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Background: Cotton leafroll dwarf virus (CLRDV), a member of the Polerovirus 
genus, is an emerging pathogen that threatens global cotton (Gossypium 
hirsutum) production. Since its first detection in Alabama in 2017, CLRDV has 
spread rapidly to several states of the United States of America, including Texas. 

Methods: In 2024, symptomatic cotton plants were collected from Brownfield, 
Texas. Total RNA was extracted, and RT-PCR was performed to amplify the viral 
genome and sequenced. The complete sequence (5,838 bp) was obtained and 
compared with existing CLRDV genomes from the U.S. 

Results: The Brownfield isolate displayed typical CLRDV genome features but 
also showed genetic differences compared to isolates from neighboring regions. 
Phylogenetic analysis indicated regional diversification, possibly due to 
environmental pressures or host cultivar variability. 

Conclusion: This study highlights the presence and evolution of CLRDV in Texas 
and neighboring states. Ongoing surveillance and development of resistant 
cotton cultivars are essential to mitigate yield losses. 
KEYWORDS 

cotton leafroll dwarf virus (CLRDV), cotton (Gossypium hirsutum), RNA virus in cotton, 
genetic diversity, virus detection 
1 Introduction 

Cotton (Gossypium hirsutum L.) stands as one of the world’s most valuable fiber crops, 
grown in over 80 countries and serving as a cornerstone of the global textile industry (1). 
During the 2023–2024 season, worldwide cotton production exceeded 24.67 million metric 
tons, equivalent to 113.29 million bales (1 bale = 480 pounds) (2). The United States plays a 
significant role in global production, ranking fourth with approximately 14.41 million 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fviro.2025.1619281/full
https://www.frontiersin.org/articles/10.3389/fviro.2025.1619281/full
https://www.frontiersin.org/articles/10.3389/fviro.2025.1619281/full
https://www.frontiersin.org/articles/10.3389/fviro.2025.1619281/full
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fviro.2025.1619281&domain=pdf&date_stamp=2025-07-23
mailto:mjanga@ttu.edu
https://doi.org/10.3389/fviro.2025.1619281
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virology#editorial-board
https://www.frontiersin.org/journals/virology#editorial-board
https://doi.org/10.3389/fviro.2025.1619281
https://www.frontiersin.org/journals/virology


Verma et al. 10.3389/fviro.2025.1619281 
bales, around 12% of the global total, and contributing nearly $6.62 
billion to the national economy by cotton export (3). Within the 
U.S., Texas dominates national production with approximately 3.2 
million hectares under cultivation, followed by Georgia, Arkansas, 
Mississippi, North Carolina, and Alabama. Cotton cultivation in the 
U.S. faces persistent threats from a range of biotic stresses, including 
pests and pathogenic organisms such as bacteria, fungi, nematodes, 
and viruses. In 2023, biotic stresses alone contributed to a 7.4% 
reduction in yield nationwide, resulting in an estimated loss of 
approximately 1.4 million bales (4). Although viral diseases 
currently contribute minimally to an overall yield loss of about 
2,994 bales, the increasing spread of viruses such as cotton leafroll 
dwarf virus (CLRDV) raises concern for future outbreaks and 
economic consequences (4). 

CLRDV, a member of the Polerovirus genus within the 
Solemoviridae family, was initially identified in Africa in 1949 
and has since been reported in parts of Asia and South America 
(5). The virus was first detected in the U.S. in 2017 in Alabama (6) 
and has now been confirmed in at least 14 cotton-growing states, 
including Georgia, Mississippi, and Texas (7). Its prevalence is 
variable, with incidence rates ranging from below 1% to over 20%, 
depending on the region (5, 8–14). The first genomic insights of 
CLRDV in the U.S. emerged from partial sequences obtained in 
Alabama by Avelar, et al. (6), followed by a complete genome 
sequence from a Georgia isolate by Tabassum, et al. (13). Cotton 
leafroll dwarf virus (CLRDV) poses a growing challenge to cotton 
production across the U.S., yet critical gaps remain in our 
understanding of its genetic landscape. Although its incidence 
has increased in recent years, there is a need for more sequenced 
genome data to identify genetic variation and population structure 
of CLRDV strains affecting U.S. cotton fields. Moreover, 
uncovering new viral isolates and obtaining their full-length 
genome sequences are essential steps toward understanding how 
the virus evolves, adapts, and spreads. Such insights are not only 
vital for accurate diagnostics and targeted disease management 
but also for guiding resistance breeding efforts aimed at 
safeguarding cotton crops against emerging viral threats. 

