to

evaluate other drivers of virus emergence and persistence.
Virus and infected ribocell death rates

Sensitivity and deterministic analyses highlight key parameters

that have a positive or negative impact on virus fitness included the

virus death rate (mV) and infected ribocell death rate (mI). Results also
showed that virus death rate (mV) and infected cell death rate (mI)
must be above a certain critical threshold for viruses to emerge and

persist through the escape hypothesis. A lower virus death rate results

in faster and increased growth of virus particles, while a higher virus

death rate reduces the lifespan of a virion. A higher infected cell death

rate also reduces the likelihood of infection or the likelihood of lysis.

This is consistent with the findings from other studies. For instance,

work on influenza A virus (23), suggests that the mechanism for

changes in these rates could be due to cellular immune response. This

could indicate that the first types of ribocells to be infected by viruses

may have had a limited cell protection and/or weak

immune responses.
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Unfaithful ribocell production and
maturation rates

Deterministic and stochastic analyses both demonstrated the

importance of the relationship between unfaithfully replicated cell

production (l’) and cell reproduction rates (l). For viruses to
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emerge from unfaithfully replicated cells, deterministic analyses

revealed that l’ must be roughly equal to, or greater than, l. The
stochastic analyses results corroborated those found by the

deterministic analyses – that for unfaithfully replicated cells (and,

therefore, virus) to emerge, the unfaithfully replicated cell

production rate (l’) should be equal to, or greater than, the
FIGURE 8

Virus emergence with a lysing strategy where the lysis rate (q = 1) and the budding rate (g = 0). For unfaithfully replicated cells (U), the mean = 2.95,
the variance = 3.60, and the coefficient of variation (CV) = 0.64. For infected cells (I), the mean = 24.44, the variance = 229.48, and the CV = 0.62.
For virus (V), the mean = 1.48, the variance = 0.62, and the CV = 0.53. (A) A histogram representation of the frequency per model iteration of the
number of unfaithfully replicated cells, infected cells, and virus produced. (B) Ribocell (R), unfaithfully replicated cell (U), infected cell (I), and virus
abundance (V) over time. Each positive line represents emergence and dynamics of R, U, I and V for an iteration of the model run.
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ribocell reproduction rate (l). This relationship ensures that

enough unfaithfully replicated ribocells have an opportunity to

transition into viruses. It follows that for viruses to emerge via

the escape hypothesis, they would likely have emerged from a set of

ribocells with a high rate of unfaithful cell division.

Our results support the idea that unfaithful or unequal ribocell

division is a key component of the escape hypothesis (11). Given

that unfaithful ribocells emerged and gave rise to viruses, the

stochastic analyses also supported the idea that viruses could be

polyphyletic, emerging numerous times from different origin points

as has been suggested by others (4, 24).

Invasion analyses initially did not indicate that maturation rate

would impact virus emergence. However, the deterministic and

stochastic analyses resolved this and showed that a sufficiently high

maturation rate from unfaithfully replicated cells is, in fact,

important for the emergence of virus through the escape

hypothesis. The most successful stochastic model runs resulting

in the persistence of infected cells all had the highest value evaluated

for maturation rate (m = 0.2). Additionally, deterministic analyses

showed that for virus to emerge from unfaithfully replicated cells

alone, the maturation rate must be above a certain critical threshold

(Equation 13). That is, the maturation rate must be greater than the

unfaithful ribocell replication rate minus the unfaithful ribocell

loss rate.

Intrinsic to maturation rate and ribocell reproduction is

whether enough genetic information is carried over during the

replication process to meet the functions of a minimal cell. Some

have argued that RNA cannot be replicated faithfully to meet these

conditions and suggested that viruses did not emerge through the

escape hypothesis (25, 26). However, alternative arguments suggest

that ancient RNA-based cells could have existed and replicated

successfully (11). Whether or not ancient ribocells existed and could

faithfully replicate is a key question to understanding how viruses

could have emerged via the escape hypothesis. If ancient ribocells

existed and had unstable rates of faithful replication, then the

maturation rate would likely be a key driver in whether viruses

could have emerged from the maturation of unfaithfully

replicated ribocells.

