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Virtual reality (VR) technology provides clinicians, therapists, and researchers with new

opportunities to observe, assess, and train behavior in realistic yet well-controlled

environments. However, VR also comes with a number of challenges. For example,

compared to more abstract experiments and tests on 2D computer screens,

VR-based tasks are more complex to create, which can make it more expensive and

time-consuming. One way to overcome these challenges is to create, standardize, and

validate VR content and to make it openly available for researchers and clinicians. Here

we introduce the OpenVirtualObjects (OVO), a set of 124 realistic 3D household objects

that people encounter and use in their everyday lives. The objects were rated by 34

younger and 25 older adults for recognizability, familiarity, details (i.e., visual complexity),

contact, and usage (i.e., frequency of usage in daily life). All participants also named and

categorized the objects. We provide the data and the experiment- and analysis code

online. With OVO, we hope to facilitate VR-based research and clinical applications. Easy

and free availability of standardized and validated 3D objects can support systematic

VR-based studies and the development of VR-based diagnostics and therapeutic tools.

Keywords: virtual reality, 3D objects database, stimuli, neuropsychology & neurology, virtual medicine, 3D objects

INTRODUCTION

Virtual reality (VR) technology provides computer-generated content based on a user’s movement
in or interaction with a simulated environment to enable an immersive experience (Aukstakalnis
and Blatner, 1992; Rizzo and Koenig, 2017). In non-immersive VR, users interact with 3D
computer graphics on a 2D screen, while in immersive VR, people are fully “embedded” in
the virtual environment through the use of stereoscopic head-mounted displays (HMDs) and
body-tracking sensors.

For users, VR enables interactive, immersive experiences. For clinicians and researchers, VR
provides new opportunities to observe, assess, and train behavior in realistic environments and with
new measures, for example, to treat phobias (Morina et al., 2015), post-traumatic stress disorder
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(e.g., Rizzo et al., 2010), or to rehabilitate attention, memory,
and motor and spatial skills [for an overview, see Rizzo and
Koenig (2017)]. In a recent overview of VR-based solutions for
the diagnostics and therapy of neurological diseases, Słyk et al.
(2019) argue that although VR is still relatively understudied, it is
making visible progress.

VR can provide tailored trainings for different patient groups
or even individual patients in controlled environments that
resemble the everyday life of patients. Classical diagnostics and
therapies often lack this resemblance or only achieve it at
high costs. For example, spatial memory (i.e., the capacity to
recognize or recall relationships between objects in space) is
often assessed with paper-and-pencil tests like the Rey-Osterrieth
Complex Figure Test (ROCF), in which participants have to copy
a complex line drawing and recall it from memory (Rey, 1941;
Osterrieth, 1944). In fundamental research, the mechanisms
of working memory are regularly investigated with tasks in
which participants have to memorize abstract shapes presented
on a computer screen (e.g., Brady et al., 2016). Although
many classical paradigms rely on controlled, de-contextualized
environments and stimuli, clinicians and researchers did develop
realistic tasks and experiments to study the behavior of patients
and participants in everyday life situations: In the cooking task,
for example, patients are asked to prepare a dish in a real
kitchen in the clinic, while the therapist continuously monitors
their performance (e.g., Frisch et al., 2012). However, these
tasks are costly and time-consuming, because the therapist
has to be present at all times and the real-life environment
has to be physically built or made available. In addition, they
often lack the experimental control necessary for systematic
and reproducible results, and they often do not allow for
automatic (i.e., experimenter-independent) multi-dimensional
data collection.