Building on this foundation, the present study aims to detect 
new CLRDV isolates and obtain their full-length sequence from the 
Brownfield, Texas samples. To achieve these objectives, 
symptomatic cotton leaf samples were systematically collected 
from commercial fields and subjected to amplification of the full-
length sequence. Further, the comparative analyses with previously 
reported CLRDV sequences enabled the identification of nucleotide 
variations and phylogenetic relationships among isolates. These 
approaches collectively contribute to a more comprehensive 
understanding of CLRDV evolution and distribution in a major 
cotton-producing region of the southern United States. Our 
findings enhance the current understanding of CLRDV genetic 
diversity and provide valuable aid to support the development of 
effective monitoring strategies and the breeding of resistant 
cotton cultivars. 
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2 Materials and methods 

2.1 Sample collection 

During the 2024 growing season, leaf and petiole samples were 
collected from a commercial field located at Brownfield, Texas. The 
samples collected from cotton plants exhibiting symptoms indicative 
of CLRDV infection (5) which ranged from mild chlorosis to severe 
stunting and leaf curling (Figures 1A-F). To preserve RNA integrity, 
samples were flash-frozen in liquid nitrogen immediately after 
collection and stored at -80°C until further processing. 
2.2 RNA extraction and reverse 
transcription-PCR 

Total RNA was isolated from symptomatic leaf and petiole tissue 
using the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich, St. Louis, 
MO, USA), following the manufacturer’s instructions. To eliminate 
potential genomic DNA contamination, the RNA was treated with 
RNase-free DNase I (Qiagen, USA). Complementary DNA (cDNA) 
was synthesized using the GoScript™ Reverse Transcriptase cDNA 
Synthesis Kit (Promega, USA) and a gene-specific reverse primer 
(Table 1). The reverse transcription protocol involved the 
denaturation of RNA and gene-specific reverse primer at 70°C for 5 
minutes, followed by the immediate addition of the RT master mix and 
incubation at 42°C for 90 minutes to ensure optimal primer annealing 
and cDNA synthesis. PCR amplification was conducted using primer 
pairs JL0067-JL0068 and JL0063-JL0068, targeting conserved regions of 
the viral movement and coat protein genes for diagnostic detection of 
CLRDV (13, 15). To amplify a longer genomic fragment spanning 
partial ORF1 and ORF3 regions (~2132 nt), the JL0100-JL0068 primer 
pair was employed. Amplicons were sequenced using Oxford 
Nanopore sequencing, which was carried out by Plasmidsaurus 
(https://plasmidsaurus.com/). The resulting sequences were aligned 
using NCBI’s BLASTn tool and BioEdit (16). 
2.3 Full-length sequence amplification and 
sequencing 

Further, for the full-length CLRDV sequence amplification, a 
strategic primer design approach was implemented based on 
multiple sequence alignment (MSA). Coding sequences from 
closely related CLRDV strains were retrieved from the NCBI 
Virus database based on the alignment with an amplified 2.1 kb 
partial fragment. These sequences were aligned using ClustalW with 
default settings to identify conserved regions, particularly at the 5′ 
and 3′ termini of the target open reading frame (17). Regions with 
≥90% conservation were selected as candidate primer binding sites. 
SnapGene version 8.0.3 was used to design 4 pairs of primer sets 
within these regions. These primers were used to amplify the full-
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length CLRDV sequence in 4 overlapping fragments using RT-PCR 
reaction using Phusion High-Fidelity DNA Polymerase (Thermo 
Scientific, USA), and PCR products were sequenced at 
Plasmidsaurus (https://plasmidsaurus.com/) using  the Oxford

nanopore technique. All four fragments were assembled after 
removing the overlapped region to get the full-length sequence. 
Viral coding regions were predicted using SnapGene’s import

feature function (SnapGene Version 8.0.3) from the annotation 
GFF3 file of the closest aligned sequences. 
2.4 Sequence alignment and phylogenetic 
analysis 

Phylogenetic relationships of amplified sequence in this study 
(accession number: PV548928) and existing full-length CLRDV 
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sequences retrieved from the NCBI Virus database (https:// 
www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s= 
Nucleotide&VirusLineage_ss=Cotton%20leafroll%20dwarf% 
20virus,%20taxid:312295) were analyzed using the phangorn R 
package (18) after the multiple sequence alignment with the msa 
package (19). Sequences were aligned using the ClustalW algorithm 
with default substitution parameters (20). The aligned sequences 
were converted into phyDat format for phylogenetic inference. 
Model selection was performed using the modelTest function in 
the phangorn R package, and the best-fit evolutionary model 
(TIM2e+G(4)+I) was selected based on the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) (18). A 
maximum likelihood (ML) tree was inferred using the pml_bb 
function under the selected model. Node support was assessed via 
1000 bootstrap replicates using the bootstrap.pml function with 
nearest-neighbor interchange (NNI) optimization. The resulting 
FIGURE 1 

