'." frontiers
in Virtual Reality

BRIEF RESEARCH REPORT
published: 12 April 2021
doi: 10.3389/frvir.2021.620503

OPEN ACCESS

Edited by:
Frank Steinicke,
University of Hamburg, Germany

Reviewed by:

Arianna Astolfi,

Politecnico di Torino, Italy
Richard Skarbez,

La Trobe University, Australia

*Correspondence:
Oliver Baumann
obaumann@bond.edu.au

Specialty section:

This article was submitted to

Virtual Reality and Human Behaviour,
a section of the journal

Frontiers in Virtual Reality

Received: 23 October 2020
Accepted: 19 February 2021
Published: 12 April 2021

Citation:

Doggett R, Sander EJ, Birt J, Ottley M
and Baumann O (2021) Using Virtual
Reality to Evaluate the Impact of Room
Acoustics on Cognitive Performance
and Well-Being.

Front. Virtual Real. 2:620503.

doi: 10.3389/frvir.2021.620503

Check for
updates

Using Virtual Reality to Evaluate the
Impact of Room Acoustics on
Cognitive Performance and
Well-Being

Rachel Doggett’, Elizabeth J. Sander?, James Birt', Matthew Ottley® and Oliver Baumann'*

"Faculty of Society and Design, Bond University, Gold Coast, QLD, Australia, °Business School, Bond University, Gold Coast,
QLD, Australia, *Marshall Day Acoustics, Sydney, VIC, Australia

Irrelevant ambient noise can have profound effects on human performance and wellbeing.
Acoustic interventions (e.g., installation of sound absorbing materials) that reduce
intelligible noise (i.e., sound unrelated to the relevant speech, including noise from
other talkers within the space) by reducing room reverberation, have been found to be
an effective means to alleviate the negative effects of noise on cognitive performance.
However, these interventions are expensive, and it is difficult to evaluate their impact in the
field. Virtual reality (VR) provides a promising simulation platform to evaluate the likely
impact of varied acoustic interventions before they are chosen and installed. This study
employed a virtual classroom environment to evaluate whether an intervention to reduce
reverberation can be simulated successfully in VR and mitigate the effects of ambient noise
on cognitive performance, physiological stress, and mood. The repeated-measures
experimental design consisted of three acoustic conditions: no ambient noise, typical
open-plan classroom ambient noise without acoustic treatment, and the same ambient
noise with acoustic treatment to reduce reverberation. Results revealed that ambient noise
negatively affected participants’ cognitive performance but had no measurable effect on
physiological stress or self-reported mood. Importantly, the negative effect of ambient
noise was completely ameliorated by the acoustic treatment (i.e. indistinguishable from
performance in the no noise condition). The study shows that VR provides an effective and
efficient means to evaluate the cognitive effects of acoustic interventions.

Keywords: virtual reality, acoustics, psychoacoustics, cognitive performance, well-being, heartrate, working
memory, noise

INTRODUCTION

Acoustical properties of buildings are still often overlooked despite the fact that negative effects of
noise (i.e, background chatter and environmental sounds) on performance have been well
established (e.g., Dockrell and Shield, 2006; Schlittmeier et al., 2008; Klatte et al., 2010a; Clark
and Sorqvist, 2012; Reinten et al., 2017). Research has demonstrated that irrelevant speech (i.e.
background chatter) constitutes the most disturbing form of noise, resulting in difficulties in
maintaining concentration (Di Blasio et al., 2019). Specifically, working-memory processes are
negatively impacted (Salamé and Baddeley, 1982). Furthermore, poor acoustics have been shown to
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trigger physiological stress responses (Ising and Kruppa, 2004;
Tiesler et al, 2015) and decreases in self-reported wellbeing
(Klatte et al., 2010a; Scannell et al., 2015).

Noise in schools can have deleterious effects on student
learning outcomes (Berglund and Lindvall, 1995). Poor
classroom acoustics contribute to poorer speech intelligibility,
and lower levels of self-reported happiness amongst students
(Astolfi et al., 2019). Research by Prodi et al,, (2019) found that
different types of noise (i.e., quiet, traffic noise, classroom noise)
reduced students’ task performance and increased listening effort.

