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Introduction: The US has experienced a major drug epidemic in recent years,

attributed in large part to synthetic opioids such as fentanyl. Here, we evaluated

how recreational / non-prescribed fentanyl use in persons living with HCV

infection impacted gene expression profiles in the peripheral blood.

Methods: Whole blood was collected from 11 individuals, including 4 HCV-

negative healthy controls, 4 HCV-positive individuals with current fentanyl use,

and 3 HCV-positive individuals with no current fentanyl / no opioid use.

Results: The median HCV RNA level was 5.6 log10 copies/mL. Cell frequencies

were not different by fentanyl status except for non-CD4+, non-CD8+ T cells

(higher for fentanyl use; p = 0.052). When comparing HCV-positive persons with

/ without fentanyl detected in their blood, 106 differentially expressed genes

(DEGs) were identified, including 11 in CD4+ T lymphocytes, 46 in CD8+ T

lymphocytes, 5 in monocytes, 13 in B lymphocytes (excluding plasmablasts), 24

in plasmablasts, 2 in dendritic cells, and 13 in NK cells. Seven DEGs – DHRS4L2,

GZMA, H1-3, HLA-C, ISG15, PARP8, PRKX – were shared across multiple cell

types, with the majority being involved in host defenses against viruses.

Enrichment analysis of differentially expressed genes identified genes involved

inmultiple cellular processes and phenotypes. Expression of the HCV entry factor

CD81 was high in PBMCs; however, other HCV entry factors were expressed at

low levels, and none were differentially expressed in HCV-positive persons with /

without fentanyl detected in their blood.
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Discussion: These results highlight multiple pathways by which commonly

abused opioids may affect HCV pathogenesis and may reveal additional

pathways for novel target-specific therapeutic interventions and enhance the

clinical management of this difficult-to-treat population.
KEYWORDS

opioid, fentanyl, drug use, hepatitis C virus, HCV, single cell transcriptome
Introduction

There are an estimated 50 million individuals infected with

chronic hepatitis C virus (HCV) worldwide (1). Highly effective

direct-acting agents can cure ~95% of persons with HCV infection.

However, diagnosis and subsequent access to these treatments are

low for certain at-risk populations. New HCV infections increased

steadily from 2013 to 2021 and have remained relatively stable since

then; however, infections are well above the annual target (2). Blood

exposure is a major route of HCV transmission, and persons who

use/inject drugs (PWID) are at significant risk for HCV infection, as

well as re-infection.

There were an estimated 3.69 million PWIDs in the US –

representing 1.46% of the adult population – in 2018, and the

number of drug overdose deaths has increased significantly in

recent years (3–5). More than 106,000 persons in the U.S. died

from drug-involved overdoses in 2021, including illicit drugs and

prescription opioids (6). Opioid-involved overdose deaths rose

from 21,089 in 2010 to 47,600 in 2017 (6). Deaths involving

synthetic opioids other than methadone (primarily fentanyl)

continued to rise in 2021. While fentanyl is used clinically for

pain management, it has increased dramatically in availability and

gained widespread recreational use (7–12). In 2017, a study

conducted in southwest Ohio found that ~90% of unintentional

overdoses involved fentanyl and that high-burden counties

accounted for 73% of these deaths (13, 14). Recreational/non-

prescribed use has led to significant increases in incident HCV

and HIV infections, as exemplified by the HIV/HCV outbreak in

Indiana in 2015, as well as across Appalachia and parts of New

England (8, 15–23). Globally, the incidence of HCV among PWIDs

ranged from 0.2 to 72.5 per 100 person-years, with a pooled

incidence of 12.1 per 100 person-years (24).

Opioid receptors are abundantly expressed on various immune

cells, including CD4+ T lymphocytes and monocyte-derived

macrophages (25). Opioid receptors are also expressed in the liver

– including in hepatocytes and hepatic stellate cells – and are

important mediators of disease progression (26–32). Commonly

abused opioids and their receptors promote viral replication and

virus-mediated pathology (33). For instance, multiple opioids are

known to increase HIV replication in immune cells through

increased chemokine receptor expression, inhibition of b
chemokines, inhibition of the endogenous interferon response,
02
and/or modulation of microRNA expression (34). In contrast, less

is known about the impact of opioids on HCV and liver disease. In

vitro studies demonstrate that morphine, heroin, and

methamphetamine enhance HCV replication (35–39). We

recently reported that the synthetic opioid fentanyl increased

HCV replication in vitro in a dose-dependent manner (40). The

addition of fentanyl also resulted in significant apoptosis. RNA

sequencing of fentanyl-exposed hepatocytes identified multiple

differentially expressed genes, including those involved in the

antiviral interferon response, NFkB signaling, chemokine

signaling, and apoptosis. A recent study of PWIDs in the United

States and Mexico found that fentanyl was associated with increased

HCV seroconversion; however, more research is needed to

understand the mechanisms underpinning this association (41).

