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Introduction: The US has experienced a major drug epidemic in recent years,
attributed in large part to synthetic opioids such as fentanyl. Here, we evaluated
how recreational / non-prescribed fentanyl use in persons living with HCV
infection impacted gene expression profiles in the peripheral blood.

Methods: Whole blood was collected from 11 individuals, including 4 HCV-
negative healthy controls, 4 HCV-positive individuals with current fentanyl use,
and 3 HCV-positive individuals with no current fentanyl / no opioid use.
Results: The median HCV RNA level was 5.6 log;o copies/mL. Cell frequencies
were not different by fentanyl status except for non-CD4", non-CD8* T cells
(higher for fentanyl use; p = 0.052). When comparing HCV-positive persons with
/ without fentanyl detected in their blood, 106 differentially expressed genes
(DEGs) were identified, including 11 in CD4* T lymphocytes, 46 in CD8" T
lymphocytes, 5 in monocytes, 13 in B lymphocytes (excluding plasmablasts), 24
in plasmablasts, 2 in dendritic cells, and 13 in NK cells. Seven DEGs — DHRS4L2,
GZMA, H1-3, HLA-C, ISG15, PARP8, PRKX — were shared across multiple cell
types, with the majority being involved in host defenses against viruses.
Enrichment analysis of differentially expressed genes identified genes involved
in multiple cellular processes and phenotypes. Expression of the HCV entry factor
CD81 was high in PBMCs; however, other HCV entry factors were expressed at
low levels, and none were differentially expressed in HCV-positive persons with /
without fentanyl detected in their blood.
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Discussion: These results highlight multiple pathways by which commonly
abused opioids may affect HCV pathogenesis and may reveal additional
pathways for novel target-specific therapeutic interventions and enhance the
clinical management of this difficult-to-treat population.

opioid, fentanyl, drug use, hepatitis C virus, HCV, single cell transcriptome

Introduction

There are an estimated 50 million individuals infected with
chronic hepatitis C virus (HCV) worldwide (1). Highly effective
direct-acting agents can cure ~95% of persons with HCV infection.
However, diagnosis and subsequent access to these treatments are
low for certain at-risk populations. New HCV infections increased
steadily from 2013 to 2021 and have remained relatively stable since
then; however, infections are well above the annual target (2). Blood
exposure is a major route of HCV transmission, and persons who
use/inject drugs (PWID) are at significant risk for HCV infection, as
well as re-infection.

There were an estimated 3.69 million PWIDs in the US -
representing 1.46% of the adult population - in 2018, and the
number of drug overdose deaths has increased significantly in
recent years (3-5). More than 106,000 persons in the U.S. died
from drug-involved overdoses in 2021, including illicit drugs and
prescription opioids (6). Opioid-involved overdose deaths rose
from 21,089 in 2010 to 47,600 in 2017 (6). Deaths involving
synthetic opioids other than methadone (primarily fentanyl)
continued to rise in 2021. While fentanyl is used clinically for
pain management, it has increased dramatically in availability and
gained widespread recreational use (7-12). In 2017, a study
conducted in southwest Ohio found that ~90% of unintentional
overdoses involved fentanyl and that high-burden counties
accounted for 73% of these deaths (13, 14). Recreational/non-
prescribed use has led to significant increases in incident HCV
and HIV infections, as exemplified by the HIV/HCV outbreak in
Indiana in 2015, as well as across Appalachia and parts of New
England (8, 15-23). Globally, the incidence of HCV among PWIDs
ranged from 0.2 to 72.5 per 100 person-years, with a pooled
incidence of 12.1 per 100 person-years (24).