Empirically, this question has been difficult to answer in the past

but synthetic biology could provide insights as to whether an

ancient RNA-based cell could be engineered (11). Indeed, several

recent advances in RNA synthetic biology could further enable this

area of research (27–29). An engineered RNA-based cell could be

subject to reduction-of-function experiments to mimic an ancient

cell that could have given rise to viruses through the escape

hypothesis. If this was the case, maturation and ribocell

replication dynamics could be experimentally explored.
Infection rate

Deterministic and stochastic analyses both demonstrated the

important role of the infection rate (b) for the persistence of

infected ribocells (I), and, therefore, virus. Results indicated that
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the infection rate must be above a certain critical threshold for

infected ribocells to persist through the escape hypothesis. As the

infection rate decreased by orders of magnitude, the probability of

the emergence of infected ribocells, and the average number of

infected ribocells emerging, also decreased. These results

corroborated other findings (30) suggesting that severe

transmission bottlenecks (e.g., low infection rate) likely reduce

virulence due to stochastic loss of more virulent pathotypes. They

also suggested that this is especially true for RNA viruses (which are

likely to have been the first to originate) due to their rapid evolution

rate. Several others have also noted that differing infection rates

have positive and negative impacts on virus fitness and evolution

(31–35). It follows that infection rate is important for successful

early virus emergence and persistence.
Budding vs. lysing

The initial invasion analyses showed that when viruses emerge

solely from unfaithfully replicated cells, lysis may be a preferred

strategy. This is most likely attributable to the virus life-history

characteristics, particularly the length of time delays (12). Other

things being equal, our results support a lysing strategy for early

viruses. The results from the sensitivity analysis highlighted that the

budding delay (t’) has the most influence on virus fitness. In

contrast to the invasion analysis, the results indicated that

budding (over lysis) could, therefore, be an early virus strategy.

The results also showed that virus fitness exponentially decreased as

budding time delay increased. This suggests that shorter time delays

are preferrable for virus fitness. These findings corroborate those of

Lord and Bonsall (12), who found that budding delay is an

important parameter in virus evolutionary dynamics. When

budding delays are shorter, budding itself could support a self-

sustaining population more readily than lysis.

Deterministic analyses also revealed that with the propensity for

reinfection, budding delays (t’) play a crucial role in virus fitness.

Shorter budding delays lead to more rapid virus (V) emergence and

longer budding delays result in slower emergence of infected

ribocells (I). The results also showed that if the budding delay (t’)
is shorter than the lysis delay (t), virus emerges more rapidly. This

further suggests that budding could be an early strategy over lysis

for viruses emerging via the escape hypothesis, supporting the

general finding that time delays and budding may be a preferred

virus strategy (12). Furthermore, retroviruses are some of the oldest

viruses that infect multi-cellular life, potentially emerging before the

early Paleozoic Era (36). Most relevant here is that retrovirus

replication also mirrors many of the mechanisms relevant to the

escape hypothesis for virus emergence (37). The fact that nearly all

retroviruses proliferate through budding supports the idea of a

budding strategy for early viruses (38).

The very first viruses could have proliferated through budding

and/or lysis (11). Supporting these ideas, results from the stochastic

analyses suggested that while budding is slightly less likely to give rise

to infected ribocells, a lysing strategy yields a lower mean number of
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infected ribocells. When budding delays are shorter, budding itself

could support a self-sustaining population more readily than lysis.
Conclusion

The theoretical and numerical approaches developed here

provide a novel way of evaluating the fitness of a virus emerging

through the escape hypothesis. Our model framework could be

adapted in future work on virus emergence such as the virus-first

(39), reduction (9), chimeric (40), and symbiogenic (41)

hypotheses. Subsequent models could then be compared to

determine the most likely hypothesis origin and which biological

constraints are necessary for virus to emerge using a certain

hypothesis. This model could also be adapted to consider physical

or environmental constraints, allowing for the examination of these

hypotheses with other celestial bodies within the solar system to

determine which are most likely to give rise to virus (42). Our work

serves as a foundation for future analyses and shows that the

development of a mathematical evolutionary approach can help

explore the origin and emergence of viruses.
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