Identification and molecular confirmation of cotton leafroll dwarf virus (CLRDV) in symptomatic cotton plants from Brownfield, Texas. (A–F) Cotton 
plants showed characteristic symptoms of CLRDV infection: (A) leaf rolling and cupping, (B) reddening of stems and petioles, (C) interveinal chlorosis 
and vein yellowing, and (D–F) stunted growth with shortened internodes. (G) RT-PCR detection of CLRDV using specific primer sets: lane M, 1 kb 
Plus DNA ladder; lane 1, 312 bp amplicon with primers JL0067/JL0068; lane 3, 432 bp amplicon with primers JL0063/JL0068; lane 5, 2,173 bp 
amplicon with primers JL0100/JL0068. Lanes 2, 4, and 6 represent corresponding no-template controls. (H) An annotated full-length CLRDV 
genome map generated using SnapGene software (version 8.0.3). 
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phylogenetic tree was midpoint rooted and visualized using the 
plotBS function with ultrafast bootstrap values. Tip labels were 
color-coded based on the geographic origin of the state to highlight 
the spatial distribution of viral lineages. A consensus network was 
constructed using the consensusNet function with a 20% threshold 
to display topological variation among bootstrap replicates. 

Pairwise nucleotide sequence comparisons were conducted 
between the CLRDV isolate identified in this study (accession 
number: PV548928) and previously reported CLRDV genome 
sequences retrieved from the NCBI Virus database (accession 
numbers: OK185946, OK185945, OQ107471, PP556773, PP556772, 
PP556774, OK185941, OQ107470, OK185944, OK185943, 
OK185942, MN872302, OM687235), which were identified from 
Texas and surrounding regions. The ORFs 0–5 sequence alignment 
was performed using ClustalW, and pairwise distance was calculated 
using the dist.DNA function of the Ape R package was plotted using 
the pheatmap R package (21). 
 
2.5 Amino acid sequence analysis 

A multiple sequence alignment (MSA) was carried out using 
MAFFT (22), followed by the computation of site-specific 
conservation scores via the bio3d package in R (23) to explore the 
evolutionary dynamics and functional conservation among the 
aligned protein sequences. A maximum likelihood tree was also 
constructed using amino acid alignment using IQTree-3.0.0 (24). 
To characterize the putative proteins encoded by the complete 
CLRDV genome, amino acid sequences were analyzed using MEME 
Suite with default parameters for the identification of conserved 
motifs (25). 
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3 Results 

3.1 New CLRDV isolate from Brownfield, 
Texas, identified by RT-PCR and 
sequencing 

In this study, we identified an unreported viral isolate from 
cotton samples collected in Brownfield, Texas. Initial detection was 
achieved using PCR amplification, which revealed diagnostic bands 
of expected sizes 312 bp and 432 bp (Figure 1G). The partial 
CLRDV sequence of a 2,173 bp amplicon was obtained using 
primer pair JL0100 and JL0068 (Figure 1G, Supplementary Table 
S1), which shares the highest similarity with known CLRDV isolates 
from Oklahoma, Kansas, and Texas (GenBank accessions: 
OM687235.2 and PP556774.1) (26). Further, the full-length 
CLRDV genome was obtained by amplifying and sequencing four 
overlapping fragments. Assembly of these fragments yielded a 
complete genome sequence of 5838 nt, which represents a typical 
CLRDV isolate (Figure 1H). Sequence analysis revealed a 90.58%­
99.69% identity with previously reported CLRDV genomes 
(Supplementary Table S2).  The assembled sequence was

submitted to NCBI under accession number PV548928, which 
was used in all subsequent analysis. 
3.2 Sequence analysis reveals genetic 
variation among CLRDV isolates 

Since the first identification of CLRDV, 834 CLRDV-related 
sequences have been deposited in the NCBI Virus Database, 
including 60 complete or near-complete genomes of these; 50 
full-length sequences originate from U.S. samples, including the 
TABLE 1 List of primers used in this study. 