Opioid receptors are abundantly expressed on various immune
cells, including CD4" T lymphocytes and monocyte-derived
macrophages (25). Opioid receptors are also expressed in the liver
- including in hepatocytes and hepatic stellate cells — and are
important mediators of disease progression (26-32). Commonly
abused opioids and their receptors promote viral replication and
virus-mediated pathology (33). For instance, multiple opioids are
known to increase HIV replication in immune cells through
increased chemokine receptor expression, inhibition of 8
chemokines, inhibition of the endogenous interferon response,
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and/or modulation of microRNA expression (34). In contrast, less
is known about the impact of opioids on HCV and liver disease. In
vitro studies demonstrate that morphine, heroin, and
methamphetamine enhance HCV replication (35-39). We
recently reported that the synthetic opioid fentanyl increased
HCV replication in vitro in a dose-dependent manner (40). The
addition of fentanyl also resulted in significant apoptosis. RNA
sequencing of fentanyl-exposed hepatocytes identified multiple
differentially expressed genes, including those involved in the
antiviral interferon response, NFxB signaling, chemokine
signaling, and apoptosis. A recent study of PWIDs in the United
States and Mexico found that fentanyl was associated with increased
HCV seroconversion; however, more research is needed to
understand the mechanisms underpinning this association (41).
As higher virus levels are associated with pathogenesis and
increased risk of transmission to others, additional research is
essential to our understanding of opioid-virus pathogenesis and
for the development of new and optimized treatment strategies to
treat HCV infection in high-risk populations. To this end, we
evaluated the peripheral blood response to recent fentanyl use in
persons with HCV infection.

Methods
Patient population

From March 2019 to December 2024, we conducted a short-
term, observational, non-interventional study of persons with
fentanyl use/exposure in the greater Cincinnati area. The
inclusion criteria were adults >18 years of age who presented to
the UC Emergency Department (ED) for unintentional overdose.
Exclusion criteria include intentional overdose (suicide attempt)
with non-opioids and inability or not willing to provide informed
consent. While the parent study focused on persons living with
HIV, a sub-study also included individuals with HCV mono-
infection. HCV status was determined by patient self-report and
review of electronic medical records. Opioid use disorder (OUD)
was defined as scoring positive for opioids on the NIDA-Modified
ASSIST tool and/or OUD listed in the electronic medical record.

Whole blood was collected from HCV-positive adults at the
University of Cincinnati Medical Center, as well as HCV-negative/
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non-opioid using controls. Participants provided written informed
consent prior to any study procedures and were compensated $20
for their participation. The University of Cincinnati Institutional
Review Board approved this study as 2019_0584. All research
involving human research participants was performed in
accordance with the Declaration of Helsinki.

Sample processing

PBMCs were isolated from ~40 mLs of whole blood collected in
BD Vacutainer Cell Prep Tubes per the manufacturer’s protocol and
stored in fetal bovine serum (FBS) with 10% dimethyl sulfoxide in
liquid nitrogen. To minimize RNA degradation, all samples were
processed from collection to freezing within 4 hours (mean of 2.75
hours; range: 1.95 - 3.92 hours). To prepare PBMCs for 10x single
cell labeling, cells were thawed and counted. Viability was
confirmed by trypan blue staining as greater than 90%, and the
concentration was adjusted to 1 x 10° cells/mL in Dulbecco’s
phosphate-buffered saline.

Drug use screening

Plasma samples from all study participants were screened by a
targeted Liquid Chromatography Mass Spectrometry (LC-MS/MS)
approach for 95 commonly used drugs and volatile compounds (e.g.,
ethanol) by Gas Chromatography Mass Spectrometry (GC/MS). For
LC-MS/MS analysis, 0.5 mL of the sample was diluted with buffer and
subjected to solid-phase extraction using United Chemical
Technologies Clean Screen extraction columns. For GC/MS analysis,
0.1 mL of sample was placed into a headspace vial for analysis. The LC-
MS/MS analysis used targeted transitions, while the GC/MS was
operated in full-scan. This screening process can detect drugs from
the following classes: opioids, medications for the treatment of OUD,
stimulants, benzodiazepines, barbiturates, antidepressants,
hallucinogens, over-the-counter drugs, marijuana, and anti-epileptics.
Confirmation and quantitation were performed by LC-MS/MS when
the sample volume was sufficient. For samples with multiple positive
results, stimulants and opioids (including fentanyl and fentanyl
analogs) were prioritized for confirmation testing.