As higher virus levels are associated with pathogenesis and

increased risk of transmission to others, additional research is

essential to our understanding of opioid-virus pathogenesis and

for the development of new and optimized treatment strategies to

treat HCV infection in high-risk populations. To this end, we

evaluated the peripheral blood response to recent fentanyl use in

persons with HCV infection.
Methods

Patient population

From March 2019 to December 2024, we conducted a short-

term, observational, non-interventional study of persons with

fentanyl use/exposure in the greater Cincinnati area. The

inclusion criteria were adults >18 years of age who presented to

the UC Emergency Department (ED) for unintentional overdose.

Exclusion criteria include intentional overdose (suicide attempt)

with non-opioids and inability or not willing to provide informed

consent. While the parent study focused on persons living with

HIV, a sub-study also included individuals with HCV mono-

infection. HCV status was determined by patient self-report and

review of electronic medical records. Opioid use disorder (OUD)

was defined as scoring positive for opioids on the NIDA-Modified

ASSIST tool and/or OUD listed in the electronic medical record.

Whole blood was collected from HCV-positive adults at the

University of Cincinnati Medical Center, as well as HCV-negative/
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non-opioid using controls. Participants provided written informed

consent prior to any study procedures and were compensated $20

for their participation. The University of Cincinnati Institutional

Review Board approved this study as 2019_0584. All research

involving human research participants was performed in

accordance with the Declaration of Helsinki.
Sample processing

PBMCs were isolated from ~40 mLs of whole blood collected in

BD Vacutainer Cell Prep Tubes per the manufacturer’s protocol and

stored in fetal bovine serum (FBS) with 10% dimethyl sulfoxide in

liquid nitrogen. To minimize RNA degradation, all samples were

processed from collection to freezing within 4 hours (mean of 2.75

hours; range: 1.95 – 3.92 hours). To prepare PBMCs for 10x single

cell labeling, cells were thawed and counted. Viability was

confirmed by trypan blue staining as greater than 90%, and the

concentration was adjusted to 1 x 106 cells/mL in Dulbecco’s

phosphate-buffered saline.
Drug use screening

Plasma samples from all study participants were screened by a

targeted Liquid Chromatography Mass Spectrometry (LC-MS/MS)

approach for 95 commonly used drugs and volatile compounds (e.g.,

ethanol) by Gas Chromatography Mass Spectrometry (GC/MS). For

LC-MS/MS analysis, 0.5 mL of the sample was diluted with buffer and

subjected to solid-phase extraction using United Chemical

Technologies Clean Screen extraction columns. For GC/MS analysis,

0.1 mL of sample was placed into a headspace vial for analysis. The LC-

MS/MS analysis used targeted transitions, while the GC/MS was

operated in full-scan. This screening process can detect drugs from

the following classes: opioids, medications for the treatment of OUD,

stimulants, benzodiazepines, barbiturates, antidepressants,

hallucinogens, over-the-counter drugs, marijuana, and anti-epileptics.

Confirmation and quantitation were performed by LC-MS/MS when

the sample volume was sufficient. For samples with multiple positive

results, stimulants and opioids (including fentanyl and fentanyl

analogs) were prioritized for confirmation testing.
Single cell RNAseq analysis

Single cell barcoding and complementary DNA (cDNA) and V

(D)J library preparation were performed at the Single Cell

Genomics Facility (Cincinnati Children’s Hospital Medical

Center, RRID: SCR_022653) using Chromium Next GEM Single

Cell 5 ’ Reagent Kits v2 (Dual index) according to the

manufacturer’s protocol. Briefly, cell suspensions, beads, master

mix, and partitioning oil were loaded onto a “K” chip for a targeted

output of 10,000 cells per library and run on the Chromium X.

Reverse transcription was performed at 53 °C for 45 min and cDNA

was amplified for 14 cycles using a Bio-Rad C1000 Touch
Frontiers in Virology 03
thermocycler followed by cDNA size selection using SpriSelect

beads (Beckman Coulter, USA). cDNA quality was confirmed

with an Agilent Bioanalyzer High Sensitivity chip. DNA

fragmentation, end-repair, A-tailing, and ligation of sequencing

adapters were performed per the manufacturer’s protocol (10x

Genomics, USA). Libraries were run on a NovaSeq 6000 S1 or S4

flow cell (depending on the number of samples) at the Genomics

Sequencing Facility (Cincinnati Children’s Hospital Medical

Center, RRID: SCR_022630).

