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The growing dependence on artificial intelligence (AI) in healthcare has

significantly advanced the detection and diagnosis of viral diseases. However,

existing AI models encounter key obstacles such as data privacy concerns,

limited interpretability, poor generalization, and overfitting, which restrict their

practical application and broader adoption. This research tackles these issues by

introducing an integrated framework that combines Generative AI, Vision

Transformers, Explainable AI (XAI), and Federated Learning (FL) to improve

diagnostic accuracy and safeguard data privacy. By utilizing Generative AI, the

framework produces synthetic datasets that supplement limited medical data

and bolster model resilience. Vision Transformers enhance the precision and

efficiency of image-based disease detection. Explainable AI fosters transparency,

ensuring that deep learning models’ decisions are clear and reliable for

healthcare practitioners. Federated Learning facilitates decentralized model

training, maintaining patient privacy while enabling collaborative learning

across institutions. Experimental findings show that this framework enhances

diagnostic accuracy in viral diseases, including COVID-19, while addressing

privacy concerns and improving the interpretability of AI systems. This

integrated approach offers a secure, transparent, and scalable solution to the

critical challenges in AI-driven healthcare, providing real-time, effective disease

detection and analysis.
KEYWORDS
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1 Introduction

1.1 Background and motivation

Artificial intelligence (AI) and machine learning (ML) have had

a profound impact on healthcare, especially in disease detection,

diagnosis, and treatment (1, 2). Deep learning-based AI systems

have been particularly successful in medical imaging and disease

prediction (3). Despite these advances, several critical challenges

hinder the widespread adoption of AI in real-world healthcare

applications, such as issues related to diagnostic accuracy, data

privacy, and model interpretability (4). These limitations need to be

addressed for AI to reach its full potential in healthcare. The recent

surge in viral outbreaks, particularly COVID-19, has emphasized

the need for scalable and accurate AI-driven diagnostic systems.

These systems must operate efficiently in real-time, without

compromising patient privacy (5). However, current AI models

face hurdles such as overfitting, difficulty in generalizing to diverse

datasets, and the black-box nature of their decision-making

processes, which limits transparency (6). These shortcomings

highlight the importance of developing AI models that not only

offer precision but also meet ethical and privacy standards (7). In

response to these challenges, this research introduces an integrated

framework that leverages Generative AI, Vision Transformers,

Explainable AI (XAI), and Federated Learning (FL). The

proposed approach enhances diagnostic accuracy, improves data

privacy, and ensures model interpretability. By harnessing the

unique strengths of these technologies, this framework aims to

overcome the limitations of existing AI models in healthcare and

establish a reliable, secure, and transparent AI system for

diagnosing viral diseases (8).
1.2 Research gap

While artificial intelligence has made meaningful advances in

healthcare, especially in disease diagnosis, several challenges

remain—particularly when it comes to accurately detecting and

tracking viral diseases in real-world clinical environments. One

major problem is overfitting, which occurs because many viral

disease datasets—like those for COVID-19, Monkeypox, or newer

strains of influenza—are often small, imbalanced, and collected

from limited populations. This means that models trained on such

data may perform well during development but fail to deliver

consistent results when tested on data from different hospitals,

regions, or patient groups. For example, a CNN trained solely on

COVID-19 X-rays from one hospital may not correctly identify

pneumonia cases from another location with different imaging

protocols. In addition, generalization becomes difficult because of

the natural variability in viral infections—patients may show

different symptoms, imaging results, and biomarker readings

depending on the stage and severity of the disease. Traditional

deep learning models often struggle to capture this variability,

reducing their reliability, especially in early outbreak scenarios or

among patients with unusual presentations.
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Another concern is that most AI systems still rely on centralized

data storage and training, which not only raises ethical and legal

concerns about patient privacy but also limits collaboration between

institutions. Moreover, many of these AI models work like a black

box, offering little to no explanation for their predictions—

something that makes doctors and healthcare providers hesitant

to fully trust or adopt them. To overcome these gaps, our research

introduces an integrated AI framework that:
1. Reduces overfitting by using Generative Adversarial

Networks (GANs) to generate realistic data for

underrepresented disease categories;

2. Improves generalization using Vision Transformers, which

can capture complex patterns in medical images more

effectively than conventional CNNs;

3. Protects patient data through Federated Learning, allowing

different hospitals to train models collaboratively without

sharing sensitive records;

4. And ensures transparency by incorporating Explainable AI

tools like LIME and SHAP to make AI predictions

interpretable and clinically actionable.
This comprehensive solution is designed to directly tackle the

shortcomings of existing systems in viral disease diagnosis—

providing a more accurate, secure, and scalable AI-driven

platform that healthcare professionals can trust and

deploy confidently.
2 Related work

2.1 Viral disease detection using CNNs and
RNNs

Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) have been effectively utilized in medical imaging

for viral disease detection, particularly with X-rays and CT scans.

These deep learning models excel in identifying complex patterns in

images, making them valuable for disease classification tasks.

Research has shown the success of CNNs and RNNs in early

diagnosis of diseases such as COVID-19, where timely

intervention is critical. However, a significant challenge of these

models is overfitting, especially when trained on small datasets,

which limits their ability to generalize across different clinical

environments. This issue becomes more pronounced in cases of

rare diseases or during the early stages of disease outbreaks (9, 10).

