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Human Cytomegalovirus
infection in the era of vaccine
development: case series of
Immunocompromised patients
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Introduction: Human Cytomegalovirus (CMV) infection represents a significant
health burden, particularly for immunocompromised patients, including
solid-organ transplant (SOT) recipients and people living with human
immunodeficiency virus (PLWH). Despite the availability of antiviral prophylaxis
and treatment, prolonged therapy can lead to viral drug resistance, complicating
disease management. In this study, we present a series of CMV cases in
immunocompromised patients, including two SOT recipients and one PLWH
patient, focusing on microbiological data, clinical presentation, and
therapeutic management.

Methods: CMV serostatus and DNA viral load were carried out by
Chemiluminescence Immunoassay (CLIA) and quantitative real-time PCR to
monitor patient follow-up.

Results: The three patients had CMV reactivation following an immunocompromised
status. The prompted antiviral treatments determined the viral infection resolution,
despite CMV-related complications worsening clinical outcomes.

Discussion: The development of a safe and effective CMV vaccine represents a
needed challenge, especially for individuals at high risk of severe CMV-related
complications. However, it is difficult to achieve high CMV variability. Our findings
contribute to the ongoing discussion on the importance of developing vaccines
to mitigate CMV-related morbidity in vulnerable populations.
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1 Introduction

The Human Cytomegalovirus (CMV), Herpesviridae family,
Betaherpesvirinae subfamily, is a widespread Herpesvirus infecting
a significant portion of the global population (1). It is known for the
ability to establish lifelong latent infections after primary exposure,
which predominantly occur during childhood or early adulthood
(1). CMV exhibits considerable genetic diversity compared to other
human Herpesviruses, largely due to recombination and coinfection
events (2-4). The viral seroprevalence ranges from 45% to 100%
worldwide, with specific IgG antibody positivity in up to 60% of
adults in industrialized countries and over 90% in individuals with
lower socioeconomic conditions (5). Typically, primary infection is
asymptomatic or causes mild, mononucleosis-like symptoms in
immunocompetent individuals (1).

However, CMV poses severe health risks to immunocompromised
patients (6) and women who contract primary CMV infection during
the first trimester of pregnancy (7, 8). Currently, congenital CMV
infection remains the leading cause of non-genetic sensorineural
hearing loss and a significant contributor to neurodevelopmental
disorders (9). In solid-organ transplant (SOT) recipients,
hematopoietic stem cell transplantation (SCT) recipients, and people
living with human immunodeficiency virus (PLWH) (9), the virus may
reactivate, leading to illnesses that include pneumonia, gastroenteritis,
and retinitis (6). Additionally, reinfection with a new CMV strain can
occur through direct contact with an infectious individual (1).
Although the target populations and the mechanisms of vaccine
delivery are not yet defined, it is well known that children born with
congenital infection and immunocompromised subjects are the two
groups of patients suffering the most serious consequences of CMV
contact. Thus, the most suitable vaccination targets could be transplant
recipients and pregnant women or seronegative women of childbearing
age to prevent congenital infection (10, 11). Antiviral prophylaxis or
treatments that prevent serious outcomes of diseases are currently
available for SOT, HSCT, and PLWH patients. However, prolonged
antiviral therapies can accumulate mutations in CMV DNA hotspots,
conferring resistance to antivirals and consequently causing therapy
failure (12). The different clinical scenarios (primary infection,
reactivation, and reinfection) and treatments cause virus variability
(12-14). In particular, the genes encoding envelope glycoproteins may
segregate by genetic assortment into distinct genotypes, which have
been reported to influence viral virulence, immune response, and
disease outcome (15-17). Considering the key role of envelope
glycoproteins in CMV infection and antibody (Ab)-mediated
neutralization immunity, the development of an effective and safe
vaccine for CMV that can provide broad protection against multiple
genotypes, without causing severe complications, is considered a major
challenge that would, however, address a relevant and yet unsatisfied
medical need (18, 19). In this study, we report the clinical and
therapeutic management of CMV infection in immunocompromised
patients, specifically two SOT recipients and one PLWH. By reviewing
antiviral treatments, dosing strategies, and patient outcomes, we
reported the effectiveness of current CMV management approaches.
Additionally, to address the discussion on the importance of
vaccination in immunocompromised populations, we started with
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the main virological characteristics and infection control, going
through the current vaccine research.

2 Materials and methods

2.1 Study design

Accurate diagnosis of CMV and practices preventing CMV
infection are of paramount importance to several special
populations, such as SOT recipients and PLWH. The prevention
strategies and diagnostic tests performed in special populations
infected with CMV are summarized in Figure 1.

CMYV serostatus, viral genomic detection (DNA or mRNA), and
specific cell-mediated immunity (CMV-CMI) are important factors
that determine outcomes after SOT and in PLWH under
antiretroviral therapy (ART) (20, 21). To improve the post-
operative outcome of transplantation, it is crucial to shift the
focus of CMV detection to the donor and achieve early diagnosis,
as well as implement effective preventive and therapeutic measures.
For CMV prevention, there are two main methods, the first one is
universal prophylaxis, which involves giving antiviral medication at
prophylaxis dose when either the donor and/or the recipient is
seropositive for CMV. The second one is preemptive therapy, which
is defined as serial testing done weekly, through quantitative PCR,
for the first few months after transplant or after treatment of
rejection with a treatment dose of antiviral therapy (22).