Primers F/R Primer Sequence Target TM GC Reference 

JL0098 F ACAAAAGAACGATAGAGGGGTTG 5’ UTR 57°C 43% This study 

JL0099 R CTGCTGCTTGGGTTGTTGAG ORF1-ORF2 58°C 55% This study 

JL0104 R TGCTGCTTGGGTT ORF1-ORF2 49°C 54% This study (cDNA synthesis) 

JL0100 F CAACCAGCTCGATCGAGAAG ORF1-ORF2 58°C 55% This study 

JL0063 (SB11F) F CTGGTAGCAGTACCAATATCAACG ORF3a 58°C 46% Tabassum et al. (13) 

JL0067 (CLRDV3675F) F CCACCTAGRCGCAACAGGCG ORF3 57°C 70% Spivey et al. (15) 

JL0068 (Pol3982R) R CGAGGCCTCGGAGATGAACT ORF3 60°C 55% Spivey et al. (15) 

JL0092 R GGAATTGGCACCGAATC ORF3-ORF5 58°C 56% This study (cDNA synthesis) 

JL0130 R TTCGCCAAGCTCCATCTTCA ORF3-ORF5 59°C 50% This study 

JL0065 (SB3F) F TGCACGCGCAGTGGAAGTG ORF3-ORF5 63°C 63% Tabassum et al. (37) 

JL0105 R TCCCTGTCTCAGGGCTATTGC 3’ UTR 60°C 57% This study 

JL0106 R TCTCCCTGTCTCA 3’ UTR 42°C 54% This study (cDNA synthesis) 
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isolate identified in this study (PV548928) (27). Supplementary 
Figure S1 illustrates the geographic spread of both complete and 
partial CLRDV sequences in the USA, specifically showing their 
detected states of origin as submitted to NCBI. In order to establish 
the relationship of the identified CLRDV isolate from Brownfield, 
Texas, with previously identified CLRDV isolates, a phylogenetic 
analysis was conducted using the Maximum Likelihood (ML) 
approach. The full-length genome sequence obtained (5838nt) 
was aligned with a set of CLRDV isolates having full-length 
sequences from various geographical regions retrieved from the 
NCBI virus database. Multiple sequence alignment was 
performed using ClustalW, showing the variation among the 
Frontiers in Virology 05 
sequences from samples collected from Texas and neighboring 
states (Supplementary Figure S2).  The phylogenetic tree was

constructed in the best-fit evolutionary model (TIM2e+G(4)+I), 
which was determined to be the best-fitting substitution model 
based on the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) with 1,000 bootstrap replicates. The 
resulting ML tree revealed that the Brownfield isolates clustered 
within a clade comprising isolates from the southern Great Plains 
region of the United States (Figure 2A). Within this clade, the 
Brownfield isolate showed the closest evolutionary relationship to 
the CLRDV isolate EC4 (GenBank: OM687235.2), which was 
previously identified in cotton samples collected from Oklahoma. 
FIGURE 2 

Phylogenetic analysis of cotton leafroll dwarf virus (CLRDV) isolates from Texas and neighboring regions. Maximum likelihood phylogenetic tree 
based on ClustalW alignment of (A) all available full-length nucleotide sequences of CLRDV isolates retrieved from the NCBI Virus database, (B) Full-
length CLRDV sequences of the samples collected from a specific region of Texas and surrounding states. Tree nodes are annotated with GenBank 
accession numbers and geographic origins, with color-coding used to represent different geographic regions at the state level. (C) Pairwise 
nucleotide sequence dissimilarity analysis among CLRDV isolates from Texas and adjacent states indicates regional sequence variation. The color 
scale represents nucleotide divergence, with blue indicating high similarity (low genetic distance) and red representing greater divergence. 
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To find the variation among the regional population, we 
reconstructed the phylogenetic tree with isolates identified in 
Texas and neighboring states (Figure 2B). 

To assess the genetic relationships among CLRDV isolates, a 
pairwise distance matrix was generated using full-length genome 
sequences. The resulting heatmap (Figure 2C) illustrates the genetic 
divergence among 14 CLRDV isolates from Texas and neighboring 
states (Oklahoma, Arkansas, and Louisiana). The color scale 
represents nucleotide divergence, with blue indicating high 
similarity (low genetic distance) and red representing greater 
divergence. The Brownfield isolate (PV548928) clustered closely 
with isolates from Oklahoma (OM687235), Lubbock (PP556773), 
and San Angelo (PP556774), showing minimal genetic divergence 
(dark blue). This suggests a high degree of sequence conservation 
and possible regional movement or common ancestry among these 
isolates. In contrast, isolates from College Station (MN872302), 
Rapides Parish, LA (OQ107470), and Arkansas (OQ107471) 
displayed greater divergence (red shades), indicating broader 
genetic variation across geographical regions. These findings 
support the existence of region-specific CLRDV  lineages  and
highlight the close genetic similarity of the Brownfield isolate 
with other West Texas variants (Figure 2C, Supplementary 
Table S3). 
3.3 Conservation and motif analysis of 
aligned protein-coding sequences 