Single cell RNAseq analysis

Single cell barcoding and complementary DNA (cDNA) and V
(D)J library preparation were performed at the Single Cell
Genomics Facility (Cincinnati Children’s Hospital Medical
Center, RRID: SCR_022653) using Chromium Next GEM Single
Cell 5° Reagent Kits v2 (Dual index) according to the
manufacturer’s protocol. Briefly, cell suspensions, beads, master
mix, and partitioning oil were loaded onto a “K” chip for a targeted
output of 10,000 cells per library and run on the Chromium X.
Reverse transcription was performed at 53 °C for 45 min and cDNA
was amplified for 14 cycles using a Bio-Rad C1000 Touch
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thermocycler followed by cDNA size selection using SpriSelect
beads (Beckman Coulter, USA). cDNA quality was confirmed
with an Agilent Bioanalyzer High Sensitivity chip. DNA
fragmentation, end-repair, A-tailing, and ligation of sequencing
adapters were performed per the manufacturer’s protocol (10x
Genomics, USA). Libraries were run on a NovaSeq 6000 S1 or S4
flow cell (depending on the number of samples) at the Genomics
Sequencing Facility (Cincinnati Children’s Hospital Medical
Center, RRID: SCR_022630).

Raw base call files were de-multiplexed with Cell Ranger (42)
v9.0.0 mkfastq. Reads were aligned to the human reference genome
GRCh38, and gene expression was quantified using Cell Ranger
count with default parameters. SoupX v1.6.2 (43) was used to
remove cell free mRNA contamination from each library using
the estimation of the contamination rate implemented in the
autoEstCont and adjustCounts function. Doublets and multiplets
were removed using Scrublet v0.2.2 (44). Cells displaying more than
20% mitochondrial gene expression — or fewer than 200 total
expressed genes — were excluded from analysis. Gene expression
counts were integrated in R v4.4.0 using Seurat v5.2.1 and Harmony
v1.2.3 integration with default parameters (45). Cell types were
annotated via label transfer from a high-quality, multi-model
PBMC reference dataset using the Azimuth v0.5.0 pipeline in
Seurat (46), and the reference Uniform Manifold Approximation
and Projection (UMAP) coordinates were used. Analysis was
conducted with compute and storage resources provided by
Information Services for Research (IS4R, Cincinnati Children’s
Hospital Medical Center, RRID: SCR_022622).

Doublet rates were 3.5% to 9.4% (median 4.6%). Ambient RNA
contamination rates were 1.0% to 3.5% (median 1.7%). Transcripts
were pooled within each cell type and study participant for
pseudobulk analysis using DESeq2 v1.46 (47). This approach
outperforms generic and specialized single cell differential gene
analysis (DGA) methods (48) by limiting type I error and allows the
use of bulk RN Aseq tools while preserving cell type resolution. This
approach has been employed by other single cell transcriptomic
studies (49-54).

Differentially expressed genes (DEGs) were identified with the
following inclusion criteria: fold change +/- 20% and adjusted p-
value < 0.05. For DEG analysis, protein-coding genes as annotated
by Ensembl release 112 (55) were used, and genes were required to
have 10 or more reads expressed in 3 or more samples to be
included in the analysis. To reduce the rate of false positives,
shrinkage was applied to the effect sizes using the “apeglm”
method implemented by IfcShrink (56).

HCV entry factors included 5-HT2AR, AP2, APOE, CD8l,
CLDNI1, DC-SIGN/CD209, EGRF, HIP1R, L-SIGN/CLEC4M,
LDLR, NPCI1LI, OCLN, SR-BI, SRFBP1, and VLDLR (57, 58).
Interferon (IFN)/interferon-stimulated genes (ISG) included 80
type L, II, or III IFNs and ISGs associated with these pathways as
described in the Interferome database (59).