2.2 Antiviral treatment and candidate
vaccine

At present, the United States Food and Drug Administration
(FDA) has approved six drugs, which target specific genomic
regions, to treat or prevent CMV disease (11). Two main different
approaches, based on patient CMV immune status, clinical
conditions, risk factors, and co-morbidities, were adopted for the
prevention of primary, reactivated, or recurrent CMV infection:
universal prophylaxis and/or pre-emptive therapy. Universal
prophylaxis makes it possible to maintain viral latency for CMV
infection or reactivation in high-risk SOT and allo-HSCT
recipients, as well as in PLWH (23). However, this therapeutic
strategy is administered to all patients, even those in whom CMV
cannot reactivate, thus needlessly exposing them to side effects.
Moreover, this approach does not prevent the virus from
reactivating after the discontinuation of the prophylactic therapy
(24). Pre-emptive therapy is applied to asymptomatic CMV-
infected patients with positive viremia diagnosed by molecular
screening tests. Based on the CMV viral load measured for 3 or 6
months, antiviral agents are to be administered weekly (25). To
avert the risk of CMV reactivation after prophylaxis
discontinuation, a hybrid approach (prophylactic approach for 3
to 6 months, followed by pre-emptive therapy) has also been
evaluated (26, 27). In 2017, the introduction of letermovir (LTM),
a new anti-CMV molecule that binds to the components of the viral
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terminase complex (UL51, UL56, and UL89) to block CMV DNA
processing and viral particle packaging, provided a novel
prophylactic approach (28, 29). In a randomized controlled trial,
LTM prophylaxis proved to be superior to pre-emptive therapy in
reducing the clinical picture of CMV infections and enhancing 24-
week survival rates (30). However, prolonged and repeated use of
anti-CMV therapies (which typically last months) can lead to the
accumulation of mutations in target regions of the CMV genome;
this, in turn, confers resistance to antivirals (Table 1) (29-40).

The CMV management guidelines for patients with persistent
symptoms of disease or rising/relapsing viremia recommend
genotypic resistance testing (11). Several candidate vaccines for
CMV that aim to prevent congenital and post-transplant infections
in immunocompromised people, as well as in healthy subjects, are
currently in development (Figure 2).

The development of CMV vaccines began in the 1970s when
two strains of the virus, Towne and AD169, were attenuated and
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used as active immunoprophylaxis in solid organ transplant
recipients (41). These strains have several modifications in an
area of the genome that consists of sequences spanning CMV
ORFs UL128-151. Specifically, UL128, UL130, and ULI131 direct
the synthesis of three polypeptides that are constituents of the
pentameric complex (PC) required for efficient viral tropism in
most epithelial and endothelial cell types (10). Despite initial results
being seemingly promising, statistical analyses revealed that
protection against infection was not significant (42). V160 is the
first attenuated vaccine designed to express the PC to be constructed
on the backbone of the AD169 strain. V160 can propagate in
epithelial cell lines only in the presence of Shield-1, a synthetic
stabilizing ligand. In the absence of this ligand, the fusion protein is
rapidly degraded and viral replication is inhibited (43). Therefore,
given that the Shield-1 ligand does not exist in nature, the V160
attenuated virus should be unable to revert to a replication-
competent virus, ensuring an excellent safety profile for this
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TABLE 1 Available drugs and related resistance mutations within genomic target regions.

Genomic target and action Resistance mutation References
iclovir (GCV
gancic OVl_r ( i ) i X L Mutations in UL97 gene (codons 363 to 698) and/or in the UL54 gene
valganciclovir Blocking of viral DNA replication. (31, 32)
(codons 184 to 1017).
(VGCV)
foscarnet (FOS) Binding of UL54 siteAviral poly@erase, halting DNA Mutations in UL54 gene (codons 555- 600), palm and finger (codons (33-35)
chain elongation. 696-981).
Inhibition of incorporation of deoxycytidine
Mutati in UL54 (cod 301 - 987 d deleti t cod 981-
cidofovir (CDV) triphosphate into viral DNA by UL54 viral utations in (codons 082 ) and deletion at codons (36-38)
polymerase. ’
Inhibition of cleavage of long DNA concatamers, Mutation in UL51 (amino acidic changes P91S) and UL89 (amino
letermovir (LMV) resulting in the production of non-infectious viral acidic changes N320H, D344E and M359]I) enzyme complex (28, 29)
particles. encoding-genes.
maribavir (MBV) Inhibition of the UL9? kinaée en%yme, blocking the Mutation in UL97 gene (amino acidic changes T409M, H411Y, and (39, 40)
assembly of the infectious viral progeny. C480F)