Raw base call files were de-multiplexed with Cell Ranger (42)

v9.0.0 mkfastq. Reads were aligned to the human reference genome

GRCh38, and gene expression was quantified using Cell Ranger

count with default parameters. SoupX v1.6.2 (43) was used to

remove cell free mRNA contamination from each library using

the estimation of the contamination rate implemented in the

autoEstCont and adjustCounts function. Doublets and multiplets

were removed using Scrublet v0.2.2 (44). Cells displaying more than

20% mitochondrial gene expression – or fewer than 200 total

expressed genes – were excluded from analysis. Gene expression

counts were integrated in R v4.4.0 using Seurat v5.2.1 and Harmony

v1.2.3 integration with default parameters (45). Cell types were

annotated via label transfer from a high-quality, multi-model

PBMC reference dataset using the Azimuth v0.5.0 pipeline in

Seurat (46), and the reference Uniform Manifold Approximation

and Projection (UMAP) coordinates were used. Analysis was

conducted with compute and storage resources provided by

Information Services for Research (IS4R, Cincinnati Children’s

Hospital Medical Center, RRID: SCR_022622).

Doublet rates were 3.5% to 9.4% (median 4.6%). Ambient RNA

contamination rates were 1.0% to 3.5% (median 1.7%). Transcripts

were pooled within each cell type and study participant for

pseudobulk analysis using DESeq2 v1.46 (47). This approach

outperforms generic and specialized single cell differential gene

analysis (DGA) methods (48) by limiting type I error and allows the

use of bulk RNAseq tools while preserving cell type resolution. This

approach has been employed by other single cell transcriptomic

studies (49–54).

Differentially expressed genes (DEGs) were identified with the

following inclusion criteria: fold change +/- 20% and adjusted p-

value < 0.05. For DEG analysis, protein-coding genes as annotated

by Ensembl release 112 (55) were used, and genes were required to

have 10 or more reads expressed in 3 or more samples to be

included in the analysis. To reduce the rate of false positives,

shrinkage was applied to the effect sizes using the “apeglm”

method implemented by lfcShrink (56).

HCV entry factors included 5-HT2AR, AP2, APOE, CD81,

CLDN1, DC-SIGN/CD209, EGRF, HIP1R, L-SIGN/CLEC4M,

LDLR, NPC1L1, OCLN, SR-BI, SRFBP1, and VLDLR (57, 58).

Interferon (IFN)/interferon-stimulated genes (ISG) included 80

type I, II, or III IFNs and ISGs associated with these pathways as

described in the Interferome database (59).

Plots were generated using R ggplot2 v3.5.1, ggpubr v0.6.0, and

Seurat 5.2.1 (46, 60, 61). Enrichment analysis was performed using

ToppCluster and Enrichr-KG to identify specialized biological

functions and regulatory networks (62–65).
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Results

Patient characteristics

Eleven blood samples were collected from 4 HCV-positive

individuals with current fentanyl use, 3 HCV-positive individuals

without current fentanyl use, and 4 HCV-negative, non-opioid-

using healthy controls (Table 1).

Among HCV-positive participants, the median age was 45 years

(range: 33 – 53), 5 individuals were male, and 6 were white/non-

Hispanic. The median HCV viral load was 5.6 log10 copies/mL

(range: 0.00 – 6.37), while median alanine aminotransferase (ALT)

and aspartate aminotransferase (AST) levels were 35 IU/L (range:

21 – 197) and 69 IU/L (range: 20 – 373), respectively. No study

participants were currently receiving treatment for HCV infection.

Five individuals had an OUD diagnosis, including 3 in the fentanyl-

positive group and 2 in the fentanyl-negative group.

Fentanyl was detected in all 4 individuals in the opioid-using

group. Fentanyl analogs and metabolites were also detected,

including norfentanyl (n = 4), acetyl fentanyl (n = 1), and

despropionyl fentanyl (n = 1). Buprenorphine and methadone

were each detected in 1 individual in the opioid-using group.

Cocaine metabolites were detected in 3 individuals in the opioid-

using group. 11-carboxy-tetrahydrocannabinol was detected in one

individual in the non-opioid use group and two healthy controls.

A total of 144,026 cells were evaluated by single-cell RNA-seq

analysis with a mean of 13,093 cells per individual. Cells with

ambient RNA contamination, doublets, or multiplets were

removed. The mitochondrial content for all PBMC samples was

low (Supplementary Figure 1). Cells with >20% mitochondrial

content were removed, leaving 134,768 cells (94%; mean of

13,002 cells per individual) passing these quality control measures

(Supplementary Table 1). Cell clusters within PBMCs were

identified by label transfer from a high-quality reference dataset,

as shown by fentanyl status in Figure 1 and individually in

Supplementary Figure 2. There were no statistically significant

differences in cell frequency based on fentanyl status for CD4+ T

lymphocytes, CD8+ T lymphocytes, monocytes, B lymphocytes

(excluding plasmablasts), plasmablasts, dendritic cells, natural

killer (NK) cells, other T lymphocytes, or other cells (Figure 2).