VR could bridge the gap between the laboratory (i.e.,
systematic and controlled environments and tasks) and everyday
life (i.e., natural situations and behavior). It allows for the
systematic delivery of realistic yet well-controlled stimuli, real-
time performance feedback, and a safe testing or training
environment. From a clinical perspective, patients can also
independently practice skills in a controlled environment outside
the clinic and ideally at home (Rizzo and Koenig, 2017). An
example of a successful clinical VR application is VR exposure
therapy (VRET), in which “in virtuo” exposure can lead to
changing one’s behavior in real-life situations (Morina et al., 2015;
Howard, 2017). Furthermore, executive functions, the higher-
order cognitive processes required for performing complex
tasks, have been assessed in healthy individuals and patients
using action planning tasks in a virtual supermarket (Josman
et al., 2008). VR provides precise outcome measures (e.g.,
information about the location and position of the head or
other body parts), interactive dynamic experimental paradigms
(e.g., using controllers or other methods for interaction with
the environment) as well as high-resolution stimuli that can be
completely controlled and easily matched for certain properties
(e.g., color, size). Using stimuli with heightened realism, it has
been shown that people can store more real-world objects (e.g.,
bell, cookie) than abstract shapes (e.g., squares varying in color

and orientation) in memory, and they do so with more detail
(Brady et al., 2016). This suggests that working memory capacity
has been systematically underestimated in studies that used
simple stimuli about which we have no previous knowledge. In
addition, VR has been used to study spatial memory (e.g., Koenig
et al., 2011), and it can be combined with neurophysiological
measures such as electroencephalography (e.g., Klotzsche et al.,
2018; Tromp et al., 2018).

Although VR is a promising tool for research and clinical
applications, it also has several disadvantages, and its use
comes with several challenges. While the price of VR hardware
(e.g., commercial HMDs like the Oculus Quest) has dropped
substantially, it is still rather expensive and time-consuming to
develop VR-based experiments and applications. There is little
VR content freely available that is suitable for experimental
research and clinical applications, and the content that is
available commonly lacks the empirical validation warranted
to ensure scientific rigor. For example, VR content that is
designed for entertainment or educational purposes is often
not suitable for research, because stimulus properties are not
matched or the experience cannot be modified to fit specific
research questions. In addition, after a VR-based experiment
has been successfully designed, the additional dimensions of
behavioral assessment increase the number and complexity of
outcome measures—and thereby the “researcher degrees of
freedom” (Simmons et al., 2011)—even more than in classical
(computerized) tasks in the psychological and biomedical
sciences (Ioannidis, 2005). This is especially problematic for the
comparison of performance between different VR paradigms
or therapies, since even if the task is the same, there are
many aspects of the VR experience (e.g., the environment, the
interaction) that can cause different outcomes. To resolve some
of these issues, our group, in previous research, presented a new
framework, “the VR-check.” This framework can be used to aid
systematic and comparative paradigm optimization in VR-based
research on the basis of several dimensions; including cognitive
domain specificity, ecological relevance, technical feasibility,
user feasibility, user motivation, task adaptability, performance
quantification, immersive capacities, training feasibility, and
predictable pitfalls (Krohn et al., 2020).

To further advance the standardization of VR-based
experiments and applications (e.g., for diagnostics and training)
and to reduce the costs of VR-based research, we created
OpenVirtualObjects (OVO). OVO is a freely available set of 124
realistic 3D household objects for VR-based research and clinical
applications (e.g., diagnostics and rehabilitation). VR provides
a unique opportunity to create assessments and trainings that
are relevant to the real environments of people, while still
maintaining full control over the stimuli (unlike in the real
world). Therefore, we selected objects that naturally occur in a
household setting. This could increase the amount of transfer
from training to real life use of certain skills and it could provide
a more realistic assessment of cognitive abilities. The objects
in the database were rated by younger and older adults on the
dimensions of recognizability, familiarity, details (i.e., visual
complexity), contact, and usage (i.e., frequency of usage in daily
life). Participants also categorized and named the objects.
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OVO complements existing databases with 3D objects: For
example, bigBIRD (Singh et al., 2014) contains 100 high-quality
objects and is mostly targeted at computer vision researchers,
but it does not contain norms relevant for experimental and
clinical use. Also, Popic et al. (2020) provided a database of
121 objects normed for name, familiarity and visual complexity.
Finally, Peeters (2018) provides a standardized set of 147 3D
objects (e.g., bike, table) normed by younger adults for name
agreement, image agreement, familiarity, and visual complexity.
Names and lexical characteristics of the names are also described.
The OVO objects complement these data sets because they were
specifically selected and rated for their appearance in everyday
life (i.e., household environments), and they were rated on
these properties by both younger and older adults. The selection
of objects in OVO aimed to increase the personal relevance
of the objects—to maximize the link between the VR-based
experiments or applications and everyday life.