Additionally, CNNs and RNNs face difficulties when dealing with

long-sequence dependencies, which are crucial for understanding

disease progression over time. The ability to predict patient

outcomes based on historical medical data is restricted by the

limitations of traditional RNNs in capturing long-term temporal

information. Addressing these limitations requires integrating more

advanced models or employing data augmentation techniques that

enhance the generalization capability of CNNs and RNNs while

preserving their diagnostic accuracy (11, 12).
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2.2 Generative AI in healthcare

Generative Adversarial Networks (GANs) have become a key

tool in addressing data scarcity within healthcare, particularly in the

context of disease detection. GANs generate high-quality synthetic

datasets that can augment limited real-world data, making it

possible to train models more robustly and avoid overfitting. This

is especially useful for rare diseases where gathering a large amount

of clinical data is difficult. Studies have demonstrated that GAN-

augmented datasets can improve the robustness of models like

CNNs and RNNs, allowing them to generalize more effectively

across different patient groups (4, 6). However, the challenge lies in

ensuring that synthetic data generated by GANs strikes the right

balance between realism and generalizability. While GANs can

create highly realistic data, there is a risk that the generated data

may not fully reflect the variability seen in real-world datasets,

leading to poor model performance when applied to actual clinical

data. Current research focuses on refining the training processes of

GANs to produce synthetic data that is both representative and

diverse, ensuring the models trained on this data are reliable in

clinical practice (5, 13).
2.3 Explainable AI for medical decision
making

Explainable AI (XAI) has gained prominence in healthcare due

to the need for interpretability in AI-driven decision-making

processes. In clinical settings, transparency is crucial, as

healthcare professionals must trust the decisions made by AI

models. XAI techniques are designed to make AI decisions

understandable, enabling clinicians to follow the reasoning

behind a model’s predictions. This is particularly important for

gaining regulatory approval and fostering broader clinical adoption

of AI tools, especially in medical imaging (7, 14). Despite these

advancements, XAI still faces challenges. Many existing XAI

techniques add complexity to the model, making real-time clinical

applications difficult. Moreover, although XAI offers greater

transparency, it often does not provide a complete explanation,

leaving some aspects of the decision-making process obscure (15).

Future research aims to develop more streamlined and interpretable

XAI methods that can deliver full transparency without imposing

heavy computational demands, making them more feasible for real-

time healthcare applications (2, 16).
2.4 Privacy-preserving AI with federated
learning

Federated Learning (FL) has emerged as a promising solution to

the challenge of maintaining data privacy in healthcare while

enabling collaboration in model training across institutions. In

FL, data remains decentralized, and only model updates are

shared, ensuring that sensitive patient information is not

exchanged between entities (17). This framework is particularly
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advantageous in environments governed by strict data privacy

regulations, such as GDPR, and allows for the development of

robust AI models without compromising patient privacy (5, 18).

However, the integration of FL with other AI techniques, such as

GANs and XAI, is still in its infancy (19). While FL addresses

privacy concerns, combining it with synthetic data generation and

model interpretability techniques could further enhance its

effectiveness. For example, using GANs within an FL framework

could improve the robustness of models trained on diverse synthetic

data, while integrating XAI could help ensure that the models

remain transparent and trustworthy. This combination could lead

to more secure and interpretable decentralized AI systems in

healthcare (6, 20).
3 Methodology

3.1 COVID-19 and pneumonia detection
using CNN and RNN

This study employs a hybrid model combining Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to

detect and classify the severity of viral diseases such as COVID-19

and pneumonia using medical images like CT scans and X-rays (21).

CNNs are particularly proficient at extracting intricate features from

these images, while RNNs are used to analyze the temporal patterns

over time, which aids in monitoring disease progression (22). The

integration of these two models allows for the simultaneous analysis

of both spatial and temporal data, improving diagnostic accuracy and

providing insights into disease progression based on the imaging data

(23). However, one of the main challenges faced by deep learning

models, such as CNNs and RNNs, in medical imaging is the risk of

overfitting, particularly when training on small datasets. To address

this, a comprehensive image augmentation pipeline is utilized, which

artificially expands the dataset by applying transformations such as

rotation, scaling, and flipping (24). These augmentation techniques

enhance the model’s ability to generalize to new, unseen data,

preventing overfitting and improving its performance in real-world

clinical environments.

3.1.1 Motivation for using CNN and RNN
We chose a hybrid CNN–RNN architecture based on the

specific characteristics of the medical data involved in viral

disease diagnosis, especially CT and X-ray images. These types of

data require not just spatial analysis, but also an understanding of

how the disease progresses over time.
1. CNNs are excellent at analyzing medical images because

they automatically detect important visual features like

lung lesions, opacities, and structural abnormalities—key

indicators in conditions such as COVID-19 and

pneumonia. Unlike traditional ML models like SVMs or

decision trees, CNNs don’t rely on handcrafted features and

are better equipped to capture the complex structure of

medical scans.
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2. On the other hand, RNNs are ideal for modeling sequences.

In clinical practice, it’s common to monitor how a patient’s

condition changes over time through repeated imaging.

RNNs help capture these temporal patterns, enabling the

system to recognize disease progression that static models

would likely miss.
By combining CNNs and RNNs, our model can process both

the visual complexity of each scan and the evolution of the disease

across time, resulting in a more complete diagnostic picture. This

hybrid design has also been validated in existing studies as more

effective than standalone models, particularly for early detection

and longitudinal monitoring. For our framework, it provided a

strong foundation for integrating more advanced techniques like

GANs, Vision Transformers, and Federated Learning.
3.2 Generative AI for viral disease
prediction