For other T cells, there was a trend towards a higher cell frequency

in fentanyl-positive versus fentanyl-negative individuals (p = 0.052).

DGA was performed for multiple peripheral blood cell types,

including CD4+ T lymphocytes, CD8+ T lymphocytes, monocytes,

dendritic cells, and NK cells. Two B cell subpopulations –

plasmablasts and B lymphocytes (excluding plasmablasts) –

showed distinct gene expression patterns (data not shown) and

were analyzed separately. When comparing HCV-positive

individuals who were fentanyl-positive versus fentanyl-negative at

the time of sample collection, we included OUD diagnosis as a

covariate, there were 106 differentially expressed genes. There were

11 DEGs – 4 downregulated and 7 upregulated – in CD4+ T

lymphocytes (Figure 3, Supplementary Table 2). In CD8+ T

lymphocytes, there were 46 DEGs, including 6 downregulated and

40 upregulated genes (Figure 4, Supplementary Table 3). There were
Frontiers in Virology 04
5 DEGs, including 1 downregulated and 4 upregulated genes, in

monocytes (Figure 5, Supplementary Table 4). For B lymphocytes

(excluding plasmablasts), there were 13 DEGs – 6 downregulated

and 7 upregulated (Figure 6, Supplementary Table 5). In

plasmablasts, there were 24 DEGs, 4 downregulated and 20

upregulated (Figure 7, Supplementary Table 6). There were 2

DEGs identified in dendritic cells (Figure 8, Supplementary

Table 7) – both downregulated. In NK cells, there were 13 DEGs,

including 6 downregulated and 7 upregulated genes (Figure 9,

Supplementary Table 8).

Seven DEGs – DHRS4L2, GZMA, H1-3, HLA-C, ISG15, PARP8,

PRKX – were shared across multiple cell types. Interferon-stimulated

gene 15 (ISG15) was upregulated in CD4 T cells, CD8 T cells, and B

lymphocytes (excluding plasmablasts). Dehydrogenase/Reductase 4

Like 2 (DHRS4L2) was upregulated in CD8 T cells and B

lymphocytes (excluding plasmablasts). Granzyme A (GZMA) and

Protein kinase, X-linked (PRKX) were upregulated in CD4 T cells

and CD8 T cells. H1.3 Linker Histone, Cluster Member (H1-3) was

upregulated in Plasmablasts and monocytes. Human Leukocyte

Antigen-C (HLA-C) was downregulated in B lymphocytes

(excluding plasmablasts) and dendritic cells. Poly(ADP-ribose)

polymerase family member 8 (PARP8) was downregulated in CD8

T cells and NK cells. The upset plot in Figure 10 displays the 106

DEGs identified in at least one cell type, including those shared across

distinct peripheral blood cell types.

Enrichment analysis was performed in each peripheral blood

cell type. In CD4+ T lymphocytes (Supplementary Figure 3), the

subnetwork showed the following associations:

• ISG15 belongs to the biological processes “ISG15-protein

conjugation” and “proteolysis involved in cellular protein

catabolic process,” while ABCG2 belongs to the biological process

“xenobiotic transport across blood-brain barrier.”

• The gene product ABCG2 is a member of the “ABC

transporters” and “bile secretion” pathways, while the gene

product ISG15 is a member of the “RIG-I-like receptor

signaling” pathway.

In CD8+ T lymphocytes (Supplementary Figure 4),

• CX3CR1 and ITGAM belong to the biological processes

“regulation of hippocampal neuron apoptotic process” and

“regulation of microglial cell mediated cytotoxicity”. IFNG,

CX3CR1, and ITGAM belong to the biological process “microglial

cell activation.” IFNG and CD300A belong to the biological process

“positive regulation of phosphatase activity.” CX3CR1 and CD300A

belong to the biological process “negative regulation of myeloid

leukocyte mediated immunity.”

• The gene products IFNG, FASLG, and PRF1 are members of

the “allograft rejection” pathway, while the gene products IFNG,

CX3CR1, and FASLG are members of the “cytokine-cytokine

receptor interaction” pathway. The gene products IFNG, FASLG,

and PRF1 are members of the “natural killer cell mediated

cytotoxicity” pathway.