Plots were generated using R ggplot2 v3.5.1, ggpubr v0.6.0, and
Seurat 5.2.1 (46, 60, 61). Enrichment analysis was performed using
ToppCluster and Enrichr-KG to identify specialized biological
functions and regulatory networks (62-65).
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Results

Patient characteristics

Eleven blood samples were collected from 4 HCV-positive
individuals with current fentanyl use, 3 HCV-positive individuals
without current fentanyl use, and 4 HCV-negative, non-opioid-
using healthy controls (Table 1).

Among HCV-positive participants, the median age was 45 years
(range: 33 - 53), 5 individuals were male, and 6 were white/non-
Hispanic. The median HCV viral load was 5.6 log;, copies/mL
(range: 0.00 - 6.37), while median alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) levels were 35 IU/L (range:
21 - 197) and 69 IU/L (range: 20 - 373), respectively. No study
participants were currently receiving treatment for HCV infection.
Five individuals had an OUD diagnosis, including 3 in the fentanyl-
positive group and 2 in the fentanyl-negative group.

Fentanyl was detected in all 4 individuals in the opioid-using
group. Fentanyl analogs and metabolites were also detected,
including norfentanyl (n = 4), acetyl fentanyl (n = 1), and
despropionyl fentanyl (n = 1). Buprenorphine and methadone
were each detected in 1 individual in the opioid-using group.
Cocaine metabolites were detected in 3 individuals in the opioid-
using group. 11-carboxy-tetrahydrocannabinol was detected in one
individual in the non-opioid use group and two healthy controls.

A total of 144,026 cells were evaluated by single-cell RNA-seq
analysis with a mean of 13,093 cells per individual. Cells with
ambient RNA contamination, doublets, or multiplets were
removed. The mitochondrial content for all PBMC samples was
low (Supplementary Figure 1). Cells with >20% mitochondrial
content were removed, leaving 134,768 cells (94%; mean of
13,002 cells per individual) passing these quality control measures
(Supplementary Table 1). Cell clusters within PBMCs were
identified by label transfer from a high-quality reference dataset,
as shown by fentanyl status in Figure 1 and individually in
Supplementary Figure 2. There were no statistically significant
differences in cell frequency based on fentanyl status for CD4" T
lymphocytes, CD8" T lymphocytes, monocytes, B lymphocytes
(excluding plasmablasts), plasmablasts, dendritic cells, natural
killer (NK) cells, other T lymphocytes, or other cells (Figure 2).
For other T cells, there was a trend towards a higher cell frequency
in fentanyl-positive versus fentanyl-negative individuals (p = 0.052).

DGA was performed for multiple peripheral blood cell types,
including CD4" T lymphocytes, CD8" T lymphocytes, monocytes,
dendritic cells, and NK cells. Two B cell subpopulations -
plasmablasts and B lymphocytes (excluding plasmablasts) -
showed distinct gene expression patterns (data not shown) and
were analyzed separately. When comparing HCV-positive
individuals who were fentanyl-positive versus fentanyl-negative at
the time of sample collection, we included OUD diagnosis as a
covariate, there were 106 differentially expressed genes. There were
11 DEGs - 4 downregulated and 7 upregulated - in CD4" T
lymphocytes (Figure 3, Supplementary Table 2). In CD8" T
lymphocytes, there were 46 DEGs, including 6 downregulated and
40 upregulated genes (Figure 4, Supplementary Table 3). There were
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5 DEGs, including 1 downregulated and 4 upregulated genes, in
monocytes (Figure 5, Supplementary Table 4). For B lymphocytes
(excluding plasmablasts), there were 13 DEGs - 6 downregulated
and 7 upregulated (Figure 6, Supplementary Table 5). In
plasmablasts, there were 24 DEGs, 4 downregulated and 20
upregulated (Figure 7, Supplementary Table 6). There were 2
DEGs identified in dendritic cells (Figure 8, Supplementary
Table 7) - both downregulated. In NK cells, there were 13 DEGs,
including 6 downregulated and 7 upregulated genes (Figure 9,
Supplementary Table 8).