vaccine. In a Phase I study conducted between 2013 and 2017, it was
demonstrated that the V160 vaccine can induce neutralizing
antibody and T cell responses. Furthermore, after a new dose,
there is an increase in cell-mediated immune response to CMV
(44). The glycoprotein gB is one of several glycoproteins expressed
in the viral envelope. This protein works in combination with both
the gH/gL complex to facilitate viral entry into human fibroblasts
and with the PC to enter epithelial and endothelial cells (45). A
phase I randomized trial was conducted involving a CMV vaccine
based on recombinant gB with an adjuvant, MF59, an oil-in-water
emulsion of squalene. This study demonstrates that immunization
of healthy adults achieved with a subunit CMV vaccine combined
with an adjuvant can induce an immune response to the gB
neutralizing antibody (46). A Phase 2 trial (NCT00299260)
measured, after the administration of the gB/MF59 vaccine,
antibody titers and CMV viremia in kidney or liver transplant
patients. The results showed a significant increase in the gB-binding
antibody titer one month after the second vaccine dose.
Furthermore, an increase in neutralizing antibody titers was
measured after a similar amount of time in seropositive vaccine
recipients. Similarly, seronegative organ recipients who had
received the vaccine and had had seropositive organ donors
demonstrated reduced viremia. This viremia had a post-
transplantation duration that was inversely correlated to gB
antibody titers (47). An issue to consider in the gB recombinant
subunit vaccine is that the ability to induce immunity to one strain
of CMV clearly does not mean immunity to all strains of CMV (48).
According to the FDA, DNA vaccines are purified plasmid
preparations containing one or more DNA sequences capable of
inducing and/or promoting an immune response against a
pathogen (49). After preclinical, the ASP0113 contains two
plasmids encoding pp65 and gB and is administered with two
adjuvants. A phase I clinical trial evaluated the safety of ASP0113 in
CMV seropositive and seronegative immunized individuals.
Vaccination of seronegative subjects elicited pp65- and gB-
specific T-cell responses in addition to gB antibody responses,
while seropositive vaccinated groups showed increases only in
pp65-specific T-cell responses (50). The second clinical trial of
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ASPO0113 included the vaccination of allogeneic HSCT adult
recipients, who then exhibited a significant reduction in viral load
endpoints and increased frequencies of pp65-specific interferon-y-
producing T cells (51). Two similar studies evaluating the safety and
efficacy of this DNA vaccine in solid organ transplant recipients
(NCT01974206) and dialysis patients (NCT02103426) were
recently completed. Transplant recipients were randomized (1:1)
to receive 5 doses of ASP0113 and showed no statistically significant
difference between the ASP0113 group and the placebo group.
ASP0113 demonstrated a safety profile similar to the placebo in
the prevention of CMV viremia in this CMV-seronegative kidney
transplant population. A trivalent, non-adjuvanted DNA vaccine
trial (VCL-CT02) is currently in progress. These studies
(NCT00370006 and NCT00373412) include the IE1 T-cell target
in addition to the gB and pp65 coding sequences and were
conducted in CMV seronegative subjects vaccinated
intramuscularly or intradermally, followed by Towne
immunization. Furthermore, Inovio has recently been developing
SynCon, an alternative nucleic acid-based vaccine technology. This
model is based on an extensive sequence analysis of the antigen of
several target pathogens, in which the most conserved, or dominant,
amino acid in the antigen gene sequence is identified. Then, a
consensus gene sequence is synthetically created and inserted into a
DNA plasmid to create the testing vaccine (52). In addition to DNA
vaccines, several RNA vaccines are also being studied, such as an
alternative nucleic acid-based vaccine technology. An RNA vaccine
uses a synthetic copy of a natural pathogen messenger RNA
(mRNA) and leads to the immune system producing responses
against its corresponding antigen, using lipid nanoparticles for
delivery; these particles can protect the RNA strands and facilitate
their absorption into the cells. Several preclinical studies have been
carried out with excellent results (53). A CMV vaccine that uses a
recombinant vector works by being composed of one or more
antigens, which are delivered via a viral vector that is capable of
infecting human cells and of expressing the viral proteins without
establishing a productive infection (10). One of the candidate
vaccines tested in clinical trials was a vaccine called Triplex, based
on a modified Vaccinia Ankara encoding three immunodominant
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FIGURE 2

Summary of vaccines in completed or underway clinical trials. Vaccine and Clinical Trial Registration number (NCT identifier) were related to target
population and development phase. SOT, solid-organ transplant recipients; HSCT, allogeneic hematopoietic stem cell transplant.