In monocytes (Supplementary Figure 5), enrichment analysis

show that:

• SYNGR1 belongs to the biological processes regulation of

short-term neuronal synaptic plasticity and “regulation of long-
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TABLE 1 Baseline sociodemographic, clinic characteristics, and drug screen results.
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Sample

Date

Sample

ID Category

HCV

status Age Gender Race

Most recent

HCV RNA

Current HCV

treatment

OUD

diagnosis

10/30/19 JB005
HCV mono-infected /

opioid negative
Positive 51 Male White 6.37 No Yes

10/10/19 JB008
HCV mono-infected /

opioid negative
Positive 45 Male White No Yes

9/17/19 JB010
HCV mono-infected /

opioid negative
Positive 53 Male Black 5.79 No No

10/21/19 JB006
HCV mono-infected /

opioid positive
Positive 45 Female White 6.07 No Yes

10/18/19 JB007
HCV mono-infected /

opioid positive
Positive 47 Male White 0.00 No Yes

10/9/19 JB009
HCV mono-infected /

opioid positive
Positive 33 Female White 2.36 No No

8/8/19 JB011
HCV mono-infected /

opioid positive
Positive 40 Male White 5.41 No Yes

12/3/20 JB003 Healthy control Negative 33 Male White No

1/7/20 JB029 Healthy control Negative 37 Female Black No

12/22/20 JB030 Healthy control Negative 41 Male White No

2/19/21 JB031 Healthy control Negative 36 Female White No

Median 41.0 5.6

ALT, alanine aminotransferase; AST, aspartate aminotransferase.
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term neuronal synaptic plasticity,” while H1–3 belongs to the

biological processes “negative regulation of gene silencing,”

“negative regulation of chromatin silencing,” and “negative

regulation of chromatin organization.”

• The gene product MARCO is a member of the

“phagosome” pathway.

In B lymphocytes excluding plasmablasts (Supplementary

Figure 6), the subnetwork showed the following associations:

• ANK3 belongs to the biological “processes positive regulation

of sodium ion transmembrane transport” and “regulation of

sodium ion transmembrane transporter activity.” HLA-C and

ISG15 belong to the biological processes “type I interferon

signaling” and “cellular response to type I interferon.” IL7R,

HLA-C, ISG15, and GRAP2 belong to the biological process

“cytokine-mediated signaling.”

• The gene products HLA-C and ISG15 are members of the

“Epstein-Barr virus infection” and the “human papillomavirus

infection” pathways. The gene product HLA-C is a member of

the “allograft rejection” and “cellular senescence” pathways, while

the gene product IL7R is a member of the “primary

immunodeficiency” pathway.

In plasmablasts (Supplementary Figure 7):

•HMGB2 and HMGB1 belong to the biological processes “V(D)J

recombination” and “DNA topological change.” HMGB2 belongs to

the biological process “chromatin assembly,” and NUSAP1 belongs to

the biological process “chromosome condensation.”
Frontiers in Virology 06
The gene products H2BC7, HMGB1, and H2AZ1 are members

of the “neutrophil extracellular trap formation” pathway. HMGB1

and H2AZ1 are members of the “necroptosis” pathway. H2BC7 and

H2AZ1 are members of the “alcoholism” and “systemic lupus

erythematosus” pathways.In dendritic cells (Supplementary

Figure 8), the subnetwork identified the following associations:

•HLA-C belongs to the biological processes “antigen processing

and presentation of exogenous peptide antigen via MHC class I”

and “antigen processing and presentation of endogenous peptide

antigen via MHC class I via ER”. HLA-DRB5 and HLA-C belong to

the biological processes “interferon-gamma-mediated signaling”

and “cellular response to interferon-gamma.”

• The gene products HLA-DRB5 and HLA-C are members of

the “viral myocarditis,” “allograft rejection,” “autoimmune thyroid

disease”, “type I diabetes mellitus,” and “graft-versus-host

disease” pathways.

In NK cells (Supplementary Figure 9):

• LDLR belongs to the biological processes “regulation of

astrocyte activation” and “positive regulation of protein catabolic

process in the vacuole.”

The gene product GZMB is a member of the “allograft

rejection,” “type I diabetes mellitus,” and “graft-versus-host

disease” pathways. The gene products PTPN6 and GZMB are

members of the “natural killer cell mediated cytotoxicity”

pathway. The gene product LDLR is a member of the “cholesterol

metabolism” pathway.IFNs and ISGs are pivotal to the antiviral
FIGURE 1

UMAP visualization of PBMCs by fentanyl detection status. Each circle represents an individual cell colored by cell type.
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response to HCV infection (66, 67); thus, we evaluated their

expression in multiple PBMC cell types in persons with and

without fentanyl detection. As shown in Figure 11, ISG15 and

IFNG were differentially expressed between fentanyl-positive and

fentanyl-negative study participants. ISG15 was differentially

expressed in CD4+ T lymphocytes, CD8+ T lymphocytes, and B
Frontiers in Virology 07
lymphocytes (excluding plasmablasts), while IFNG was

differentially expressed in CD8+ T lymphocytes.