Seven DEGs - DHRS4L2, GZMA, H1-3, HLA-C, ISG15, PARPS,
PRKX - were shared across multiple cell types. Interferon-stimulated
gene 15 (ISG15) was upregulated in CD4 T cells, CD8 T cells, and B
lymphocytes (excluding plasmablasts). Dehydrogenase/Reductase 4
Like 2 (DHRS4L2) was upregulated in CD8 T cells and B
lymphocytes (excluding plasmablasts). Granzyme A (GZMA) and
Protein kinase, X-linked (PRKX) were upregulated in CD4 T cells
and CD8 T cells. H1.3 Linker Histone, Cluster Member (H1-3) was
upregulated in Plasmablasts and monocytes. Human Leukocyte
Antigen-C (HLA-C) was downregulated in B lymphocytes
(excluding plasmablasts) and dendritic cells. Poly(ADP-ribose)
polymerase family member 8 (PARP8) was downregulated in CD8
T cells and NK cells. The upset plot in Figure 10 displays the 106
DEGs identified in at least one cell type, including those shared across
distinct peripheral blood cell types.

Enrichment analysis was performed in each peripheral blood
cell type. In CD4" T lymphocytes (Supplementary Figure 3), the
subnetwork showed the following associations:

« ISGI5 belongs to the biological processes “ISG15-protein
conjugation” and “proteolysis involved in cellular protein
catabolic process,” while ABCG2 belongs to the biological process
“xenobiotic transport across blood-brain barrier.”

o The gene product ABCG2 is a member of the “ABC
transporters” and “bile secretion” pathways, while the gene
product ISG15 is a member of the “RIG-I-like receptor
signaling” pathway.

In CD8" T lymphocytes (Supplementary Figure 4),

o CX3CRI and ITGAM belong to the biological processes
“regulation of hippocampal neuron apoptotic process” and
“regulation of microglial cell mediated cytotoxicity”. IFNG,
CX3CRI, and ITGAM belong to the biological process “microglial
cell activation.” IFNG and CD300A belong to the biological process
“positive regulation of phosphatase activity.” CX3CR1 and CD300A
belong to the biological process “negative regulation of myeloid
leukocyte mediated immunity.”

o The gene products IFNG, FASLG, and PRF1 are members of
the “allograft rejection” pathway, while the gene products IFNG,
CX3CR1, and FASLG are members of the “cytokine-cytokine
receptor interaction” pathway. The gene products IFNG, FASLG,
and PRF1 are members of the “natural killer cell mediated
cytotoxicity” pathway.

In monocytes (Supplementary Figure 5), enrichment analysis
show that:

o SYNGRI1 belongs to the biological processes regulation of
short-term neuronal synaptic plasticity and “regulation of long-
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ample Sample HCv Most recent Current HCV oup Fentanyl Norfentanyl Benzoylecgonine Buprenorphine xyzine/ Amphetamine Methamphetamine
fentanyl fentanyl free Methyl Ester tetrahydrocannabinol metab olite(s)
Date D Category status Gender HCV RNA treatment diagnosis chlorcyclizine
HCV mono-infected /
1073019 78005, Positive 51 Male White 637 No Yes +
opioid negative
HCV mono-infected /
1071019 JBO0S Positive 45 Male White No Yes
opioid negative
HCV mono-infected /
97Ny JBO10 Positive B Male Black 579 No No
opioid negative
HCV mono-infected /
1021719 JB00G Positive a5 Female White 607 No Yes + + + + +
opioid positive
HCV mono-infected /
1018119 JB007 Positive a7 Male White 000 No Yes + + + +
opioid positive
HCV mono-infected /
10/9/19 18009 Positive ) Female White 236 No No + + + + +
opioid positive
HCV mono-infected /
81819 JBO1L Positive 0 Male White 541 No Yes + + +
opioid positive
12/3/20 JB003 Healthy control Negative ) Male White No +
117720 18029 Healthy control Negative 37 Female Black No +
12/22020 18030 Healthy control Negative 4 Male White No
21921 JB031 Healthy control Negative 36 Female White No
Median a0 56