Generative Adversarial Networks (GANs) are utilized in this

research to tackle the problem of data scarcity, which is prevalent in

healthcare, especially in cases of rare diseases or newly emerging

viral outbreaks like COVID-19 (25). GANs are capable of

generating synthetic medical images, which are used to

supplement the existing dataset, allowing for the training of

models on a more diverse and larger set of data. This approach

enhances the robustness and generalizability of disease detection

models, as they are exposed to a wider range of scenarios, including

various stages of disease progression (26). Additionally, GANs are

effective in addressing the issue of data imbalance, which is a

common challenge in healthcare datasets where certain

conditions are underrepresented. By generating synthetic data for

the underrepresented classes, GANs help balance the dataset and

ensure that the model can learn effectively from all categories of

data (27). This reduces bias toward over-represented conditions,

ultimately improving the model’s predictive performance across

diverse patient populations.
3.3 Vision transformer for data
augmentation and classification

The Vision Transformer model brings a novel approach to

processing medical images by leveraging self-attention mechanisms

to capture global relationships within the data. Unlike CNNs, which

focus on extracting local features from an image, Vision

Transformers excel in modeling the global structure of an image,

which is crucial in understanding complex medical data like CT

scans and MRIs. This global attention makes the Vision

Transformer particularly effective at handling high-dimensional

medical data, providing deeper insights into disease progression.

Furthermore, Vision Transformers outperform CNNs in data

augmentation tasks due to their ability to handle a wider variety

of image transformations and non-standard inputs. This allows the
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Vision Transformer to train on a more diverse dataset, improving

its generalizability to new and unseen data. By learning from both

standard and non-standard medical images, Vision Transformers

enhance the robustness of the model, reducing the dependency on

conventional medical scans and making the model more adaptable

to real-world clinical applications.
3.4 Explainable AI with self-attention
transformer

This study incorporates Explainable AI (XAI) through self-

attention mechanisms, which improve transparency in decision-

making by focusing the model’s attention on the most relevant parts

of the input data. Self-attention mechanisms enhance the

interpretability of the model’s predictions, which is especially

important in clinical settings where healthcare professionals need

to trust the decisions made by AI systems. This is particularly

crucial in high-stakes diagnoses, such as those involving viral

diseases like COVID-19. In addition to self-attention, XAI

frameworks such as LIME (Local Interpretable Model-Agnostic

Explanations) and SHAP (Shapley Additive Explanations) are

employed to further increase the model’s interpretability. These

tools provide insights into which features of the input data

contributed most to the model’s predictions, allowing clinicians to

better understand the reasoning behind the AI’s decisions. By

highlighting key disease markers, XAI bridges the gap between

the model’s internal operations and the need for transparency in

clinical decision-making.
3.5 Federated learning for privacy-
preserving model training

This research implements Federated Learning (FL) to

decentralize the AI training process, ensuring that patient data

remains local while model improvements are shared globally. In this

approach, hospitals and clinics train AI models locally on their own

data and share only the updated model weights with a central

server. This guarantees that sensitive patient information does not

leave the local institution, addressing critical data privacy concerns,

especially in regions governed by stringent privacy regulations such

as GDPR. By preventing the transfer of raw data and instead

focusing on model updates, FL enables institutions to collaborate

on improving AI models while preserving data privacy. This

decentralized approach ensures that models are trained on diverse

datasets from multiple institutions, enhancing the generalizability

and robustness of the model across various patient populations. The

implementation of FL in healthcare not only addresses privacy

concerns but also improves model performance by allowing for the

integration of knowledge from a broader range of clinical data.

Figure 1 illustrates the PHAF-VDP framework, which combines

several cutting-edge AI technologies to improve the detection,

diagnosis, and progression prediction of viral diseases like

COVID-19 and pneumonia, all while maintaining patient privacy.
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At the foundation of this framework, Convolutional Neural

Networks (CNNs) are employed to extract vital spatial features

from medical images, such as CT scans and X-rays, aiding in

identifying specific disease markers. Complementing this,

Recurrent Neural Networks (RNNs) analyze temporal patterns,

tracking the progression of a patient’s condition over time. This

integration of CNNs and RNNs ensures comprehensive feature

extraction and temporal analysis. To address the issues of data

scarcity and imbalance, Generative Adversarial Networks (GANs)

are used to generate synthetic medical data, expanding the training

set and improving model generalization. Additionally, the Vision

Transformer enhances classification by using global attention

mechanisms to identify patterns in complex, high-dimensional

medical images. To ensure the model’s decisions are transparent,

Explainable AI (XAI), combined with self-attention mechanisms

and tools like LIME and SHAP, allows healthcare professionals to

interpret the model’s predictions by highlighting the most relevant

features. Lastly, Federated Learning (FL) facilitates decentralized

model training across different healthcare institutions, enabling

collaborative learning without sharing sensitive patient data, thus

ensuring data privacy and compliance with regulations such as

GDPR. Together, these advanced AI components create a robust,

privacy-preserving, and transparent framework for accurate viral

disease detection and progression prediction.
Fron
1. GANs are used at the beginning to generate synthetic

medical images and balance the dataset, addressing the

issue of class imbalance. This enriched dataset is then

passed on to the next stages.

2. CNN-RNN models process this data to extract both spatial

features (like image textures and patterns) and temporal

information (such as disease progression over time).

3. In parallel, Vision Transformers are trained on the same

dataset to capture more global relationships and context
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that traditional CNNs might miss. The outputs from both

the CNN-RNN and Transformer models are then

combined using a decision-level ensemble method to

enhance prediction accuracy and reliability.

4. The fused results are fed into Explainable AI tools (LIME

and SHAP) to make the predictions more transparent and

clinically interpretable.
3.6 Dataset description

This research dataset encompasses a wide variety of patient

information, covering both demographic and clinical attributes.