Thus, acoustic interventions, such as the installation of sound
absorbing materials, constitute an important avenue to improve
cognitive performance and well-being. Seddigh et al, (2014)
compared the acoustic and psychological impacts of three
different types of sound absorbents: 1) reflective ceiling tiles,
2) absorbent ceiling tiles, and 3) absorbent ceiling tiles plus wall
panels within an office building. They found that improved room
acoustics were associated with perceived lower levels of stress and
cognitive disturbance among office workers.

Given that acoustic interventions can be expensive, it is
important to determine the appropriate type of acoustic
intervention for different settings, users, and tasks. It is, however,
often not practical to comprehensively compare the effects of
multiple acoustic interventions in real-world settings. Instead,
dynamic high-fidelity simulations of acoustic environments in
VR may provide a cost effective means to evaluate the cognitive
and well-being effects of differing acoustic scenarios and
interventions (Begault and Trejo, 2000; Imran et al, 2019). The
availability of low-cost VR has recently enhanced interest in
immersive sound studies (Serafin et al, 2018) especially in the
built environment (Zhang et al., 2020). Specifically, a recent study
by Muhammad et al. (2019) has provided promising results, by
successfully using VR to evaluate effects of isolating sound from
adjacent spaces on cognitive performance (ie., working memory
performance) and producing comparable results to real laboratory
settings. In addition to sound isolation, efforts to reduce the overall
noise level should also consider the reverberation characteristics of
buildings (how much soundwaves are reflected by surfaces).
Excessive reverberation has been established as an important
psychoacoustical factor which negatively impacts speech
perception and memory performance (Beaman and Holt, 2007;
Ljung and Kjellberg, 2009; Klatte et al., 2010b; Braat-Eggen et al.,
2019).

The aim of the current study is to test whether an acoustic
intervention focused on reducing reverberation can be simulated
successfully in VR, and to ascertain its effects on cognitive
performance and well-being. Our specific predictions were that
firstly, participants’ cognitive performance would be significantly
reduced (indicated by slower response times) in the presence of
irrelevant ambient noise compared to a control condition without
irrelevant ambient noise. Secondly, we predicted that ambient
noise would negatively impact well-being, as measured by
objective physiological measures of stress (heart rate, heart
rate variability, and skin conductance), and by self-reported
mood. Most importantly, we predicted that the simulated
acoustic intervention to reduce reverberation would mitigate
the effects of noise on cognitive performance and well-being.

Using VR to Evaluate Acoustics

MATERIALS AND METHODS

Design

The experiment utilized a 3 x 2 repeated-measures design, with
the factors of Acoustics (No Background Ambient Noise,
Untreated with Noise, Treated with Noise) and Cognitive
Load (low, high). There were three classes of dependent
variables: cognitive performance, physiological stress, and
mood. Cognitive performance was assessed using response
time measured by an n-back task (Monk et al, 2011),
Physiological stress was measured by heart rate, heart rate
variability and skin conductance). Positive and negative mood
were assessed using the PANAS scale. All measures are described
in detail in Measures of Cognitive Performance-Positive and
Negative Mood. The acoustic conditions were counterbalanced
to control for practice and fatigue effects.

Participants

Using G*power Version 3.1.9.3 it was estimated that to detect a
medium effect (Cohen’s d = 0.5) with a probability of 80%, a
minimum of 34 participants were required. To cater for
potential data loss, 43 participants were recruited using
Facebook, email, and the university’s psychology student
participation pool. Inclusion criteria required participants to
have normal, or corrected to normal vision, normal hearing,
and to be at least 17 years of age. One participant was excluded
from data analysis because their response pattern was
indicative of task disengagement. The remaining sample
comprised 42 participants of which 35 were female (83.7%)
and 7 (16.3%) were male. Participants ranged in age from 18 to
29years (M = 20.69, SD = 2.44) and 81% of them were
undergraduate university students. Due to technical faults
(i.e. fully or partially missing signal), there are only 39 data
sets for the physiological measures.