In this paper, we describe how the objects were created and
validated. We provide descriptive statistics as well as information
on the relations between the norms, for example to provide some
information on how the less common norms of contact and usage
(i.e., frequency of usage in daily) relate to each other and to the
more standard norms used in this study. We also present the
naming and category data for the objects. To give the reader an
overview of the properties of OVO as compared to items in other
databases, we compared the overlapping ratings of OVO with
existing 2D (Adlington et al., 2009; Brodeur et al., 2010; Moreno-
Martínez and Montoro, 2012) and 3D object databases (Peeters,
2018; Popic et al., 2020). Our goal is to provide clinical and
fundamental research community with a validated resource for
their own VR-based applications as well as their intended sample.

METHODS

Participants
Thirty-four younger (19 females; mean age: 28± 4.6; range 20–38
years) and 25 older adults (14 females; mean age: 70± 5.0; range
62–82 years) participated in the study. The data from 3 subjects
was discarded due to red-green blindness, early termination of
the experiment, or technical difficulties. All participants were
native speakers of German, right-handed, and had normal or
corrected-to-normal vision. They provided written informed
consent and were paid for participation (9 e/h). Ethical approval
was granted by the ethics committee of the Psychology Dept. at
the Humboldt-Universität zu Berlin.

Materials
As the basis, 124 copyright-free (CC-Zero) 3D objects were
downloaded from open platforms (e.g., www.blendswap.com).
Selection criteria were (1) inanimateness and (2) occurrence
in household settings (based on the knowledge and experience
of the authors who selected the objects). A professional visual
artist (Mert Akbal) edited the objects using Blender version 2.79
(www.blender.org). The goal was to create a homogenous set of
objects with <20,000 vertices each and with minimal differences
in size and other salient features. Some object types (e.g., bottle,
orange) appeared more than once (in different versions) in the

FIGURE 1 | Nine example 3D household objects from the freely available

OpenVirtualObjects (OVO). (https://edmond.mpdl.mpg.de/imeji/collection/

7L7t07UXD8asG_MI).

initial data set so that after the rating, the best version of the object
could be selected. All objects (124) in OVO are freely available
(in.blend and.fbx format) online. In an additional set, the objects
were revised to facilitate usage in a real-time interactive VR
experience by reducing the number of vertices. The high-poly
versions have 10,000–20,000 and the “low-poly” versions have
<10,000 vertices. One object (WineBottle1_MPI01) was removed
from the analyses in this paper due to a scaling problem during
the rating, but it is still in the objects folder. A list of the
object names and a screenshot with all objects (.png) is also
provided with the database (https://edmond.mpdl.mpg.de/imeji/
collection/7L7t07UXD8asG_MI). Figure 1 shows a selection of
the objects.

Apparatus
The experiment was created in Unity version 2017.4.5
(www.unity.com), exported as a Linux standalone build,
and run under Ubuntu 18.04 on desktop computers. Participants
were seated 55 cm in front of a 22-inch computer screen (EIZO
S2202W) with a 1,680 × 1,050-pixel resolution. The Unity code
for the rating experiment is available in the OVO database to
facilitate the collection of additional ratings or to run rating
studies for new objects.

Procedure
All ratings and names were collected in one experimental session.
Before the experiment started, participant provided informed
written consent. Participants were instructed that they would see
several objects, which they should rate and name. The experiment
consisted of five “scenes,” or phases, per object.