Each row corresponds to a unique patient ID, with associated details

including age, gender, and the presence or absence of clinical

symptoms such as fever, cough, fatigue, shortness of breath, and

skin lesions (28, 29). Along with these clinical indicators, the dataset

provides critical medical measurements like blood C-reactive

protein (CRP) levels, heart rate (bpm), and oxygen saturation

(%). Additionally, advanced diagnostic parameters, such as

imaging abnormalities, are included, aiding in tracking disease

progression. This dataset (28, 29) is highly relevant for identifying

patterns in conditions like COVID-19 and pneumonia, while also

supporting broader healthcare and cybersecurity analysis. The

dataset also features specialized parameters like network traffic

anomalies and unauthorized access attempts, highlighting its

potential use in cybersecurity alongside disease detection. The

target classes for each patient fall into categories like Disease

Detection, Healthcare, and Cybersecurity, based on their clinical

conditions and any observed system anomalies. This combination

of medical diagnostics and system security metrics makes the

dataset valuable for research at the intersection of healthcare

and cybersecurity.
Convolutional 

Neural Networks 

(CNNs) for

Feature Extraction

Recurrent Neural 

Networks (RNNs) for 

Temporal Pattern 

Learning

Generative 

Adversarial Networks 

(GANs) for Data 

Augmentation

Federated 

Learning (FL) for

Privacy-

Preserving 

Collaboration

Explainable AI 

(XAI) with Self-

Attention for 

Transparency

Vision Transformer 

for Enhanced 

Classification and 

Data Augmentation

FIGURE 1

Privacy-preserving hybrid AI framework for viral disease detection and progression prediction (PHAF-VDP).
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3.6.1 Dataset size and data splitting strategy
The custom dataset used in this study consists of approximately

5,000 labeled samples, combining clinical metadata (e.g., age, symptoms,

CRP levels) with image-based data (such as CT scans and X-rays) and

relevant cybersecurity features. These samples represent a diverse

patient population affected by viral diseases such as COVID-19 and

pneumonia. To ensure reliable training and evaluation of the proposed

models, the dataset was randomly split into three subsets:
Fron
• 70% for training (3,500 samples)

• 15% for validation (750 samples)

• 15% for testing (750 samples)
This split helps prevent overfitting and allows for robust model

generalization, especially when evaluating performance on unseen

cases. Additionally, the training set was further enhanced using

GAN-based data augmentation, increasing data diversity and

mitigating class imbalance for rare disease categories.

3.6.2 Institutional segmentation
The dataset was divided into five independent nodes, each

representing a different healthcare institution. These partitions were

made to ensure that no patient records were shared or duplicated across

nodes, maintaining a clear boundary between institutional datasets.
1. Local training with privacy preservation: Each

institution trained its model locally using only its own

data. After training, only the model weights—not the raw

patient data—were shared with a central server for

aggregation through the federated averaging algorithm,

thus safeguarding patient privacy.

2. Independent holdout test set: To assess overall model

generalization, we reserved a separate holdout dataset at the

central server, which was never involved in training. This

guaranteed that all performance evaluation was done on

unseen data, eliminating any chance of data leakage.

3. Local cross-validation: Within each institutional node, we

applied stratified 5-fold cross-validation to validate the

local models before aggregation. This approach ensured

balanced label representation and robustness of results

across different data splits at the local level.
Table 1 provides a comprehensive dataset that integrates patient

health information with cybersecurity metrics. Each entry is associated

with a unique patient ID, detailing demographic data (like age and

gender) along with clinical symptoms such as fever, cough, fatigue, and

shortness of breath. Moreover, the dataset includes key medical

indicators like blood C-reactive protein (CRP) levels, heart rate,

oxygen saturation, and imaging abnormalities. Additionally, it

captures cybersecurity-related metrics, including network traffic

anomalies and unauthorized access attempts, alongside the health

conditions (28). This dual-focus dataset facilitates an in-depth analysis

that covers both disease detection (for illnesses like COVID-19 and

pneumonia) and cybersecurity monitoring, making it highly valuable

for AI research across multiple domains (29).
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3.7 Performance evaluation metrics

3.7.1 Accuracy
Accuracy is calculated as the ratio of correct predictions to the

total number of predictions. It reflects the model’s overall

performance. Mathematically, accuracy is defined as

Accuracy= 
True Positive+True Negatives

Total Predictions
 �100

In this research, the proposed system achieved an accuracy ranging

from 81% to 93%, which is significantly higher than the existing

system’s range of 31% to 40%. This improvement highlights the

effectiveness of using advanced techniques such as GANs and Vision

Transformers in boosting diagnostic performance for viral diseases.

3.7.2 F1 score
The F1 score is the harmonic mean of precision and recall. It is

used to balance the trade-off between precision (how many

predicted positive cases are correct) and recall (how many actual

positive cases are identified). The formula for the F1 score is

F1 Score=2 �  Precision �Recall
Precision+Recall

The GAN-augmented Vision Transformer model demonstrated

a superior F1 score compared to standalone CNNmodels, reflecting

its ability to balance precision and recall effectively across diverse

medical data.

3.7.3 Precision
Precision measures the proportion of true positives among all

positive predictions. It indicates how accurate themodel is in predicting

the positive class (e.g., disease cases). The formula for precision is

Precision=
 True Positives

True Precision+False Positives

Higher precision in the proposed model demonstrates its

effectiveness in minimizing false positives, ensuring that the

diagnosed disease cases are genuinely positive.

3.7.4 Recall
Recall, also known as sensitivity or true positive rate, measures

the proportion of actual positives that the model correctly

identified. It is essential for detecting actual disease cases and is

given by the formula.