Multiple host factors promote the cell binding, uptake, and

membrane fusion of hepatitis C virions into susceptible cells

[reviewed in (57, 58)]. While these entry factors have been

explored thoroughly in hepatocytes, they may be expressed in
FIGURE 2

PBMC cell proportions by fentanyl detection status. Each circle represents the cell proportion for a particular cell type from one individual. P-values
for differences in proportions were calculated using a two-sided Wilcoxon rank-sum test.
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extrahepatic sites as well. Genes related to HCV entry were

evaluated in unsorted PBMCs for study participants with and

without fentanyl detection. As shown in Figure 12, CD81

expression was high in PBMCs; however, other HCV entry

factors were expressed at low levels, and none were significantly

different in individuals with versus without fentanyl detection.

L-SIGN/CLEC4M and NPC1L1 were not detected.
Frontiers in Virology 08
Discussion

Immunologic responses are a critical component of liver disease

pathogenesis (66, 68), and gene expression patterns frequently

overlap between the peripheral blood and liver (69–72).

Transcriptomic analysis of PBMCs has been utilized in several

disease states, including chronic HCV infection, HIV/HCV co-
FIGURE 3

Volcano plot of differentially expressed genes in CD4+ T lymphocytes for HCV-positive study participants with/without fentanyl detection.
FIGURE 4

Volcano plot of differentially expressed genes in CD8+ T lymphocytes for HCV-positive study participants with/without fentanyl detection.
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infection, chronic HBV infection, renal transplant recipients,

alcoholic liver disease, fatty liver disease, and liver failure (71–80).

Using liver and PBMC RNAseq data, Listopad et al. reported that

both were enriched for several common immune system pathways,

including inhibition of matrix metalloproteases (MMPs),

macrophage migration inhibitory factor regulation of innate

immunity, and interferon signaling pathways (72).

Data on how synthetic opioids impact HCV replication and

disease progression are quite limited. We previously reported that
Frontiers in Virology 09
fentanyl increased in vitro replication of HCV in hepatocytes and

utilized bulk RNAseq to identify genes that were differentially

regulated by fentanyl, including those involved in the antiviral/

interferon response, apoptosis, NFkB signaling, and chemokine

signaling (40). These findings align with previous reports from

virus-naïve non-human animal models and cell types that

demonstrated that fentanyl regulates apoptosis, alters NFkB
expression, and/or upregulates inflammatory genes (81–87). A

single cell RNAseq analysis of heroin-dependent individuals
FIGURE 5

Volcano plot of differentially expressed genes in monocytes for HCV-positive study participants with/without fentanyl detection.
FIGURE 6

Volcano plot of differentially expressed genes in B lymphocytes (excluding plasmablasts) for HCV-positive study participants with/without fentanyl
detection.
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(HCV status was not reported) conducted by Karagiannis et al.

observed a downregulation of interferon-stimulated genes and

antiviral genes in opioid-dependent individuals compared to

controls (88). The suppression of antiviral genes was observed

only in monocytes in a naive state and most immune cell

subpopulations during exposure to lipopolysaccharide. Fox et al.

invest igated the interaction of morphine and simian

immunodeficiency virus (SIV) infection (89). Morphine treatment

resulted in lower numbers of CD4+ T lymphocytes, CD8+ T

lymphocytes, NK cells, and B cells and suppressed inflammatory
Frontiers in Virology 10
markers. Avey et al. performed single cell RNA sequencing of the

nucleus accumbens of mice following acute morphine treatment

(90). Morphine-dependent changes in gene expression were

observed in nearly every cell type examined, and pathway analysis

revealed significant downregulation of genes encoding heat shock

proteins, ER chaperones, and other factors involved in the unfolded

protein response and ER quality control. Phan et al. utilized single

nuclei RNAseq to evaluate the dorsal striatum of individuals with

opioid use disorder (53). Pathways related to neurodegeneration,

interferon response, and DNA damage were significantly enriched
FIGURE 7

Volcano plot of differentially expressed genes in plasmablasts for HCV-positive study participants with/without fentanyl detection.
FIGURE 8

Volcano plot of differentially expressed genes in dendritic cells for HCV-positive study participants with/without fentanyl detection.
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in post-mortem brain tissues of individuals with OUD. Also using

single nuclei RNAseq, Brenner et al. investigated the transcriptome

from the prefrontal cortex of individuals with alcohol dependence

(49). Each cell type displayed enrichment of different genes linked

to neuroinflammation. To date, single cell RNAseq studies in HCV-
Frontiers in Virology 11
positive drug-using populations have not been conducted to

our knowledge.