1) A randomly selected object rotated on a table around its
central vertical axis with a speed of 60◦ per second for 8 s, so
that all sides of the object were seen.

2) Participants rated, bymeans of a slider on the screen, howwell
they recognized the object (1 = not well; 100 = very well).
Then they typed the name of the object and indicated how
certain they were of the name (1 = not certain, 100 = very
certain). If they did not know the name, they typed “11” and

Frontiers in Virtual Reality | www.frontiersin.org 3 December 2020 | Volume 1 | Article 611091

http://www.blendswap.com
http://www.blender.org
https://edmond.mpdl.mpg.de/imeji/collection/7L7t07UXD8asG_MI
https://edmond.mpdl.mpg.de/imeji/collection/7L7t07UXD8asG_MI
https://edmond.mpdl.mpg.de/imeji/collection/7L7t07UXD8asG_MI
https://edmond.mpdl.mpg.de/imeji/collection/7L7t07UXD8asG_MI
http://www.unity.com
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


Tromp et al. OpenVirtualObjects

if they did not recognize the object, they typed “00” for the
name of the object and the certainty ratings were ignored.

3) Participants selected the most appropriate category for the
object from ten categories: clothes; cosmetics; cutlery and
dishes; decoration; food; office supplies; tools; toys; kitchen
utensils; unknown. They also rated how well the object fit the
chosen category (1= not at all; 100= very well).

4) Participants rated how familiar the object was to them (1 =

not familiar; 100 = very familiar) and how detailed (visually
complex) it appeared to them (1 = not very detailed; 100 =

very detailed).
5) Participants rated how often they encounter the object at

home (“contact”) and how often they use the object at home
(i.e., “usage”), also on scales from 1 (never) to 100 (very often).

Before the actual experiment, participants were presented with
five practice scenes, in which one object (a pineapple) was rated,
which is not part of OVO. The objects were presented in four
blocks of 31 objects each. Between each block, participants were
asked to take a break for 1 to 5min. The experiment took
75min on average. Apart from the object in the practice trial,
object presentation was randomized using the “Random.Range”
function in Unity so that numbers (corresponding to individual
objects) were chosen with equal probability from a finite set
of numbers.

Analysis
Descriptives
The mean, standard deviation (SD), median, minimum, and
maximum were calculated for each dimension (Recognizability,
Familiarity, Details, Contact, Usage). Normality was tested
with Shapiro–Wilk tests. Non-parametric (Spearman’s rank)
correlations were used to calculate correlation coefficients
between the dimensions. Adjustment for multiple comparisons
was implemented using Holm’s method.

Object Names
For the naming data, we calculated the name agreement (NA, in
%) and the H-statistic (Snodgrass and Vanderwart, 1980). The
two categories of naming failures (“11” if they did not know the
name, “00” if they did not recognize the object) were excluded
from the analysis. Misspellings were included as the correctly
spelled name and elaborations [e.g., halbes Brot (“half bread”),
Haarkamm (“hairbrush”)] were counted as separate names. If
participants wrote down two distinct names for an object, only
the first one counted. The NA is the percentage of people that
produced the modal name (i.e., the name given by the majority
of participants). The H-statistic is a different measure, which
considers the frequency distribution of the given names as well
as number of alternative names. An object that was given the
same name from every participant in the sample would have an
H-value of 0.00. An object that elicited two different names with
exactly the same frequency would have an H-value of 1.00. That
is, the larger the H-value, the smaller the name agreement. For
a follow-up analysis, we additionally calculated the modal name
per object and then grouped all words that literally contained the
modal name before recalculating the H-statistic and the NA.

TABLE 1 | Summary statistics for all dimensions.