Recall=
 True Positives

True Positive+False Negatives

The proposed model, with improved recall, effectively reduces

the chance of missing actual cases, making it highly beneficial for

identifying viral diseases such as COVID-19.
3.7.5 Area under the curve
AUC is a measure of the model’s ability to distinguish between

positive and negative classes. A higher AUC indicates better
frontiersin.org
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TABLE 1 Health and cybersecurity AI dataset (28, 29).
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Age Gender
Fever

(Yes/No)
Cough
(Yes/No)

Fatigue
(Yes/No)

Breath
(Yes/No)

Lesions
(Yes/No)

Level
(mg/L)

Rate
(bpm)

Oxygen
Level (%)

P001 60 Male Yes No Yes Yes Yes 15.52 90 97

P002 33 Male Yes Yes No Yes No 13.02 77 88

P003 29 Male No Yes Yes No Yes 9.1 82 93

P004 25 Female No Yes Yes Yes Yes 16.14 67 91

P005 60 Female Yes No No Yes Yes 19.98 72 86

P006 44 Female Yes No Yes No No 11.22 96 97

P007 61 Female No No Yes No No 8.75 105 94

P008 28 Female Yes Yes Yes Yes No 10.62 85 92

P009 36 Male Yes No No Yes Yes 17.22 108 90

P010 39 Male Yes No Yes Yes No 14.34 72 88

P011 76 Male Yes No Yes Yes No 7.58 120 100

P012 68 Male No No No No Yes 10.18 102 97

P013 34 Male Yes Yes Yes No No 18.55 87 85

P014 28 Female Yes No No Yes No 13.85 81 89

P015 23 Male Yes No No No Yes 11.41 65 92

P016 49 Male Yes No Yes No No 19.1 98 99

P017 33 Female Yes Yes No No No 5.86 100 93

P018 32 Female Yes Yes Yes No Yes 11.11 78 85

P019 58 Male Yes No Yes Yes No 12.92 97 92

P020 36 Female Yes No No No No 13.44 88 90
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performance in differentiating between patients with and without

viral diseases. AUC is derived from the ROC (Receiver Operating

Characteristic) curve and is useful in evaluating the overall

model performance.

3.7.6 Precision
Precision is calculated as TP/(TP + FP), representing the

proportion of correctly identified positive cases out of all

predicted positives. In our experiments, the proposed system

achieved a much higher precision rate (84%–91%) compared to

the existing system (38%–46%). This improvement is mainly due to

the reduced number of false positives, thanks to the use of GAN-

generated synthetic data and the enhanced pattern recognition

capabilities of the Vision Transformer.

3.7.7 Recall
Recall is defined as TP/(TP + FN), indicating how well the

model captures actual positive cases. The proposed framework

boosted recall significantly—from 33%–42% in the baseline model

to 82%–90%. This gain is due to the model’s increased ability to

detect real disease cases more consistently, achieved through the

combination of CNN–RNN temporal analysis and the global

attention mechanisms of the Transformer.

3.7.8 F1-score
The F1-score, calculated as 2 × (Precision × Recall)/(Precision +

Recall), provides a balanced measure of both precision and recall. Our

system showed a notable increase in F1-score, rising from 35%–43% in

the traditional model to 83%–90%. This demonstrates the effectiveness

of our integrated approach in maintaining high accuracy while also

capturing a broad range of true disease cases across diverse datasets.
4 Experimental results

4.1 Model performance comparison

A performance evaluation comparing the CNN-RNN model,

GAN-augmented model, Vision Transformer, and XAI-enhanced

model was conducted to assess their effectiveness in detecting and

predicting viral diseases. Key metrics such as accuracy, F1 score,

precision, recall, and Area Under the Curve (AUC) were analyzed.

The results indicated that the Vision Transformer, combined with

the GAN-augmented model, achieved a significant improvement in

diagnostic accuracy over standalone CNN models. This was

particularly evident in the F1 score, which measures the balance

between precision and recall, highlighting the model’s ability to

handle diverse data inputs. These enhancements can be attributed

to the Vision Transformer’s global attention mechanism, which is

particularly effective in capturing patterns in complex, high-

dimensional data. The GAN-generated synthetic data also played

a crucial role by addressing challenges related to data scarcity and

imbalance. Although the CNN-RNN hybrid model performed well

in terms of feature extraction and temporal analysis, it was

outperformed by the GAN-augmented Vision Transformer due to
Frontiers in Virology 08
overfitting on smaller datasets. However, the CNN-RNN model’s

strength in tracking disease progression over time remained

beneficial for monitoring long-term patient outcomes.

Figure 2 illustrates the connection between patients’ ages and

their respective disease classifications (target classes). It provides

insight into how various age groups are represented across different

target classes, revealing potential patterns or correlations between a

patient’s age and the predicted likelihood of disease progression,

such as COVID-19 or pneumonia, as determined by the AI model.
4.2 Impact of synthetic data on model
generalization

The use of synthetic data generated by GANs significantly

improved the model’s ability to generalize across various viral

diseases, including COVID-19 and influenza. This enhancement is

critical as real-world healthcare datasets often suffer from limited data,

especially for rare diseases or during new outbreaks. By creating

realistic synthetic medical images, the GAN-augmented model was

exposed to a broader range of data, leading to better performance on

test cases not included in the original dataset. A case study

demonstrated that the model achieved a validation accuracy of 85%,

surpassing standard approaches with minimal overfitting. In addition,

the synthetic data generated by GANs addressed the common issue of

class imbalance found in healthcare datasets, where certain conditions

are underrepresented. GANs enabled the creation of synthetic data for

these underrepresented classes, allowing the model to learn effectively

from all categories. This reduced the bias toward more prevalent

conditions and resulted in consistent model performance across

various patient demographics and stages of disease progression.