ALT, alanine aminotransferase; AST, aspartate aminotransferase.
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FIGURE 1

UMAP visualization of PBMCs by fentanyl detection status. Each circle represents an individual cell colored by cell type.

term neuronal synaptic plasticity,” while H1-3 belongs to the
biological processes “negative regulation of gene silencing,”
“negative regulation of chromatin silencing,” and “negative
regulation of chromatin organization.”

o The gene product MARCO is a member of the
“phagosome” pathway.

In B lymphocytes excluding plasmablasts (Supplementary
Figure 6), the subnetwork showed the following associations:

« ANK3 belongs to the biological “processes positive regulation
of sodium ion transmembrane transport” and “regulation of
sodium ion transmembrane transporter activity.” HLA-C and
ISG15 belong to the biological processes “type I interferon
signaling” and “cellular response to type I interferon.” IL7R,
HLA-C, ISG15, and GRAP2 belong to the biological process
“cytokine-mediated signaling.”

o The gene products HLA-C and ISG15 are members of the
“Epstein-Barr virus infection” and the “human papillomavirus
infection” pathways. The gene product HLA-C is a member of
the “allograft rejection” and “cellular senescence” pathways, while
the gene product IL7R is a member of the “primary
immunodeficiency” pathway.

In plasmablasts (Supplementary Figure 7):

« HMGB2 and HMGBI belong to the biological processes “V(D)]
recombination” and “DNA topological change.” HMGB2 belongs to
the biological process “chromatin assembly,” and NUSAP1 belongs to
the biological process “chromosome condensation.”
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The gene products H2BC7, HMGBI, and H2AZ1 are members
of the “neutrophil extracellular trap formation” pathway. HMGBI
and H2AZ1 are members of the “necroptosis” pathway. H2BC7 and
H2AZ1 are members of the “alcoholism” and “systemic lupus
erythematosus” pathways.In dendritic cells (Supplementary
Figure 8), the subnetwork identified the following associations:

« HLA-C belongs to the biological processes “antigen processing
and presentation of exogenous peptide antigen via MHC class I”
and “antigen processing and presentation of endogenous peptide
antigen via MHC class I via ER”. HLA-DRB5 and HLA-C belong to
the biological processes “interferon-gamma-mediated signaling”
and “cellular response to interferon-gamma.”

o The gene products HLA-DRB5 and HLA-C are members of

» « » «

the “viral myocarditis,” “allograft rejection,” “autoimmune thyroid
disease”, “type I diabetes mellitus,” and “graft-versus-host
disease” pathways.

In NK cells (Supplementary Figure 9):

o LDLR belongs to the biological processes “regulation of
astrocyte activation” and “positive regulation of protein catabolic
process in the vacuole.”

The gene product GZMB is a member of the “allograft
rejection,” “type I diabetes mellitus,” and “graft-versus-host
disease” pathways. The gene products PTPN6 and GZMB are
members of the “natural killer cell mediated cytotoxicity”
pathway. The gene product LDLR is a member of the “cholesterol

metabolism” pathway.IFNs and ISGs are pivotal to the antiviral
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FIGURE 2

PBMC cell proportions by fentanyl detection status. Each circle represents the cell proportion for a particular cell type from one individual. P-values
for differences in proportions were calculated using a two-sided Wilcoxon rank-sum test.

response to HCV infection (66, 67); thus, we evaluated their
expression in multiple PBMC cell types in persons with and
without fentanyl detection. As shown in Figure 11, ISG15 and
IFNG were differentially expressed between fentanyl-positive and
fentanyl-negative study participants. ISG15 was differentially
expressed in CD4" T lymphocytes, CD8" T lymphocytes, and B
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lymphocytes (excluding plasmablasts), while IFNG was
differentially expressed in CD8" T lymphocytes.