CMYV antigens, pp65, IE1-exon4, and IE2-exon5. Triplex was tested
in a Phase I trial evaluating the CMV serological status at different
points in time by using three progressively higher doses of the
vaccine (54). Based on these results, a Phase II clinical trial was
started in 2015, in which CMV-seropositive HSCT recipients
received Triplex two days after HSCT (NCT02506933), and then
in 2021, Triplex was evaluated in adults with CMV infection and
PLWH (NCT05099965). The first trial confirmed that, in patients
who received the Triplex vaccine, the risk for a significant CMV
event during the first 100 days after transplant was reduced by half,
while the second trial is still ongoing (55). A novel strategy for a
vaccine candidate was the use of virus-like particles (VLP), protein
structures that mimic viruses without a viral genome. One
candidate VLP vaccine against CMV was based on the
production of VLP in mammalian cells encoding the truncated
sequence of the gB extracellular portion fused with the TM and
cytoplasmic domains of the vesicular stomatitis virus (VSV) G
protein. In pre-clinical studies, this formulation, named CMV gB-
G, demonstrated evidence of trimeric expression of the gB-G
ectodomain, which is capable of eliciting higher epithelial
neutralizing antibody titers compared to the full-length
monomeric gB antigen (56). The high intra-host and inter-strain
genetic diversity, together with frequent mixed and coinfections,
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can substantially reduce the generalizability and real-world
effectiveness of CMV candidate vaccines. Human CMV infection
sustained by a mixture of genetically distinct strains within the same
host, as reported by haplotype reconstruction and longitudinal case
series, and recombination events could undermine strain-specific
immunity and vaccine-induced protection (57). Case series of
primary and congenital infections reported the multiple gB
detection of different genotypes, as well as reinfection with
heterologous strains despite prior immunity, indicating vaccines
protection gaps targeting a single antigen or specific strain (58).
Coinfection with multiple CMV genotypes was documented in
transplant recipients and correlated to delayed antiviral immune
reconstitution and prolonged viremia (59). CMV vaccine trials
must accounted for mixed viral strain infections, regional strain
variability, and microorganism coinfection when correlates of
protection and clinical endpoints are evaluated (60, 61).

2.3 Routinely diagnose
Chemiluminescent immunoassay (CLIA) was performed to

detect CMV Immunoglobulin M (IgM) and/or Immunoglobulin
G (IgG) antibodies by LIAISON® system (Diasorin S.p.A, Italy).
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Quantitative viremia was evaluated by NUCLISENS EASYMAG
(BIOMERIEUX, Italy) and CMV ELITE MGB KIT
QUANTITATIVE (ELITECH GROUP S.P.A, Turin, Italy).

3 Case series of immunocompromised
patients

3.1 Clinical case 1: CMV reactivation in
PLWH recipient

A 36-year-old male was admitted to the “Renato Dulbecco”
University Hospital of Catanzaro from August 05 to October 10,
2024. Medical history included HIV infection, first diagnosed in 2012,
recurrent prostatitis, anorexia-related malnutrition, and previous
AntiRetroviral Treatment (ART) regimens with poor adherence.
Currently, the patient is on Highly Active AntiRetroviral Therapy
(HAART) treatment to bictegravir/emtricitabine/tenofovir (50 + 200
+ 25 mg cp; lcp/die), exhibiting poor compliance. In the first
evaluation, the immune status was moderately compromised, with
a CD4+ T-cell count of 458/uL (26.5%, R: 0.45). The patient
presented with fever (37.5 °C), mandibular pain with hypoesthesia
and paresthesia along the second and third branches of the
trigeminal nerve, and a pruritic erythematous rash on the trunk
and extremities. The clinical presentation as well as current/past
seroimmunological investigations, were consistent with secondary
syphilis (rapid plasma reagin titer of 1:512). Additionally,
quantitative real-time-RT-PCR revealed HIV RNA relapse from
<20 to 23,600 copies/mL, with genotypic drug resistance
sequencing confirming sensitivity to all antiretroviral drug classes.
Diagnostic imaging demonstrated osteoarthritis involving the left
mandibular condyle and temporal bone, which needed surgical
management for recurrent temporomandibular joint dislocation.
Throughout the hospitalization, the patient exhibited severe
malnutrition, sarcopenia, and persistent gastrointestinal symptoms,
including mucorrhea and poorly formed stools. A colonoscopy
demonstrated chronic nonspecific inflammation, benign lymphoid
hyperplasia, and anal condyloma. Biopsies revealed no evidence of
malignancy. On August 28, CMV reactivation was detected with an
initial DNA viral load of 1,929 copies/mL. It was promptly initiated
with intravenous ganciclovir at a dose of 500 mg every 24 hours. The
treatment was continued for three weeks, resulting in a progressive
reduction of CMV DNAemia, until 192 copies/mL on October 10,
2024 (Figure 3). The immunological condition was re-evaluated,
showing a decrease of the CD4+ T-cell count of 407/uL (26.5%, R:
0.38). HIV viral suppression (HIV-RNA <20 copies/mL) was
achieved by directly observed therapy (DOT) with bictegravir/
emtricitabine/tenofovir on September 6, 2024. However, adherence
to HAART therapy remained suboptimal, leading to another
virological relapse (HIV RNA viral load 7,540 copies/mL) on
October 14, 2024. The patient’s hospital course was complicated by
episodes of candidemia and a bloodstream infection caused by
Klebsiella pneumoniae with New Delhi metallo-beta-lactamase
(NDM) resistance phenotype. Caspofungin at a dose of 50 mg daily
was administered for 15 days. For the NDM K. pneumoniae infection,
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cefiderocol (2g x 3/die) and fosfomycin (4g x 4/die) were
administered until September 11, 2024. Further microbiological
investigations excluded other opportunistic pathogens, including
Cryptococcus neoformans. Due to severe anorexia and malnutrition,
parenteral nutrition was initiated to stabilize the patient’s nutritional
status (Table 2).