Figure 3 depicts the correlation between blood C-reactive

protein (CRP) levels and the associated disease classifications

(target classes). It highlights how CRP levels vary across target

classes, offering insights into potential links between higher CRP

levels and disease progression, such as COVID-19 or pneumonia, as

identified by the AI model.
4.3 Explainability analysis

The integration of Explainable AI (XAI) techniques was vital in

enhancing the transparency of the model’s decision-making

process. Using XAI frameworks such as LIME and SHAP,

healthcare professionals were able to interpret the model’s

predictions by visualizing which features of the input data were

most influential in the diagnosis. This level of transparency is

critical in clinical environments, where trust in AI-driven

decisions is paramount. The Vision Transformer’s self-attention

mechanism further bolstered interpretability by focusing on the

most relevant parts of medical images during classification. A case

study highlighted how XAI techniques revealed critical disease

markers in chest X-rays that were overlooked by traditional

models. This underscored the importance of model transparency

and demonstrated how AI systems could assist clinicians in making
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more informed decisions. By identifying key disease progression

markers, the XAI-enhanced model fostered greater trust and

collaboration between AI systems and healthcare professionals,

making AI-driven decisions more actionable in real-world

clinical settings.
4.3.1 Practical implementation of LIME/SHAP on
ensemble predictions

1. Model architecture overview: The explainability analysis in

this study is applied to the ensemble output generated by combining

predictions from the CNN–RNN and Vision Transformer models.

This aggregated prediction serves as the target for both LIME and

SHAP interpretation techniques.

2. Workflow explanation
Fron
1. CT/X-ray images, enhanced through GAN-based

augmentation, are first processed in parallel by both the

CNN–RNN and Vision Transformer models.

2. Their outputs are then merged using a decision-level strategy,

such as soft voting, to form a final ensemble prediction.

3. LIME helps identify influential regions by analyzing how

slight modifications to image segments affect the

prediction outcome.

4. SHAP quantifies the contribution of individual image

regions (pixels or areas) to the final class prediction—

whether it’s COVID-19, pneumonia, or a normal case.
3. Simulated visualization insights (COVID-19 case example)
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1. LIME Visualization: Highlights red zones on the lungs,

often corresponding to inflamed tissue or opacity areas

linked with infection.

2. SHAP Visualization: Applies colored overlays to show how

certain lung areas positively or negatively influence the

prediction—commonly emphasizing ground-glass

opacities or abnormal patterns.
Table 2 offers a clear comparison of how LIME and SHAP help

explain the predictions made by the ensemble model in detecting

viral diseases from CT and X-ray scans. While LIME visually

pinpoints the key regions in the image that influenced the

diagnosis, SHAP provides a detailed breakdown of how much

each lung area contributed to the final prediction—making the

model’s decision more transparent and trustworthy for clinical use.

Figure 4 illustrates how LIME and SHAP enhance model

interpretability by visually highlighting the most influential

regions in a COVID-19 CT scan. The LIME heatmap (left)

pinpoints critical lung opacities affecting the classification, while

the SHAP overlay (right) shows how specific lung zones either

supported or opposed the final diagnosis, aligning with the

ensemble model’s experimental results.
4.4 Privacy preservation in federated
learning

The implementation of Federated Learning (FL) in the research

successfully maintained patient privacy while still facilitating the
FIGURE 2

Age vs target class for age distribution across target classes.
frontiersin.org

https://doi.org/10.3389/fviro.2025.1625855
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Srinivasulu et al. 10.3389/fviro.2025.1625855
development of highly accurate models. FL enabled the model to be

trained across multiple healthcare institutions without the need to

share sensitive patient data. Instead of exchanging raw data, only

model updates (weights) were shared, ensuring compliance with

data privacy regulations such as HIPAA and GDPR. Despite this

decentralized approach, the federated model’s performance

remained comparable to traditional centralized models,

demonstrating the effectiveness of FL in maintaining accuracy

while safeguarding privacy. A case study confirmed that no

identifiable patient data was transferred during the training

process, ensuring compliance with stringent data privacy laws.

This decentralized training method allowed healthcare institutions

to collaboratively enhance AI models without exposing sensitive

patient information. By balancing data privacy with model

robustness, Federated Learning proved to be a crucial component

of the research, ensuring that AI systems in healthcare are both

secure and compliant with ethical and legal standards.

Figure 5 shows a correlation heatmap that visually represents the

relationships between the various features used by the AI model. This
Frontiers in Virology 10
heatmap helps to identify both strong positive and negative

correlations, providing key insights into which factors are most

influential in predicting viral diseases like COVID-19 or pneumonia.

Figure 6 depicts the relationship between oxygen saturation

levels (%) and the associated disease classifications (target classes)

within the proposed system. This visualization highlights how

varying oxygen levels are distributed across different target

classes, providing insights into the potential connection between

oxygen saturation and disease severity, such as in COVID-19 or

pneumonia, as predicted by the AI model.

Figure 7 depicts the model’s accuracy across multiple training

epochs, demonstrating the improvement in performance as the

model gains more knowledge from the data. This chart is useful in

evaluating the training process, highlighting the stage at which the

model achieves its highest accuracy for predicting viral diseases like

COVID-19 or pneumonia.

Figure 8 depicts the model’s loss across multiple epochs,

illustrating how the error diminishes as the model continues to

learn and refine its predictions. This graph is crucial for assessing

the training process, highlighting the point where the model

achieves stability and minimizes loss, thus improving its

effectiveness in predicting viral diseases like COVID-19

or pneumonia.

Figure 9 depicts the time complexity per epoch, displaying how

the time in seconds fluctuates throughout the training epochs in the

proposed system. This chart is useful for assessing the model’s

computational efficiency, revealing the time required for each epoch

as the system processes data to predict viral diseases such as

COVID-19 or pneumonia.
FIGURE 3

Blood CRP level vs target class for CRP levels across target classes.
TABLE 2 Interpretability summary of LIME and SHAP on ensemble
model predictions.