Virtual Environment

The VR headset allowed the participant to have a six degrees of
freedom 360-degree view of a simulated indoor space, in this case
an open-plan classroom (see Figures 1A,B). The virtual
environment was calibrated to dynamically match the
participants’ position in space using a high-fidelity sound
spatialization. The visual environment of the virtual classroom
was developed in the Unity game engine. The acoustic rendering
of the environment was prepared by creating the space in
ODEON Auditorium Room Acoustic Software Version 14,
with 3D impulse responses calculated from each speaker
location, including instructional n-back talker location and
other children and teachers in the space. Figure 1C provides a
schematic layout of the environment and the virtual location of
speaker, participant and noise sources. MAX MSP Version 8
software was then used to convolve anechoic (echo removal) and
quasi-anechoic (sound reflection removal) recordings of human
speech as well as computer generated n-back speech with the 3D
impulse responses in order to generate ambisonic (high-fidelity
directional) audio at the participant location. A separate MAX
MSP Version 8 was then used to administer the acoustic
conditions and the working memory task whilst also recording
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positions of the speaker, participants and noise sources.

Unrelated noise source
o Participant location

D n-back noise source E‘

FIGURE 1 | Virtual classroom environment (A,B) First-person view of the virtual environment (C) Schematic top-down view of the environment indicating the virtual

participant responses. The VR headset provided head tracking
information to MAX MSP such that the sound field would rotate
to match the participants head orientation. Harpex Version 1.6
software plugin for MAX 8 was used to decode the ambisonic
audio to a binaural signal for the stereo headphones. The
participant remained in the virtual classroom for the entirety
of the experiment, and the cognitive performance task,
physiological measures, and mood rating tasks were
undertaken in this setting.

Hardware

The computer used for the VR environment was a DELL
Precision 5820 computer, with an Intel Xeon 4GHz CPU,
32GB RAM and NVIDI GeForce GTX1080 Graphics Card. A
HTC VIVO-Pro Eye VR Headset with 2880 x 1600-pixel
resolution was used to immerse participants into the simulated
classroom environment. The virtual soundscapes were presented
via calibrated stereo headphones, using Beyerdynamic DT 860
with an open-back design.

Acoustic Conditions
In all three conditions the virtual soundscapes were presented via
headphones. The virtual room was of an irregular shape (please
see Figure 1C) with maximum dimensions of approximately 18
by 14 m in plan and a ceiling height of 2.8 m. The room volume
was 560 m’. The virtual room included simulated plasterboard
walls with 31 m? of acoustically absorbent wall panels as well as a
thin carpet. Table 1 provides the sound absorption coefficients
for the key materials used in the virtual environment. In the
untreated scenario the ceiling was modelled as plasterboard,
which is inefficient at absorbing noise. For the condition with
simulated reverberation-reducing treatment, the ceiling (approx.
196 m?) was changed to an acoustically absorbent ceiling tile.
The no ambient noise condition served as the control
condition, and only contained the speaker presenting the
n-back task (please see description in Measures of Cognitive
Performance) without additional ambient noise. The untreated

with noise condition simulated a classroom with ambient noise,
i.e., background chatter. In the treated with noise condition, the
effects of the same ambient noise were mitigated by simulated
acoustically absorbent ceiling tiles to reduce reverberation. The
untreated room had a reverberation time (T3¢ mid frequency) of
0.9 s, which reduced to 0.5 s in the treated scenario. In addition,
clarity measured as Cs, of the untreated room was 4dB, which
rose to 13dB in the treated scenario. Csq is a measure of the ratio
of early energy, within 50 ms of the direct signal, to late energy,
received more than 50 ms after the direct signal (Ballou, 2013).
The C50 is a commonly used to assess the influence of room
acoustics on the clarity and intelligibility of speech (Bradley et al.,
1999). The reduction in reverberation was predicted to cause an
increase in the intelligibility of the speaker and decreased
perceptual and cognitive demands placed on the individual
listener (Rantala and Sala, 2015). It is important to clarify that
the ambient noise was predicted to not prevent understanding the
speaker (i.e., no reduction in task accuracy), but rather make it
cognitively more challenging to attend to (i.e., increase in task
response time). In terms of overall loudness, the three conditions
were presented at comfortable listening level, with an equivalent
continuous sound pressure levels of 52-56 dB LAeq. Sound
pressure was measured inside the headphone using a Bruel &
Kjaer type 2250 Sound Level Analyzer (see Table 2 for more
detailed results).

TABLE 1 | Key Acoustic Parameters. Sound absorption coefficient of key
materials in model.