3.2 Clinical case 2: CMV reactivation in
kidney transplant patient

A 25-year-old woman was admitted to the Nephrology-Dialysis
Unit of the “Renato Dulbecco” University Hospital of Catanzaro
from April 13 to 15, 2023, with symptoms of dyspnea and fever. The
patient’s medical history included opsismodysplasia, chronic
obstructive pulmonary disease, chronic pancreatitis, and retinitis
pigmentosa. In October 2017, the patient was diagnosed with initial
renal failure, with a diagnosis of “familial polycystosis”. On 23
January 2023, the patient underwent living donor kidney
transplantation (mother) at Policlinico Gemelli in Rome. After
transplantation, she started immunosuppressive and steroid
treatment with Tacrolimus and Bactrim. Before transplantation,
the patient’s serological data showed only IgG positivity for CMV
(103 UA/ml) with undetected DNA, suggesting previous infection.
Two months after transplantation, on 16 March 2023, the patient
showed negative IgM and IgG>180 UA/ml with positivity for
CMV DNA (22,992 copies/ml) (Figure 3). The patient then
discontinued immunosuppressive therapy and started treatment
with Valganciclovir 450 mg 1 capsule twice daily. On April 11 she
attended a follow-up visit at the Transplant Outpatient Clinic with a
clinical-radiological-laboratory picture suggesting a lower
respiratory tract infection. After two days, she presented to the
Nephrology OU with suspected H. influenzae pneumonia treated
with levofloxacin 500 mg every 24 hours, with a Protein C Reactive
(PCR) value of 88 and negative procalcitonin (PCT). During
hospitalization, antibiotic therapy was continued by oral
administration following IgM positivity for Chlamydophila
pneumoniae, resulting in a marked improvement in thoracic
objectivity and respiratory symptoms, with a reduction in
inflammatory indices and normalization of the leukocyte formula.
At the third negative determination of CMV DNA on plasma, in
agreement with the referring Transplant Center, Valganciclovir
therapy was discontinued. The patient is voluntarily discharged in
good clinical condition, apiretic and eupnoic, with advice to
continue infectious evaluation at the referral clinic and continue
nephrologic follow-up (Table 2).

3.3 Clinical case 3: CMV reactivation in
lung transplant recipient

A 29-year-old Caucasian man is admitted to the thoracic
surgical unit in Padua for a double lung transplant on April 30,
2023. The diagnosis revealed Langerhans cell histiocytosis. The
patient’s medical history includes pulmonary emphysema and
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idiopathic pulmonary fibrosis. After transplantation, the patient
started on tacrolimus 3 mg 1 cp x 2/day as an immunosuppressant.
During the hospital stay, positive blood cultures for S. epidermidis,
K. oxytoca in the presence of vascular abscesses and CMV-DNA
replication were reported. Previous administration of ganciclovir
was replaced with oral prophylaxis of valganciclovir 450mg 2cp x 2/
day. Rejection monitoring TB biopsies were performed on 6 June
and found to be absent. On June 28, 2023, CMV DNAemia was
under 130 copies/ml. Bronchial aspirate was positive for Escherichia
coli and persisted for several months. On July 26, 2023, at the last
check-up at the hospital in Padua, Cytomegatect 2000 IU was
administered. Immunoglobulin administration was recommended
for one year. The patient was admitted to the pneumology operating
unit of the Renato Dulbecco hospital in Catanzaro as an outpatient.
After two weeks, CMV DNA was not detectable, while serology was:
anti-CMV-IgG of 42 UA/mL, anti-CMV-IgM of 25 UA/mL. After
one month, on August 30, 2023, the patient was compatible with
reactive CMV infection (anti-CMV-IgG: 44 UA/mL, anti-CMV-
IgM: 26 UA/mL), confirmed by PCR with detectable CMV viremia
(6576 copies/mL). Additionally, sputum was positive for Aspergillus
niger and became negative after 4 months. After 5 months of follow-
up, viremia decreased (<130 copies/ml), and the bronchial aspirate
was negative. On March 7, 2024, DNAemia was 212 copies/mL
(anti-CMV-IgG: 60 UA/mL, anti-CMV-IgM: 49 UA/mL)
(Figure 3). The patient is still under control in the pneumology
unit (Table 2).
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4 Discussion