Multiple host factors promote the cell binding, uptake, and
membrane fusion of hepatitis C virions into susceptible cells
[reviewed in (57, 58)]. While these entry factors have been
explored thoroughly in hepatocytes, they may be expressed in
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extrahepatic sites as well. Genes related to HCV entry were
evaluated in unsorted PBMCs for study participants with and
without fentanyl detection. As shown in Figure 12, CD81
expression was high in PBMCs; however, other HCV entry
factors were expressed at low levels, and none were significantly
different in individuals with versus without fentanyl detection.
L-SIGN/CLEC4M and NPCI1L1 were not detected.
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Discussion

Immunologic responses are a critical component of liver disease
pathogenesis (66, 68), and gene expression patterns frequently
overlap between the peripheral blood and liver (69-72).
Transcriptomic analysis of PBMCs has been utilized in several
disease states, including chronic HCV infection, HIV/HCV co-
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Volcano plot of differentially expressed genes in B lymphocytes (excluding plasmablasts) for HCV-positive study participants with/without fentanyl

detection.

infection, chronic HBV infection, renal transplant recipients,
alcoholic liver disease, fatty liver disease, and liver failure (71-80).
Using liver and PBMC RNAseq data, Listopad et al. reported that
both were enriched for several common immune system pathways,
including inhibition of matrix metalloproteases (MMPs),
macrophage migration inhibitory factor regulation of innate
immunity, and interferon signaling pathways (72).

Data on how synthetic opioids impact HCV replication and
disease progression are quite limited. We previously reported that

Frontiers in Virology

fentanyl increased in vitro replication of HCV in hepatocytes and
utilized bulk RNAseq to identify genes that were differentially
regulated by fentanyl, including those involved in the antiviral/
interferon response, apoptosis, NFkB signaling, and chemokine
signaling (40). These findings align with previous reports from
virus-naive non-human animal models and cell types that
demonstrated that fentanyl regulates apoptosis, alters NFxB
expression, and/or upregulates inflammatory genes (81-87). A
single cell RNAseq analysis of heroin-dependent individuals
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1

Volcano plot of differentially expressed genes in dendritic cells for HCV-positive study participants with/without fentanyl detection.

(HCV status was not reported) conducted by Karagiannis et al.
observed a downregulation of interferon-stimulated genes and
antiviral genes in opioid-dependent individuals compared to
controls (88). The suppression of antiviral genes was observed
only in monocytes in a naive state and most immune cell
subpopulations during exposure to lipopolysaccharide. Fox et al.
investigated the interaction of morphine and simian
immunodeficiency virus (SIV) infection (89). Morphine treatment
resulted in lower numbers of CD4" T lymphocytes, CD8" T
lymphocytes, NK cells, and B cells and suppressed inflammatory
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markers. Avey et al. performed single cell RNA sequencing of the
nucleus accumbens of mice following acute morphine treatment
(90). Morphine-dependent changes in gene expression were
observed in nearly every cell type examined, and pathway analysis
revealed significant downregulation of genes encoding heat shock
proteins, ER chaperones, and other factors involved in the unfolded
protein response and ER quality control. Phan et al. utilized single
nuclei RNAseq to evaluate the dorsal striatum of individuals with
opioid use disorder (53). Pathways related to neurodegeneration,
interferon response, and DNA damage were significantly enriched
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Upset plot showing the number of differentially expressed genes that are shared across peripheral blood cell types.

in post-mortem brain tissues of individuals with OUD. Also using
single nuclei RN Aseq, Brenner et al. investigated the transcriptome
from the prefrontal cortex of individuals with alcohol dependence
(49). Each cell type displayed enrichment of different genes linked
to neuroinflammation. To date, single cell RN Aseq studies in HCV-
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positive drug-using populations have not been conducted to
our knowledge.