Material Octave Band Centre Frequency (Hz)

125 250 500 1000 2000 4000

acoustic wall panels 0.48 0.85 0.98 0.98 0.98 0.98
acoustic ceiling tiles 0.55 0.85 0.98 0.95 0.98 0.98
plasterboard ceiling 0.14 0.07 0.05 0.05 0.05 0.05
carpet 0.02 0.04 0.08 0.2 0.35 0.4
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TABLE 2 | Key Acoustic Parameters. Octave Band Lsq Sound Pressure Levels at
participant location.

Source Octave Band Centre Frequency (Hz)

125 250 500 1000 2000 4000 dBA
n-back speech level in 53 50 51 50 41 32 53
treated scenario
ambient noise in treated 51 48 47 40 32 22 47
scenario
n-back speech level in 53 52 53 50 42 33 54

untreated scenario
ambient noise in untreated 51 49 51 43 35 26 50
scenario

Measures of Cognitive Performance
To measure cognitive performance, we used the popular n-back

task (Monk et al., 2011). Participants are asked to respond if the
current stimulus matches the stimulus presented n back in the
sequence (Monk et al., 2011). A key component of the n-back task
is that the task difficulty can be systematically adjusted by
increasing the size of n (i.e., 0-back, 2-back, 3-back etc.; Jaeggi
et al., 2010). Given that in the current study participants were
required to wear the VR headset, an auditory version of the
n-back task was employed. The stimuli were nine English
numbers (1, 2, 3, 4, 5, 6, 7, 8, 9) spoken by a female voice
presented via the headphones. Participants were required to
indicate the presence of target stimuli by pressing a response
button as quickly as possible. In the 2-back condition,
participants had to respond, whenever the current stimulus
matched the one from two steps earlier. For example, if the
sequence was ‘8, 4, 2, 4, 3, 7’, ‘4’ would be the target number to
which the participant must respond. The 2-back task therefore
requires continuous encoding and updating of items in memory
in a rule-based fashion (Owen et al., 2005). We also employed a
control condition (i.e., the 0-back condition), to gauge effects of
noise on a task with minimal working-memory requirements. In
the 0-back condition participants were simply required to
respond whenever the number ‘5> was presented. In both
conditions, there were 120 stimuli per task, 30 were target
stimuli and 90 were distractors. The stimuli were separated by
interstimulus intervals of 1500 ms. Each condition of the n-back
task lasted for a total of 3 min. Participants’ average response
times were calculated based only on correct responses (hits).
Lower response times indicate greater performance and higher
response times indicate poorer performance (Meule, 2017). For
response accuracy, hits, misses, and false positives were analyzed
using Ziemus et al. (2007) discrimination score technique: {1-
[(false positives + misses)/(targets + distractors)]}x100. The
discrimination score ranges from 0% (all responses are misses
or false positives) to 100% (all responses are hits or correctly
rejected).

Psychophysiological Measures of Stress

Three psychophysiological measures were acquired for this
study: skin conductance level, heart rate, and heart rate
variability. Skin conductance level is a tonic (slow
changing) galvanic skin response over time (Fontanella
et al., 2012) measured in micro-Siemens (uS), and is

Using VR to Evaluate Acoustics

widely used indicator of measuring physiological stress
(Zhang et al., 2017; Birenboim et al., 2019; Reeves et al.,
2019; ). Heart rate represents heartbeats per minute (bpm;
Solhjoo et al, 2019). Previous studies have shown that
elevated heart rate can serve as an objective measure of
psychological stress (Solhjoo et al, 2019). Heart rate
variability is a measure of the variation in time between
heartbeats (Thayer et al., 2012). More specifically, in this
study heart rate variability was calculated as the root mean
square of successive differences between normal heart beats
(RMSSD), which is recommended for use as a short-term
time domain measure (Malik et al., 1996; Stapelberg et al,,
2018). Higher levels of psychophysiological stress are
indicated by decreased levels of heart rate variability, i.e.
are associated with more steady and predictable heartbeat
patterns (Thayer et al, 2012; Kim et al, 2018). Skin
conductance level and heart rate measures were acquired
using a Shimmer3 GSR + device. Heart rate was measured via
a photoplethysmogram from the participants’ earlobe. Skin
conductance level was recorded via two silver-chloride
electrodes attached to the participant’s fingers of the
nondominant hand. The software ConsensysPRO version
1.6.0 was used to monitor and record the physiological
data. The physiological measures were acquired during the
n-back task, and lasted for a total of 3 min per each condition.