In the current analysis of persons with HCV mono-infection,

106 differentially expressed genes were identified, including 7

DEGs that were shared by multiple cell types. Type I IFNs
FIGURE 9

Volcano plot of differentially expressed genes in NK cells for HCV-positive study participants with/without fentanyl detection.
FIGURE 10

Upset plot showing the number of differentially expressed genes that are shared across peripheral blood cell types.
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directly activate the transcription of interferon-stimulated genes

(ISGs) to exert antiviral, anti-proliferative, and immunomodulatory

activities (91, 92), although only a limited number of ISGs have

been functionally characterized as antiviral effector molecules (67).

Our transcriptomics analysis identified several ISGs that were

differentially regulated in multiple peripheral cell types during

opioid use. For instance, ISG15 was differentially expressed in

CD4+ T lymphocytes, CD8+ T lymphocytes and B lymphocytes

(excluding plasmablasts). ISG15 is induced in response to type I

interferons and has antiviral activity; however, ISG15 may promote

HCV replication (93–95). IFNg was differentially regulated in CD8+
Frontiers in Virology 12
T lymphocytes in this study and is known to inhibit HCV

replication and promote immune cell-mediated clearance of

infected hepatocytes (96).

While the primary site of HCV replication is hepatocytes, there

is ample evidence of extrahepatic replication of HCV (97).

Moreover, engaging extrahepatic cells with glycoproteins may

alter cell function without active viral replication. Data are quite

limited on the expression of HCV entry factors during substance

use. Carriere et al. evaluated LDLR and CD81 expression by flow

cytometry in PBMCs (98). CD81 was upregulated on monocytes in

individuals with moderate alcohol use. Sandau et al. found that
FIGURE 11

Volcano plots for interferon/interferon-stimulated genes in CD4+ T lymphocytes, CD8+ T lymphocytes, monocytes, B lymphocytes (excluding
plasmablasts), plasmablasts, dendritic cells, and NK cells for HCV-positive study participants with/without fentanyl detection.
FIGURE 12

Dot plot of HCV entry factor genes in unsorted PBMCs for HCV-positive study participants with/without fentanyl detection regardless of fold change
or statistical significance. L-SIGN/CLEC4M and NPC1L1 were not detected in the samples.
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methamphetamine use increased the abundance of plasma

extracellular vesicles containing CD81 (99). Cocaine also induces

CD81 expression in the rat brain (100). Similar studies with opioids

– particularly synthetic opioids such as fentanyl and/or fentanyl

analogs – have not been conducted to date. In the current study,

CD81 expression was high compared to other HCV entry factors in

the peripheral blood; however, these factors were not significantly

differentially expressed in individuals with versus those without

fentanyl detection.

Several potential limitations of our study should be considered.

First, the cross-sectional nature of sample collection prevents

studies of the evolution of transcriptional changes and/or the

development of liver disease caused by drug use over time. The

modest sample size could also diminish the statistical power to

detect minor differences across study groups and/or cell types or to

control for certain confounders. However, the number of patients

needed for single cell transcriptomic analysis depends on the

specific research question, the level of heterogeneity within the

patient population, and the complexity of the analysis. Moreover,

non-traditional power analyses may be needed to determine the

appropriate sample sizes for single-cell RNA seq as traditional

power evaluation and sample size calculation methods are

frequently inadequate (101). Second, given the sample size,

including more covariates significantly reduced the number of

DEGs remaining for analysis. The impact of these covariates

should be considered in larger studies in the future. Third, acute

versus chronic opioid exposure may differentially impact HCV

replication and pathogenesis; however, data on drug use before

sample collection are not available in this study population. Fourth,

we focused on fentanyl use as the most commonly detected opioid

in our setting. However, other drugs of abuse are likely to have

distinct effects on the peripheral blood transcriptome. Additionally,

polysubstance use is common in persons with OUD but is not

commonly considered in clinical cohorts with viral infections, and

we were unable to evaluate the potential synergistic effects between

multiple illicit drugs or drug-drug interactions. Fifth, the lack of

liver biopsies prevents a detailed analysis of liver fibrosis; however,

liver biopsies are performed less frequently now, given the

availability of other non-invasive approaches. Finally, functional

studies are needed to characterize fully and validate the significance

of the various gene alterations that have been identified in this in

vivo study.

Collectively, these findings highlight multiple distinct

pathways by which opioid use contributes to HCV pathogenesis.