Recog Fam Details Contact Usage

Y O Y O Y O Y O Y O

M 83.15 86.65 78.09 85.17 59.39 64.53 51.66 64.60 44.95 60.08

SD 17.64 14.41 14.73 14.92 18.14 16.32 24.09 25.97 24.66 26.88

Median 90.44 91.88 79.94 89.12 62.71 68.20 54.71 69.64 42.74 60.08

Min 25.03 22.12 29.85 16.64 15.18 14.16 2.24 2.24 1.06 1.12

Max 99.68 98.36 99.50 99.64 86.11 91.00 95.06 99.16 94.47 99.60

Y, Younger Adults; O, Older Adults; Recog, Recognizability; Fam, Familiarity.

Object Categories
For the semantic category analysis, we categorized the object
based on which category was most often chosen by the
participants (for the younger and older adults separately). Objects
could only be assigned to one category.We calculated the number
of objects that were attributed to the given category and the
percentage of agreement (i.e., the percentage of participants that
chose the objects in the category as belonging to that category).
So, if a given category has two objects A and B and for object
A 90% of participants said the items belonged to this category
and for object B 60% put the item in this category, the average
agreement for the category will be 75%. Note that for some
objects (e.g., apple), several versions were rated, which will
increase the number of objects in that category (e.g., food).

Comparison With Other Databases
For comparison and to facilitate the pooling of objects, we
provide the mean ratings across objects in our database together
with those of two other 3D object (Peeters, 2018; Popic et al.,
2020) and three colored-photograph databases (Adlington et al.,
2009; Brodeur et al., 2010; Moreno-Martínez and Montoro,
2012). Common dimensions were the H-statistic (H), the NA (in
%), Familiarity, and Details. Since for Familiarity and Details, our
objects were rated on a sliding scale from 1 to 100 and the other
databases used a 5-point scale, we divided our scores by 20. We
acknowledge that rating on a scale from 1 to 100 is different from
rating on a 5-point scale, thus we only report these measures and
do not perform any statistical analyses.

RESULTS

The summary statistics for the collected norms (Recognizability,
Familiarity, Details, Contact, and Usage) are presented in Table 1

for the younger and older adults separately. The Shapiro-Wilk
tests showed that the data were not normally distributed for the
younger nor for the older adults (all p < 0.05). Figure 2 displays
the ratings for each of the norms for the younger adults, the older
adults, and the complete sample.

Correlation Analysis
To explore the relationships between the different dimensions,
Spearman correlation analyses (Holm-corrected for multiple
comparisons) were used (Table 2). For both samples, there
were significant correlations between Contact and Usage,
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FIGURE 2 | Boxplots with individual data points for the object ratings for the

entire sample (red) and per age group (older: white, younger: blue) per

dimension (1 = not, 100 = very). The horizontal line represents the median.

TABLE 2 | Correlation matrix for the younger (upper panel) and older (lower panel)

adults.

Recog Fam Details Contact Usage

Recog 1.00

Fam 0.69*** 1.00

Details 0.75*** 0.48*** 1.00

Contact 0.22 0.75*** 0.00 1.00

Usage 0.16 0.70*** −0.06 0.99*** 1.00

Recog 1.00

Fam 0.71*** 1.00

Details 0.76*** 0.56*** 1.00

Contact 0.36*** 0.80*** 0.15 1.00

Usage 0.31** 0.77*** 0.11 0.98*** 1.00

Recog, Recognizability; Fam, Familiarity; *p(corr) < 0.05, **p(corr) < 0.01, ***p(corr) <

0.001 (multiple comparisons-corrected using Holm’s method).

between Familiarity and Contact, and between Familiarity and
Usage. Also, there was a positive correlation between Details
and Recognizability for both age groups. For the older but
not for the younger adults, Recognizability and Usage were
significantly correlated.

Object Names
The percentage of “no recognition” responses (i.e., “I do not
recognize the object,” coded as “00”) was 2.56 % for the younger
and 2.47% for the older adults. The amount of “no name”

TABLE 3 | Distribution of objects over the categories for younger and older adults.