To further characterize the identified CLRDV isolate from 
Brownfield, Texas, we performed a detailed amino acid sequence 
Frontiers in Virology 06
analysis of the predicted viral proteins encoded by the sequenced 
genome. We translated the coding regions into their corresponding 
amino acid sequences using the nucleotide sequence data. The 
translation was carried out using the standard genetic code, and 
the individual open reading frames (ORFs) were identified based on 
the known genome organization of CLRDV. A multiple sequence 
alignment (MSA) was constructed using MAFFT. Further, the 
maximum likelihood tree constructed from amino acid 
alignments suggested the variation between sequences of CLRDV 
identified from a small geographical region, i.e. Texas and 
surrounding areas (Figure 3A). The computation of site-specific 
conservation scores, ranging from 0 (completely variable) to 1 (fully 
conserved), were assigned to each residue position bsed on the 
degree of sequence similarity at that site (Figure 3B). Conversely, 
multiple dips with scores below 0.4 reflect variable or evolutionarily 
flexible segments, potentially associated with surface loops, linker 
regions, or domains undergoing adaptive evolution. Further, we 
performed de novo motif discovery using the MEME Suite to 
pinpoint specific sequence elements that are recurrently 
conserved. This analysis uncovered ten highly significant motifs 
(E-values ranging from 7.08e-242 to 8.49e-242) shared among the 
analyzed sequences (Figure 3C). All motifs were reproducibly 
detected across the 14 viral isolates examined, including newly 
identified isolates and others, underscoring their likely evolutionary 
retention and biological importance. The consensus sequences of 
the motifs spanned 20 to 50 nucleotides, and several displayed 
notable features consistent with regulatory or structural roles. For 
example, Motif 1 (AGATAACTCAGTAGCTTGTTATAGC 
AGGAGCTCTTAA) and Motif 4 (AACAATTTTGGAACAG 
TTTTTCTCGAGATCTGAAATCA) were among the most 
FIGURE 3 

Conservation analysis of amino acid sequences. (A) maximum likelihood tree of amino acid sequences (B) Conservation score plot across the 
aligned protein sequences. The blue line represents residue-wise conservation scores, and the red dashed line denotes a loess-smoothed trend 
highlighting the general conservation pattern. (C) Motif distribution plot of conserved elements detected in protein-coding sequences. Colored 
boxes represent distinct motifs identified by MEME. The presence of these motifs across all input sequences, combined with extremely low E-values, 
indicates high statistical significance. 
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broadly distributed and positionally conserved, suggesting their 
potential function as core regulatory elements or essential 
protein-binding sites. Repetitive motifs such as Motif 5 and Motif 
7 exhibited features resembling G-rich tracts or tandem repeats, 
often implicated in RNA secondary structure formation or 
transcriptional control mechanisms. Overall, the combination of 
high conservation scores and consistently recurring motifs provides 
compelling evidence for the presence of functionally constrained 
domains and regulatory elements within these viral protein-coding 
regions. The strong statistical support (E-values < 1e-241) further 
emphasizes that these motifs likely contribute to conserved 
molecular functions such as replication, transcription regulation, 
or host interaction. At the same time, the variation in sequences 
suggests  the  evolution  of  the  CLRDV  genome  under  
environmental pressure. 
 

 