Defining the changes in the peripheral blood transcriptome is

essential to a more robust understanding of virus-cell-opioid

interactions and may facilitate the improved clinical management

of difficult-to-treat populations and identify new pathways for novel

therapeutic strategies.
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SUPPLEMENTARY TABLE 1

Pre-quality control cell count, contamination rate, doublet percent, and post-

mitochondrial filter cell count for each study participant.

SUPPLEMENTARY FIGURE 1

Percent mitochondrial content for all study participants. Red – HCV-

negative/no opioid use; blue – HCV-positive/no fentanyl detected; yellow

– HCV-positive/fentanyl detected

SUPPLEMENTARY FIGURE 2

UMAP visualization of PBMCs for each study participant. Each circle

represents an individual cell colored by cell type.

SUPPLEMENTARY TABLE 2

Differentially expressed genes in CD4+ T lymphocytes for HCV-positive study
participants with/without fentanyl detection.

SUPPLEMENTARY TABLE 3

Differentially expressed genes in CD8+ T lymphocytes for HCV-positive study
participants with/without fentanyl detection.

SUPPLEMENTARY TABLE 4

Differentially expressed genes in monocytes for HCV-positive study

participants with/without fentanyl detection.

SUPPLEMENTARY TABLE 5

Differentially expressed genes in B lymphocytes (excluding plasmablasts) for

HCV-positive study participants with/without fentanyl detection.

SUPPLEMENTARY TABLE 6

Differentially expressed genes in excluding plasmablasts for HCV-positive
study participants with/without fentanyl detection.

SUPPLEMENTARY TABLE 7

Differentially expressed genes in dendritic cells for HCV-positive study

participants with/without fentanyl detection.

SUPPLEMENTARY TABLE 8

Differentially expressed genes in NK cells for HCV-positive study participants

with/without fentanyl detection.
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SUPPLEMENTARY FIGURE 3

Enrichment analysis of differentially expressed genes in CD4+ T lymphocytes. Genes
are shown in green, while libraries selected (5 each) are shown as

GO_Biological_Process_2021 (pink), MGI_Mammalian_Phenotype_Level_4_2021
(orange), and KEGG_2021_Human (grey). The size of the bars is proportional to

the -log(p-value) of the enrichment score computed by the Fisher exact test.

SUPPLEMENTARY FIGURE 4

Enrichment analysis of differentially expressed genes in CD8+ T lymphocytes. Genes
are shown in green, while libraries selected (5 each) are shown as

GO_Biological_Process_2021 (pink), MGI_Mammalian_Phenotype_Level_4_2021
(orange), and KEGG_2021_Human (grey). The size of the bars is proportional to

the -log(p-value) of the enrichment score computed by the Fisher exact test.

SUPPLEMENTARY FIGURE 5

Enrichment analysis of differentially expressed genes in monocytes. Genes are
shown in green, while libraries selected (5 each) are shown as

GO_Biological_Process_2021 (pink), MGI_Mammalian_Phenotype_Level_4_2021
(orange), and KEGG_2021_Human (grey). The size of the bars is proportional to

the -log(p-value) of the enrichment score computed by the Fisher exact test.

SUPPLEMENTARY FIGURE 6

Enrichment analysis of differentially expressed genes in B lymphocytes (excluding
plasmablasts). Genes are shown in green, while libraries selected (5 each) are shown

asGO_Biological_Process_2021 (pink), MGI_Mammalian_Phenotype_Level_4_2021
(orange), and KEGG_2021_Human (grey). The size of the bars is proportional to the

-log(p-value) of the enrichment score computed by the Fisher exact test.

SUPPLEMENTARY FIGURE 7

Enrichment analysis of differentially expressed genes in plasmablasts. Genes are
shown in green, while libraries selected (5 each) are shown as

GO_Biological_Process_2021 (pink), MGI_Mammalian_Phenotype_Level_4_2021
(orange), and KEGG_2021_Human (grey). The size of the bars is proportional to

the -log(p-value) of the enrichment score computed by the Fisher exact test.

SUPPLEMENTARY FIGURE 8

Enrichment analysis of differentially expressed genes in dendritic cells. Genes are
shown in green, while libraries selected (5 each) are shown as

GO_Biological_Process_2021 (pink), MGI_Mammalian_Phenotype_Level_4_2021
(orange), and KEGG_2021_Human (grey). The size of the bars is proportional to

the -log(p-value) of the enrichment score computed by the Fisher exact test.

SUPPLEMENTARY FIGURE 9

Enrichment analysis of differentially expressed genes inNK cells. Genes are shown in
green, while libraries selected (5 each) are shown as GO_Biological_Process_2021

(pink), MGI_Mammalian_Phenotype_Level_4_2021 (orange), and
KEGG_2021_Human (grey). The size of the bars is proportional to the -log(p-

value) of the enrichment score computed by the Fisher exact test.
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