Younger Older

Category count % agree count % agree

Clothes 9 82.68 8 80.50

Cosmetics 25 80.24 23 82.56

Decoration 14 74.16 15 72.00

Dishes/cutlery 8 69.85 8 70.00

Food 18 95.92 18 92.44

Kitchen supplies 12 69.36 15 69.60

Office supplies 10 77.35 9 80.44

Tools 12 80.64 15 71.20

Toys 6 83.82 6 92.67

Unknown 9 43.14 6 47.33

responses (i.e., “I do not know the name of the object,” coded as
“11”) was 1.91% for the younger and 1.43% for the older adults.

The mean H-statistic for the younger adults was 1.86 (SD =

1.09) and the average NA was 59.36% (SD = 25.72%). For the
older adult sample, the mean H-statistic was 2.12 (SD = 1.04)
and the average NA was 52.02% (SD = 24.31%). The H-statistic,
modal names, NA, and the percentage of “no recognition” (“00”)
and “no name (“11”) responses per object can be found in the
online database (for the complete sample and separately for
younger and older adults). In the follow-up analysis, grouping
together all names that contained the modal name, the mean H-
statistic was 1.28 (SD= 1.11) and the average NAwas 72.76% (SD
= 25.19%) for the younger adults. For the older adult sample, the
mean H-statistic was 1.60 (SD = 1.19) and the average NA was
63.98 % (SD= 27.64%).

Object Categories
Table 3 shows the distribution of objects over the semantic
categories. “cosmetics” was the category with most objects
and “toys” with the least objects for both age groups. The
categorization of objects in the “toys” and “food” categories was
the most consistent. Numerically, the younger adults categorized
more objects as “unknown” than the older adults.

For each object, we provide the modal category, what
percentage of participants chose this category (i.e., the percentage
of agreement for this category), and which other categories were
chosen. We also provide data per object on how well the objects
fit the chosen category in the database online (1 = not at all; 100
= very well).

Object Categories
Table 4 presents the comparison of ratings to other databases.
The mean familiarity for OVO was numerically comparable
to the norms of Brodeur et al. (2010) and slightly higher
than the other databases (i.e., Adlington et al., 2009; Moreno-
Martínez and Montoro, 2012; Peeters, 2018; Popic et al., 2020).
The average visual complexity as well as the H-statistic were
higher for OVO compared to the other databases while the NA
was lower.
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TABLE 4 | Overview of the standardized measures from the 3D objects in OVO

(complete sample) and comparable databases.

N Fam Details H NA (%)

OVO 123 4.05 3.08 2.26 54.88

Popic et al. (2020) 121 4.37 2.42 / 74.00

Peeters (2018) 147 3.20 2.69 1.05 74.99

Moreno-Martínez and Montoro (2012) 360 3.56 2.55 0.94 72.00

Brodeur et al. (2010) 480 4 2.4 1.65 64.00

Adlington et al. (2009) 147 3.76 2.89 1.11 67.61

Mean ratings for familiarity, details (visual complexity) and name agreement. N, number of
items; Fam, Familiarity; H, H-statistic; NA, name agreement.

DISCUSSION

To support VR-based research, assessment, and therapy, we
created OpenVirtualObjects (OVO), a freely available set of 124
standardized 3D household objects, rated by healthy younger and
older adults. In this paper, we provided summary statistics and
correlation coefficients of these ratings as well as naming and
sematic category information. We also compared a selection of
the norms with those of five existing databases that include 3D
objects or colored photographs (Adlington et al., 2009; Brodeur
et al., 2010; Moreno-Martínez and Montoro, 2012; Peeters, 2018;
Popic et al., 2020).

Recognizability ratings were generally high for both age
groups, suggesting that the objects can be recognized well by both
age groups. Familiarity ratings suggest that both groups were
used to (most of) the objects. The ratings for contact and usage
showed a larger variance, suggestion that OVO contains objects
that people frequently encounter or use in their households and
objects they do not encounter or use often.