The vaccine for CMV infection was classified as a high priority
due to the consequences of congenital infection and disease severity
in immunocompromised subjects, the emergence of resistance, and
the side effects of drugs, which limited the use of antiviral therapies (6,
11). In this paper, we referred to three cases of immunocompromised
patients. In the first case, we illustrated the multifaceted consequences
of CMV reactivation in an HIV-positive patient with poor ART
adherence, contributing to persistent gastrointestinal symptoms,
systemic infections, and treatment challenges. CMV is a common
virus that frequently establishes latency and reactivates in
immunocompromised hosts (62). CMV has a linear double-
stranded DNA (dsDNA) containing 236 kb of information and
more than 750 open reading frames (ORFs) packaged inside an
icosahedral nucleocapsid, a large layer of tegument proteins, and an
envelope containing glycoprotein complexes (20). The genome is
divided into two large domains called long (L) and short (S), each of
which is constituted by the central unique (UC), unique long (UL),
and unique short (US) regions (21). Several CMV genotypes were
defined, according to the distribution of polymorphisms along the
viral genome (22). Considering the variability of gB (gB1, gB2, gB3,
gB4, gB5, gB6, gB7) and gN (gN1, gN2, gN3a, gN3b, gN4a, gN4b,
gN4c), it is possible to distinguish seven genotypes for both
glycoproteins. The gH encoded by the UL75 gene is also able to
identify two different genotypes (gH1 and gH2). Polymorphic genes
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TABLE 2 Demographic and clinical characteristics of patients with CMV reactivation.

Patient .
Case 1 - PLWH Case 2 - kidney transplant Case 3 - lung transplant
Parameter
Age 36 25 29
Sex M F M

Primary Diagnosis HIV infection

Comorbidities Prostatitis, anorexia-related malnutrition

Family polycystic kidney disease Langerhans cell histiocytosis

COPD, chronic pancreatitis, retinitis
pigmentosa

Emphysema, idiopathic pulmonary
fibrosis

Type of Transplant None

Immunosuppression suboptimal ART adherence

Candidemia; NDM-producing K. pneumoniae

Coinfections . .
bloodstream infection

CMV Serostatus (Pre-

None
transplant)

Living-donor kidney transplant Bilateral lung transplant

Tacrolimus and Corticosteroids Tacrolimus

Haemophilus influenzae pneumonia; C. . L
. Aspergillus niger in sputum
pneumoniae

IgG positive; CMV DNA negative Not Available

Initial CMV DNA load 1,929 copies/mL

Antiviral Therapy Ganciclovir 500 mg/die x 3 weeks

22,992 copies/mL 6,576 copies/mL

o Ganciclovir, Valganciclovir and
Valganciclovir 450 mg BID .
Immunoglobulins

Duration of Treatment 21 days

Virological Response 192 copies/mL

Follow-up Partial virological response

are usually analyzed to evaluate the prevalence of viral genotype
circulation among humans (2, 20, 21, 23). To determine the entry
spot of the virions, the glycoproteins of the CMV envelope combine
into two different complexes based on the host cellular type. The first
one is composed by a trimer formed by a glycoprotein H (gH),
glycoprotein L (gL), and glycoprotein O (gO) complex that binds to
platelet-derived growth factor receptor oo (PDGFRa) to induce pH-
independent entry into the fibroblasts (24). The gN is an extensively
glycosylated envelope type I glycoprotein. It is a component of the
gM/gN complex that plays an essential role in CMV replication. This
gM/gN complex is the most abundant protein complex in the virion
envelope (23). Pentamer-mediated entry requires the presence of gO,
as well as a low endosome pH. A crucial role in viral entry is played by
glycoprotein B (gB) (25). The high tropism of CMV for different cell
types requires the interaction between several virus-encoded
glycoproteins and receptors on the host cell surface (26). The CMV
gB is encoded by the UL55 gene and is synthesized as a polypeptide
composed of about 900 amino acids that consists of 5 structural
domains (I-V) and undergoes cleavage by furin (26). To infect
epithelial, endothelial, and likely many other cell types, the gH, gL,
UL128, UL130, and UL131A pentamer can bind to Olfactory
Receptor family 14 subfamily I Member 1 (OR14I1) or Neuropilin
2 (NRP2) on their cell surface, inducing virion endocytosis
(Figure 4) (27).

Among PLWH, CMV seropositivity has been associated with
increased epithelial gut damage, microbial translocation, and
systemic inflammation, even in individuals receiving long-term
ART. These processes are hypothesized to contribute to chronic
immune activation and the development of non-AIDS
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1 month 5 months