Method Interpreted Layer Key Insight

LIME Ensemble Output
Accurately highlights affected lung
regions contributing to
disease classification.

SHAP Final Prediction Score
Measures how left/right lung zones
influenced the model’s decision.
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4.5 Comparison of existing vs proposed
system

It refers to widely adopted baseline AI models used in earlier

studies for detecting viral diseases like COVID-19 and pneumonia.

These conventional systems are typically built on standard CNN

architectures and lack key enhancements that modern AI

frameworks now support. More specifically, these earlier systems:
Fron
1. Rely solely on basic CNNmodels trained on relatively small

datasets without the help of synthetic data generation or

augmentation techniques.

2. Do not incorporate RNNs, and therefore fail to capture

how a patient’s condition evolves over time.

3. Lack explainability features such as LIME or SHAP,

meaning they operate as black-box models that provide

predictions without offering insights into how those

predictions were made.

4. Are trained using centralized learning, which involves

transferring sensitive patient data to a single location—

raising serious privacy and compliance issues under

regulations like GDPR and HIPAA.
In our study, we replicated these baseline models using settings

and metrics derived from prior research (e.g., CNN-based COVID-19

detectors in (14, 30) or non-federated models described in (1, 4, 20,

25) and (26). These implementations served as a comparative

benchmark to evaluate the effectiveness of our proposed hybrid

framework. As shown in Table 3, our system delivers significant

improvements over these traditional models—particularly in terms of

diagnostic accuracy, transparency, privacy preservation, and

computational efficiency. Relevant references will be properly

included in the final manuscript to credit the original baseline

methods used for comparison. Table 3 presents a performance
tiers in Virology 11
comparison between the existing system and the proposed AI-

based framework for viral disease detection, emphasizing key

metrics that showcase the proposed model’s enhanced capabilities.

In terms of accuracy, the existing system achieves between 31% and

40%, which is notably lower than the proposed system’s impressive

accuracy of 81% to 93%. This significant improvement can be

attributed to advanced AI methodologies, including the

combination of CNNs, RNNs, and GAN-based data augmentation.

Additionally, the proposed system’s loss reduction rate is much faster,

with a decrease from 1.32 (slow) in the existing system to 0.56 (fast),

demonstrating more efficient learning and error minimization.

Moreover, the proposed system outperforms the existing system

in key areas such as data augmentation, model interpretability,

privacy preservation, and training time. While the existing system

increases the dataset by only 10% through basic augmentation, the

proposed system employs GANs to boost the dataset by 25%,

improving generalization and reducing overfitting risks. The

inclusion of Explainable AI (XAI) in the proposed model

significantly enhances interpretability, making 90% of the model’s

predictions transparent for healthcare professionals, compared to

no interpretability in the existing system. Privacy preservation,

absent in the existing model, is fully integrated into the proposed

framework through Federated Learning, ensuring 100% privacy and

compliance with GDPR. Finally, the proposed system demonstrates

better computational efficiency, cutting training time per epoch to

2–5 seconds, compared to the 8–10 seconds in the existing system.
4.6 Hardware, FL synchronization, and
inference time
1. Hardware configuration: Our experiments were run on a

simulated federated setup with five institutional nodes, each

equipped with NVIDIA Tesla V100 GPUs (32 GB VRAM)
FIGURE 4

Figure X: explainability using LIME and SHAP on COVID-19 CT scan.
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and Intel Xeon 2.3 GHz 16-core CPUs. A centralized

aggregator node used an NVIDIA A100 GPU (40 GB) to

handle model coordination and parameter updates.

2. Training time efficiency: The proposed hybrid framework

(CNN–RNN combined with Vision Transformers and GAN-

augmented inputs) achieved 2–5 seconds per epoch per node,

significantly faster than the 8–10 seconds observed in baseline

models. This gain is attributed to efficient parallel training

and better data representation through augmentation.

3. Federated synchronization delay: Each global round

introduced an average delay of only 1.2 seconds, thanks

to efficient communication via model weight-sharing and

adaptive federated averaging—ensuring low-latency

synchronization between nodes.

4. Inference latency: During testing, each institutional node

demonstrated an average inference time of 120–180

milliseconds per CT/X-ray image, making the system

suitable for real-time or near real-time deployment in

clinical workflows.
4.7 Performance evaluation

This research’s performance evaluation centered on comparing

the effectiveness of various AI models, including CNN-RNN, GAN-
tiers in Virology 12
augmented models, Vision Transformer, and XAI-enhanced models,

for detecting and predicting viral diseases like COVID-19 and

pneumonia. Metrics such as accuracy, F1 score, precision, recall,

and AUC were employed to assess the performance of each model.

The Vision Transformer, combined with GAN-generated synthetic

data, demonstrated a substantial improvement in diagnostic

accuracy, surpassing the standalone CNN-RNN model. The F1

score, which measures the balance between precision and recall,

highlighted the model’s superior capability in managing diverse

datasets and capturing intricate patterns in high-dimensional

medical data. The GAN-augmented Vision Transformer also

addressed issues of data scarcity and imbalance, ensuring better

generalization across varying patient demographics and disease

stages. Furthermore, the evaluation underscored the significance of

Explainable AI (XAI) and privacy preservation through Federated

Learning (FL). XAI techniques such as LIME and SHAP were

essential in enhancing the transparency of the model’s decisions,

helping healthcare professionals understand which features most

influenced the diagnosis. Simultaneously, FL enabled collaborative

model training across multiple healthcare institutions while

safeguarding patient privacy. By sharing only model updates

instead of raw data, FL ensured compliance with regulations like

GDPR and maintained accuracy comparable to centralized models.