Although we did not statistically compare them, it should still
be noted that, numerically, older adults gave higher ratings than
younger adults across the dimensions. It is difficult to disentangle
whether this relates to a general effect of age group on the use
of the rating scale or whether older adults really perceived the
objects to be more recognizable, familiar, and visually complex
than the younger adults—or, for contact and usage, whether
older adults indeed come into contact and use the objects more
frequently than younger adults. In other types of ratings, older
adults were shown to give more extreme ratings than younger
adults, for example for valence and arousal ratings of pictures
(Grühn and Scheibe, 2008). In general, we advise OVO users to
select objects based on the ratings from the age group that best
resembles their target population.

The correlation analysis revealed that especially the
dimensions contact and usage are highly correlated for
both samples. This indicates that the items that participants
often came into contact with, they also used often and vice versa,
or that these dimensions measure the same item property. The
positive correlation between details and recognizability suggests
that objects with more details (i.e., higher visual complexity)
were recognized better. This suggests for VR-based studies that
the quality of the stimulus in VR, in our case the objects, is

related to the recognizability of the object. Thus, for tasks that
require the recognition of objects, researchers should aim to use
as high-quality representations of VR objects as possible (e.g.,
given limitations in PC memory).

The category data revealed that most objects could be
categorized within the pre-determined categories, which covered
large parts of the household (e.g., kitchen supplies, tools, food,
cosmetics). OVO users can pick and choose particular categories
to use the objects with the highest norms relevant to their
research goals. Of note, the category “toys” is particular, as it
contains miniature versions of non-household objects (e.g., a
train). Outside the (virtual) household setting or context, it might
not be clear that these items are toys.

The database comparison showed that the familiarity ratings
for OVO were comparable to or higher than for the other
databases (Adlington et al., 2009; Brodeur et al., 2010; Moreno-
Martínez and Montoro, 2012; Peeters, 2018; Popic et al., 2020).
This emphasizes the complementarity or additional usefulness
of OVO. Visual complexity was rated higher in OVO than
in the other databases. This could be because 3D objects are
often more complex than 2D images. However, OVO visual
complexity ratings were also higher than those in Peeters
(2018) and in Popic et al. (2020), even though these were
rated in immersive VR. Researchers and clinicians should take
the complexity ratings into account, especially for studies in
which the visual properties of the stimuli have to be strictly
controlled. Future studies will have to address the differences
in visual complexity ratings between 2D and 3D objects, and
the properties that contribute to visual complexity of 3D
objects. The H-statistic was higher and the NA was lower for
OVO than for the other databases, suggesting less uniform
naming behavior for the OVO objects. The strong variance
in these statistics across OVO objects could be because, for
some objects, participants entered detailed descriptions with only
fine-grained deviations [e.g., mechanischerWecker (“mechanical
alarm clock”) and Analogwecker (“analog alarm clock”)]. To
facilitate the comparison with the other databases, we treated
these elaborations as distinct names in our main analysis.
However, such strict conventions may not be necessary or
appropriate for all studies using the OVO objects. In a follow-
up analysis, we grouped all names that literally contain the modal
name (i.e., summarized all elaborations under the modal name)
and found that the resulting H-statistics and NA were in the
range of those reported for other databases. For many studies
such an account should be sufficient to ensure that an object was
recognized as belonging to the concept described by the modal
name. For researchers that require exact naming distinctions
and high levels of name agreement, we suggest to filter the
OVO database by defining a threshold for the H-statistic or the
percentage of name agreement. We provide data and R script
templates to perform such operations.