4 Discussion 

CLRDV, the probable causative agent of Cotton Blue Disease, is 
becoming an increasing threat to cotton production in various 
regions, including the southeastern United States, parts of South 
America, and Africa (5). The virus is primarily transmitted by the 
cotton aphid (Aphis gossypii). Early-stage infections of CLRDV often 
go unnoticed due to their latent and asymptomatic nature, making 
early detection and intervention particularly challenging. 
Management strategies for CLRDV are hindered by several factors, 
including the absence of resistant cotton varieties and the aphid’s high  
reproductive rate, adaptability, and increasing resistance to chemical 
insecticides (28, 29). In addition, the virus’s ability to survive in 
alternate hosts, including weeds and volunteer cotton plants, enables it 
to overwinter and reemerge during the growing season, further 
complicating control efforts (30). Moreover, specific mutations  in
viral genes, such as P0, which plays a role in viral pathogenicity and 
suppression of host RNA silencing, have been identified as key targets 
for diagnostic advancements (31). Advances in genomic sequencing 
have provided new insights into the virus’s spread and evolution, 
offering opportunities to better understand and address CLRDV (32). 
Genome sequencing data are crucial for assessing genetic diversity 
among CLRDV strains in different regions, enabling the tracking of 
viral movement, detection of emerging virulent variants, and the 
development of more precise molecular diagnostic tools. Thus, 
combining genome-based surveillance with traditional agricultural 
practices and breeding initiatives offers a promising approach to more 
effectively manage CLRDV. 

The high bootstrap  value (>90%) associated with the

phylogenetic grouping of certain isolates suggests a strong genetic 
similarity and a recent common ancestry between these strains. This 
close relationship implies that the EC4-like variant may have spread 
quickly, or that the isolates detected in Brownfield underwent 
mutations, possibly through aphid-mediated transmission or 
human activities, such as the movement of infected plant material. 
Detection of this isolate in Brownfield (TX) aligns with statewide 
reports of CLRDV circulation across commercial cotton fields and 
raises concerns that the virus may be more widespread than currently 
Frontiers in Virology 07 
known. Moreover, genomic data from retrospective studies indicate 
CLRDV has been cryptically circulating in the U.S. since at least 2006, 
underscoring the potential genetic diversity yet to be uncovered (32). 
Although the sequence variation among isolates remains limited, this 
highlights the need for ongoing genomic surveillance to detect novel 
variants before they attain wider distribution. Further, the amino acid 
changes observed in the viral sequences provide important insights 
into potential viral adaptations (13, 33). Phylogenetic reconstruction 
using Maximum Likelihood methods demonstrated that CLRDV 
isolates form geographically distinct clades, indicating regional 
adaptation (34–36). The fact that isolates from the Brownfield 
cluster together suggests that local environmental pressures or 
varying resistance traits among cotton cultivars may be selecting 
for specific viral variants. Moreover, coordinated studies from 
sentinel plots across the U.S. cotton belt highlight cultivar-specific 
variation in disease incidence and severity, reinforcing the hypothesis 
that host resistance shapes viral evolution (35, 36). Collectively, these 
findings support the idea that regional environmental factors and 
cultivar composition are driving local adaptation of CLRDV, 
enhancing the virus’s ability to persist and spread. Ongoing 
monitoring of viral evolution and transmission dynamics is 
essential for understanding the virus’s adaptation to local 
conditions and for developing effective, region-specific management  
strategies and diagnostic tools. 
5 Conclusion 

Despite its economic importance, knowledge regarding the 
genetic diversity of CLRDV and the evolutionary forces shaping 
its variability remains limited. This study underscores the 
nucleotide diversity in relatively conserved sequences among 
closely related CLRDV isolates, primarily driven by mutations 
and recombination events in a small area. The amino acid 
sequence analysis of the new CLRDV isolate from Brownfield, 
Texas, highlighted both conserved and variable regions across the 
viral genome. The identified amino acid substitutions in the 
movement protein suggest potential implications for the virus’s 
ability to spread within cotton plants, warranting further 
investigation into their functional significance. Ongoing 
surveillance and functional studies of these amino acid changes 
are crucial for understanding CLRDV spread dynamics and 
developing more effective management strategies. These insights 
will aid in developing molecular diagnostic tools, strengthening 
resistance breeding, and improving epidemiological monitoring of 
CLRDV in the U.S. and South America. Further research should 
focus on virus transmission, genome variation, recombination, host 
interactions, and the role of aphid vectors in viral evolution. 
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SUPPLEMENTARY FIGURE 1 

State-wise distribution of CLRDV genomic sequences submitted to the NCBI 
Virus database. This figure illustrates the number of Cotton leafroll dwarf virus 
(CLRDV) sequences reported from different U.S. states, as available in the 
NCBI Virus database. Each state’s contribution is represented based on the 
number of sequences linked to its geolocation, highlighting regional 
variations in sample collection and virus reporting. The data reflects current 
efforts in monitoring and documenting the spread of CLRDV across 
the country. 

SUPPLEMENTARY FIGURE 2 

Multiple sequence alignment using ClustalW and visualized by NCBI multiple 
sequence alignment viewer. The grey dot shows the conserved sequence 
while red letters represent the variation in sequence. 
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