Overall, the evaluation confirmed that the proposed AI framework

greatly improves performance, interpretability, and privacy

protection in viral disease prediction compared to existing systems.
FIGURE 5

Correlation heatmap of features.
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These metrics illustrate the substantial improvements in the proposed

system’s performance, interpretability, and privacy preservation. The

use of GANs, Vision Transformers, and Federated Learning enhances

model accuracy, transparency, and compliance with privacy

regulations like GDPR, making the system more suitable for real-

world healthcare applications.

4.8 Statistical validation of results
Fron
1. Standard deviation: The proposed framework achieved an

average accuracy of 87.2%, with a standard deviation of
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±2.94% across five runs using stratified 5-fold cross-

validation, indicating that the model performs

consistently across different subsets of the data.

2. Confidence interval (95% CI): Based on the same cross-

validation strategy, the model’s accuracy falls within a 95%

confidence interval of 84.6% to 89.8%, suggesting a high

degree of reliability in the performance outcomes.

3. Paired t-test: A paired t-test comparing our integrated

model to a baseline CNN showed a statistically significant

performance gain (p = 0.0031), confirming that the

improvement in accuracy is not due to random variation.
FIGURE 6

Oxygen level (%) vs. target class for proposed system.
FIGURE 7

Accuracy vs. epoch for model accuracy.

FIGURE 8

Loss vs. epoch for model loss of proposed system.
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4. Bootstrap sampling: Using 1,000 bootstrap samples on the

F1-score distribution, the model achieved a mean F1-score

of 86.4%, with a 95% confidence interval ranging from

84.1% to 88.3%, highlighting its robustness and

generalization capability across both synthetic and real-

world medical data.
5 Conclusion

5.1 Contributions

This research presents an innovative AI-based framework that

integrates several advanced techniques, including Convolutional
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Neural Networks (CNNs), Recurrent Neural Networks (RNNs),

Generative Adversarial Networks (GANs), Vision Transformers,

Explainable AI (XAI), and Federated Learning (FL). These combined

methods address key challenges in detecting and predicting viral

diseases. By leveraging CNNs and RNNs for spatial and temporal

analysis of medical images, and using GANs to augment small datasets,

the framework significantly enhances model generalization. Vision

Transformers improve diagnostic accuracy through global attention

mechanisms, while XAI ensures that the decision-making process

remains transparent and interpretable for healthcare professionals. A

major contribution of this research is the implementation of Federated

Learning, which enables decentralized model training across various

healthcare institutions without sharing sensitive patient data. This

approach ensures compliance with privacy regulations while

maintaining high model accuracy and interpretability. As a result,

the proposed framework is scalable and adaptable for real-world

healthcare applications, offering a secure and ethical solution for AI-

driven disease detection and progression analysis.
5.1.1 Key research contributions

1. Integrated AI framework for accurate viral disease

detection: This work introduces a unified AI framework

that brings together CNNs, RNNs, GANs, Vision

Transformers, Explainable AI, and Federated Learning.

By combining these advanced techniques, the model

achieves high diagnostic accuracy, safeguards patient

data, and ensures transparency—especially in detecting

and tracking diseases like COVID-19 and pneumonia.

2. Decentralized model training with full data privacy: To protect

sensitive medical information, the study leverages Federated

Learning, allowing hospitals to train models locally without

sharing raw data. This approach not only respects privacy

regulations like GDPR and HIPAA but also maintains

performance levels on par with traditional centralized models.
FIGURE 9

Time (seconds) vs. epoch for time complexity per epoch of proposed system.
TABLE 3 Performance comparison between existing vs proposed
system models.

Parameters
Existing
System

Proposed System

Accuracy (%) 31% - 40% 81% - 93%

Loss Reduction 1.32 (slow) 0.56 (fast)

Data
Augmentation

10%
dataset increase

GAN-based, 25% dataset increase

Model
Interpretability

0% High (XAI tools used, 90%)

Privacy
Preservation

0% (No
privacy measures)

100% (Federated Learning,
GDPR compliant)

Training
Time (Epochs)

8–10 seconds
per epoch

2–5 seconds per epoch

Precision 38% - 40% 84% - 91%

Recall 33% - 42% 82% - 90%

F1 Score 35% - 43% 83% - 90%
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3. Synthetic data generation to overcome data gaps: The

framework addresses the common issues of data scarcity

and imbalance using Generative Adversarial Networks

(GANs). By generating realistic synthetic images, it

expands the training dataset by 25%, helping the model

generalize better and reducing overfitting—especially in

rare or underrepresented disease cases.

4. Boosting trust with transparent AI decisions: To make AI

predictions understandable and trustworthy, the model

incorporates explainability tools like LIME and SHAP,

along with attention-based mechanisms. These tools help

clinicians see which features influenced the model’s

decision, closing the gap between AI insights and real-

world medical decision-making.
5.2 Future work

Future research will focus on further enhancing the framework by

integrating more advanced technologies. One of the primary areas for

exploration is combining Federated Learning with enhanced

encryption techniques to secure model updates shared between

institutions. This would further strengthen privacy protection,

especially in compliance with stringent data regulations. Another

promising direction is the incorporation of self-supervised learning,

which could improve the model’s performance by allowing it to learn

from unlabeled data, a resource that is abundant in healthcare but

often underutilized. Moreover, the application of this AI framework

will be extended to larger datasets and other viral diseases beyond

COVID-19 and pneumonia. This expansion will test the framework’s

scalability and robustness in diverse clinical settings and across

various medical imaging modalities. By continuously refining and

expanding the framework, it has the potential to serve as a universal

solution for AI-based diagnostics in healthcare, addressing a wide

range of emerging medical challenges.
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