In sum, we provide a set of 3D objects that are recognizable
and familiar to both older and younger adults. Our set includes
a variety of validated objects that are often encountered and used
in a household setting. Various categories of household objects
are represented in the database and the familiarity scores are
comparable to those of other databases. We invite researchers
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and clinicians to choose their own set of objects based on the
norms, age of the rating group, and other properties that are most
relevant for their purposes. A concrete example for the use of
OVO is to use the objects for a spatial memory assessment task in
VR, like the virtual memory task (VMT) as described by Koenig
et al. (2011). In the VMT, household items are presented on a
virtual table and the participant or patient is asked to memorize
the location of the objects. Then, the objects disappear and the
participants is asked to recall the location of each object. The
number of items to be memorized is gradually increased from
four to seven and also perspective changes can occur during the
task (i.e., the participant has to recall the object locations from
a different side of the table). One of the important outcome
measures is the difference between the actual location and the
recall location (displacement error). If OVO objects were to be
used in this type of study, one could select certain objects (i.e.,
those with similar ratings) to reduce the influence of undesirable
object characteristics such as familiarity, visual complexity and
name agreement on the memory process that is of interest.
Another possibility is to include the ratings in the statistical
analyses to account for their influence on the outcome measure.
Finally, OVO provides a handle to select objects in advance or to
account for differences in the perception and memory retrieval
of objects and their names based on age differences. We provide
all scripts of the analyses described in this paper in the online
database, so that users can easily tailor the analyses to their needs
and select the most appropriate set of objects or ratings.

Although this database can provide a step forward in the
standardization and optimization of VR-based experimentation,
it also has limitations. The rating study was conducted with
German participants, so the data might not be representative for
other cultural settings (e.g., non-European). Also, it was done in
2D on a computer screen rather than in a fully immersive VR
environment. Thus, although the objects were 3D representations
(and not pictures), they were presented (rotating) in 2D. We
chose this procedure for pragmatic reasons, namely to increase
the number of participants while still collecting all norms for all
objects from each participant. Furthermore, we wanted to ensure
that the norms are not limited to a specific VR headset (e.g., the
Oculus Rift or the HTC Vive). We also did not systematically test
for usability of the objects in interactive, real-time applications.
Some of the rated objects have a high number of vertices, which
increases the level of detail and the naturalistic look of the objects
but might lead to computational challenges in interactive and
real-time scenarios. This will, to a great extent, depend on the
specific implementation and the hardware used and should be
tested during early stages of task development. As a first step to
alleviate this challenge, we also provide “low-poly” versions (<
10,000 vertices) of all the objects. It should be noted that these
were not part of the participant ratings we present above and
that, despite the lowered vertex counts, these objects might still
be too graphically expensive for some tasks and hardware setups.
For future research, it would be beneficial to collect more norms
using immersive and interactive VR or to explicitly compare
screen and HMD norms as well as high- and low-poly versions
of the same objects. These studies could be conducted with the
Unity code and the object versions provided in the database.

Another limitation is that, in contrast to Peeters (2018), we
did not collect image agreement scores (i.e., scores of how well
the object fits the modal name it was given). Again, this was a
pragmatic decision to reduce experiment time and these norms
can be easily collected with the existing experiment code, by
providing the modal names collected in OVO together with the
objects, to a new group of participants.

CONCLUSION

VR provides new opportunities for researchers and clinicians
to create realistic yet controlled experiments and applications.
However, it remains expensive and time-consuming to develop
and standardize VR content, which is necessary for reliable and
replicable results obtained in VR. In this paper, we presented
OVO, a freely available set of 124 realistic 3D household
objects for VR-based testing, training, clinical diagnostics, and
rehabilitation. Based on ratings by healthy younger and older
adults, we provide norms of recognizability, familiarity, visual
complexity, contact, and usage in daily life. We also report
naming and category information. All objects, data, and scripts
(analysis and testing) are freely available online (https://edmond.
mpdl.mpg.de/imeji/collection/7L7t07UXD8asG_MI). We hope
that the objects in this database are useful in experimental,
educational, and clinical settings—or in other situations that
require standardized 3D stimuli. We invite researchers to
select objects according to their research questions and target
populations and to add more objects or norm values to the
database whenever possible. By creating and sharing high-
quality, freely available VR content, we can increase the
amount and quality of VR-based experimental research and
clinical applications.
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