CMV DNA not detected 212 copies/mL

Virological response Partial virological response

comorbidities (63-65). In the present case, CMV reactivation was
identified through the detection of CMV DNAemia, coinciding with
exacerbation of gastrointestinal symptoms and chronic colonic
inflammation. These findings align with recent evidence
demonstrating that CMV replication is a significant contributor
to gut permeability and the subsequent translocation of microbes
into the circulation, leading to systemic inflammation. CMV
replication in the gastrointestinal tract can compromise intestinal
barrier integrity by disrupting tight junctions of polarized intestinal
cells and enhancing transepithelial permeability, contributing to
microbial translocation in PLWH patients (65-67). Studies have
shown that CMV coinfection and reactivation are associated with
elevated markers of gut damage, such as intestinal fatty acid-
binding protein (I-FABP), and microbial translocation markers,
including lipopolysaccharide (LPS) and (1—3)-B-d-glucan (BDG)
(63). Complications such as candidemia and NDM resistance
phenotype K. pneumoniae bloodstream infections highlight the
susceptibility of this patient to opportunistic infections. Persistent
microbial translocation, secondary to CMV-associated gut damage,
may have contributed to these bloodstream infections (63, 68, 69).
The patient’s poor adherence to ART further complicated his
clinical course, leading to intermittent virological failure and
suboptimal immune reconstitution (70). The successful reduction
of CMV DNAemia following ganciclovir therapy underscores the
potential benefits of targeted antiviral strategies. However, the
recurrent nature of CMV reactivation and its long-term impact
on immune health necessitate preventive measures beyond
pharmacological management (71). The development and
deployment of an effective CMV vaccine could represent a
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transformative advancement in the care of PLWH (11). By
preventing CMV infection and reactivation, such a vaccine would
reduce epithelial gut damage, mitigate chronic immune activation,
and ultimately decrease the incidence of non-AIDS comorbidities
(71). In particular, a safe CMV vaccine would be crucial for
individuals with poor ART adherence or compromised immune
status, as they remain at high risk for CMV-related complications.
In people with compromised immune systems, such as SOT
patient (case 2), where patients undergo pharmacological
immunosuppression to prevent rejection, CMV has the potential
to cause severe disease. Because of these adverse effects, CMV
prevention is part of the standard of care (72). This can be
accomplished through antiviral prophylaxis with Valganciclovir
for at least 3 months after SOT. Or as a preventive therapy,
which involves the administration of antiviral drugs only after
CMV replication is detected. With this strategy, CMV nucleic
acid amplification testing monitors patients regularly at close time
points during the first 3 months after SOT. If CMV DNA is
detected, antiviral drugs such as Valganciclovir are administered
to treat patients until the virus is no longer detectable in the blood
(73). Immune dysregulation caused by immunosuppressive drugs
and CMV reactivation may have favored or facilitated a possible
interaction with secondary C. pneumoniae infection, potentially
contributing to the severity of respiratory symptoms. This
interpretation is consistent with clinical observations that CMV
reactivation in transplant and critically ill patients is often
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accompanied by bacterial and fungal co-infections and with
experimental data showing enhanced pro-inflammatory responses
during certain viral-bacterial co-infections, which may amplify lung
injury and impair pathogen clearance (74-76). Sustained exposure
to immunosuppressive agents may predispose patients to
subsequent CMV reactivation, despite prior effective antiviral
therapy. Moreover, prolonged use of antiviral drugs, such as
Valganciclovir, may have side effects such as neutropenia,
gastrointestinal problems, and renal toxicity. Therefore,
vaccination in patients with a compromised immune system
would be considered necessary. Finally, Lung transplantation
(LTx) is the definitive treatment option for patients with severe
pulmonary diseases (case 3) (77). Cytomegalovirus is one of the
most prevalent viral pathogens contributing to morbidity after SOT
(78). In immunosuppressed patients, CMV infection can be
asymptomatic but more frequently presents as CMV syndrome,
characterized by fever, malaise, leukopenia, thrombocytopenia, and
elevated serum transaminases, or as organ-specific CMV diseases,
such as pneumonia, gastroenteritis, or hepatitis (79). Transplant-
associated CMV infection may occur as a primary infection in
seronegative recipients, as a reactivation of latent CMV, or because
of reinfection with a new CMV strain (80). Due to its
immunomodulatory effects, CMV infection may increase
susceptibility to other opportunistic infections, such as Aspergillus
species, Pneumocystis jirovecii, Nocardia, and Epstein-Barr virus,
which could contribute to the overall burden of infection-related
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complications (81-83). Further, lung transplant recipients are
particularly at risk for severe infections from common
community-acquired respiratory viruses: Respiratory syncytial
virus (RSV), Parainfluenza virus (PIV), Rhinovirus, Coronavirus,
Human Metapneumovirus, Influenza, and Enterovirus (84). The
early identification and management of CMV viremia have been
shown to improve clinical outcomes, underscoring the need for
integrated monitoring strategies targeting both viral and fungal
pathogens (82, 83). The treatment of symptomatic cases involves a
combination of antiviral therapy and immunosuppression
reduction. Both valganciclovir and ganciclovir are effective in
treating symptomatic CMV disease (81). In CMV infections,
intravenous immunoglobulin (IVIG) is administered for the
treatment or prevention (85). However, vaccination of recipients
significantly reduced severe symptoms and the risk of graft rejection
(86). Although acquired immunity does not consistently prevent
reinfection (58).