In the current analysis of persons with HCV mono-infection,
106 differentially expressed genes were identified, including 7
DEGs that were shared by multiple cell types. Type I IFNs
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directly activate the transcription of interferon-stimulated genes
(ISGs) to exert antiviral, anti-proliferative, and immunomodulatory
activities (91, 92), although only a limited number of ISGs have
been functionally characterized as antiviral effector molecules (67).
Our transcriptomics analysis identified several ISGs that were
differentially regulated in multiple peripheral cell types during
opioid use. For instance, ISG15 was differentially expressed in
CD4" T lymphocytes, CD8" T lymphocytes and B lymphocytes
(excluding plasmablasts). ISG15 is induced in response to type I
interferons and has antiviral activity; however, ISG15 may promote
HCYV replication (93-95). IFNy was differentially regulated in CD8"
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T lymphocytes in this study and is known to inhibit HCV
replication and promote immune cell-mediated clearance of
infected hepatocytes (96).

While the primary site of HCV replication is hepatocytes, there
is ample evidence of extrahepatic replication of HCV (97).
Moreover, engaging extrahepatic cells with glycoproteins may
alter cell function without active viral replication. Data are quite
limited on the expression of HCV entry factors during substance
use. Carriere et al. evaluated LDLR and CD81 expression by flow
cytometry in PBMCs (98). CD81 was upregulated on monocytes in
individuals with moderate alcohol use. Sandau et al. found that
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methamphetamine use increased the abundance of plasma
extracellular vesicles containing CD81 (99). Cocaine also induces
CD81 expression in the rat brain (100). Similar studies with opioids
- particularly synthetic opioids such as fentanyl and/or fentanyl
analogs — have not been conducted to date. In the current study,
CD81 expression was high compared to other HCV entry factors in
the peripheral blood; however, these factors were not significantly
differentially expressed in individuals with versus those without
fentanyl detection.

Several potential limitations of our study should be considered.
First, the cross-sectional nature of sample collection prevents
studies of the evolution of transcriptional changes and/or the
development of liver disease caused by drug use over time. The
modest sample size could also diminish the statistical power to
detect minor differences across study groups and/or cell types or to
control for certain confounders. However, the number of patients
needed for single cell transcriptomic analysis depends on the
specific research question, the level of heterogeneity within the
patient population, and the complexity of the analysis. Moreover,
non-traditional power analyses may be needed to determine the
appropriate sample sizes for single-cell RNA seq as traditional
power evaluation and sample size calculation methods are
frequently inadequate (101). Second, given the sample size,
including more covariates significantly reduced the number of
DEGs remaining for analysis. The impact of these covariates
should be considered in larger studies in the future. Third, acute
versus chronic opioid exposure may differentially impact HCV
replication and pathogenesis; however, data on drug use before
sample collection are not available in this study population. Fourth,
we focused on fentanyl use as the most commonly detected opioid
in our setting. However, other drugs of abuse are likely to have
distinct effects on the peripheral blood transcriptome. Additionally,
polysubstance use is common in persons with OUD but is not
commonly considered in clinical cohorts with viral infections, and
we were unable to evaluate the potential synergistic effects between
multiple illicit drugs or drug-drug interactions. Fifth, the lack of
liver biopsies prevents a detailed analysis of liver fibrosis; however,
liver biopsies are performed less frequently now, given the
availability of other non-invasive approaches. Finally, functional
studies are needed to characterize fully and validate the significance
of the various gene alterations that have been identified in this in
vivo study.

Collectively, these findings highlight multiple distinct
pathways by which opioid use contributes to HCV pathogenesis.
Defining the changes in the peripheral blood transcriptome is
essential to a more robust understanding of virus-cell-opioid
interactions and may facilitate the improved clinical management
of difficult-to-treat populations and identify new pathways for novel
therapeutic strategies.
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