Reinfection and mixed events are directly related to CMV
genome high variability, which can facilitate immune evasion,
increase viral replication, and decrease antiviral efficacy. CMV
exhibits recombination events, among other evolutionary
phenomena, due to the multitude of infections (2). High level of
within-host CMV strains diversity is not related to mutational
rates, but rather to frequent mixed infections (about 61%)
identified using serial and different samples, particularly in
immunocompromised subjects. Infection of different viral
strains determined recombination events, regarded as putative
drivers of CMV evolution, influencing its pathogenesis by
promoting viral cell entry (87). The interaction between host
and virus generates a positive selection in specific CMV
genomic regions, such as surface glycoproteins, avoiding
immune recognition (3). The gB and gH/gL proteins elicit
serum neutralizing antibodies, blocking entry into target cells
(88). Following natural infection, gH-specific neutralizing
antibodies were detected in convalescent serum samples and
were initially considered for the treatment and prophylaxis of
infections. Recently, the strain-specific neutralization capacity of
gH antibodies has been demonstrated. Considering three
monoclonal antibodies (2B10, 6E3, 3C11), two were effective at
blocking distinct CMV strains, while 2B10 was strictly strain-
specific against a single residue on the gH surface. This underlines
the importance of protective immunity against gH polymorphic
sites (88). The strain-specific serological methods could be useful
in determining CMV strain diversity, multiple infections, and
reinfection, thus identifying the appearance of new antibodies
over time against the antigenic determinants on gH and gB
envelope glycoproteins (89). CMV genotypes can be identical in
different geographic areas, although new/rare viral strains can be
detected in restricted areas of the world or in specific risk groups:
gB2 was foremost present among PLWH and children with
congenital infection, gB1 was the most prevalent among SOT
recipients and immunocompromised patients, and finally, gB4
was found in newborns with sepsis-like syndrome (90). CMV
genomic evolution occurred by genetic drift within geographically
distinct populations. The CMV genome variations interacted to
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cause geographical differences and their spread to specific areas
(91). Interestingly, the CMV population appeared to be relatively
stable within tissue compartments in a single host, while it rapidly
evolved during the colonization of different compartments. Each
compartment reportedly exhibited a unique selective pressure,
mutation, or polymorphism on specific genes that can affect the
tropism of the viral population, increasing its fitness (92). The
analysis, performed on the UL55, UL73, UL75, US28, and UL144
genomic regions in urine, saliva, and plasma samples, showed the
presence of multiple genotypes in primary infection. The
detection of several CMV viral strains in different specimens
from the same subject was common (10/15) (57). In this study,
10 subjects had gN2 only in saliva, four subjects had unique gB
genotypes found in saliva or urine, while different gH types were
detected in different samples, and one subject displayed a unique
US28 genotype only in saliva. New genotypes within the same
specimen were observed with a median time of 5 months. The
frequency of each genotype was probably related to transmission
variability or infection reactivation (57). Hypothetically, the
different genotypes of CMV may influence its virulence, though
its impact on disease severity is still debated, and there are
conflicting results (93). Pathogenesis may be directly dependent
on tissue tropism and the local site of replication. In PLWH and
immunocompromised patients, the frequency of gB2 in patients
with retinitis compared to those without was not higher. On the
contrary, a higher frequency of gB4 was found in semen samples
from the genitourinary tract: this tissue specificity was not
revealed for gB1, gB2, and gB3 (59). However, the extensively
reported possibility of mixed infection within a patient underlined
the difficulty in studying the association between pathogenesis and
a particular genotype, such as potential virulence or symptomatic
disease (59). Genetic variation could affect clinical outcome,
especially in immunocompromised people. In patients receiving
marrow transplants, complications of neutropenia and
subsequently death appeared significantly associated with gB3
and gB4, possibly because they escape immune recognition and
persist in the marrow, causing more damage (94). The increased
susceptibility to reinfection was related to the recognition of gB
structural differences by antibodies, suggesting CMV variants and
naturally occurring mutations as responsible for a less effective
immune response (95). The sequencing techniques highlighted
the compartmentalization of gB epitopes, even if the major viral
populations were identical between host anatomic compartments.
The presence of low-frequency viral variants could explain the
partial efficacy of vaccines (96). GB-specific antibodies limited the
dissemination of viruses between tissue compartments, selecting
the more advantageous CMV strains in each compartment and the
subsequent formation of genetically distinct viral variants (96).
Mixed CMV infection and viral strain compartmentalization
(cervical and breast milk) were also identified in HIV-infected
women. In this situation, the congenitally transmitted virus was
the one with the highest abundance in the cervix and was
genetically distinct from the breast milk strains (97). The gB/
MF59 vaccine, constituted with the Towne gB1 genotype strain,
showed a lack of protection in vaccine recipients infected with gB1
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within 3 months of primary infection. Strain-specific immunity
was suggested as being protective against CMV infection (57).
Recombinant viral strains are usually positively selected and occur
between superinfecting as well as reactivating genomes. Studies
based on the analysis of reconstructing haplotypes from short-
read sequenced data showed that the most parsimonious
explanation of high within-host CMV diversity is the frequent
presence of mixed infections, whereas CMV in non-mixed
infections is no more diverse than other DNA viruses (58). The
availability of CMV sequences from around the world can be used
to evaluate viral antigens or gB-specific strains to induce
cross-protection against globally circulating variants (91).
Evolutionary phenomena during CMV infection, such as
multiple CMV strains coinfection and recombination events,
were related to viral pathogenesis and to the complexity of
developing an effective vaccine.
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