Positive and Negative Mood

To measure the self-reported mood associated with the different
acoustic conditions, the PANAS scale was employed (Watson
etal., 1988). The PANAS is a self-report questionnaire developed
to measure an individual’s mood via two dimensions: negative
mood and positive mood (Watson et al., 1988). The questionnaire
was administered verbally since participants were wearing a VR-
headset. The PANAS is a psychometrically sound measure
demonstrating high reliability and validity (Leue and Lange,
2011). To avoid testing fatigue, the PANAS scale was only
administered once per acoustic condition (i.e., after the 2-back
task).

Procedure

To ensure standardization, laboratory conditions were consistent
throughout the experiments including room temperature and
layout for all participants. To ensure all changes in data were
attributable to the acoustic conditions, the study was conducted
in an isolated windowless laboratory. Each participant completed
at least one practice trial of the 2-back task to ensure that
performance was at least at 90% accuracy. This was done to
avoid large practice effects during the experiment. After the
practice, the Shimmer device was set up and relevant sensors
attached. The headphones were then adjusted to fit the individual.
Lastly, the VR headset was placed on the participant’s head and
adjusted accordingly. The participants were then allowed to
explore the virtual classroom to satisfy their curiosity.
Following equipment set up, the participant’s dominant hand
was placed on the response button and they were informed to
press it for a correct answer. When the participants were ready to
begin, the first acoustic condition was selected based on the
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TABLE 3 | The Means and Standard Deviations of Dependent Variables Used in the Analyses of Variance.

Variables 0-Back
M (n) SD
no ambient noise
response accuracy 0.96 (42) 0.15
response time (ms) 747 (42) 106.17
skin conductance (uS) 2.60 (39) 2.60
heart rate (bpm) 81.93 (39) 11.56
heart rate variability (RMSSD) 39.20 (39) 20.81
noise (without treatment)
response accuracy 0.98 (42) 0.03
response time (ms) 767.56 (42) 90.78
skin conductance (uS) 2.49 (39) 2.42
heart rate (bpm) 81.72 (39) 11.36
heart rate variability (RMSSD) 39.24 (39) 19.98
noise (with treatment)
response accuracy 0.98 (42) 0.04
response time (ms) 733.88 (42) 95.83
skin conductance (uS) 2.52 (39) 2.53
heart rate (bpm) 81.78 (39) 11.59
heart rate variability (RMSSD) 36.22 (39) 15.70

counterbalancing scheme. Given that the focus of the study was
on the effects of the acoustic conditions and since the difficulty
effects of the 2-back vs the 0-back task are well established
(Heinzel et al., 2014; Kuschpel et al., 2015), the order of the
two conditions was not counterbalanced, but instead a blocked
task structure was employed. Participants were always presented
first with the 0-back condition followed by the 2-back task. Thus,
participants always started the experiment with the low-load
cognitive task. After each block (including both the 0-back
and 2-back condition) of the acoustic condition, the PANAS
was administered. Following this, the process was repeated for the
remaining two sound conditions.

RESULTS

A custom-built Python script was used to compute heart rate
variability and to calculate averages for heart rate and skin
conductance. To assess statistical significance an alpha level of
0.05 was adopted unless specified otherwise. The analyses
consisted of four Analyses of Variance (ANOVA) and one
Multivariate Analysis of Variance (MANOVA) to enable
investigation into the effect of Acoustics (No Ambient Noise,

2-Back
M (n) SD
0.81
0.16
830.93 (42)
113.48
2.76 (39)
2.89
84.11 (39)
12.23
32.45 (39)
17.10
0.83
0.10
867.90 (42)
143.06
2.72 (39)
2.68
83.24 (39)
11.63
35.36 (39)
17.20
0.81
0.13
845.22 (42)
139.89
2.65 (39)
2.91
84.16 (39)
11.41
33.86 (39)
15.53

Untreated with Noise, Treated with Noise) on working memory
performance (response time), physiological measures of stress,
and self-reported mood. Due to the multiple comparisons, the
Bonferroni adjustment was used in post hoc analysis to ensure
appropriate statistical power whilst adjusting for type I error
(Crawley, 2005).

Effects of Task and Noise on Working

Memory Performance

Accuracy

The descriptive statistics for response accuracy are depicted in
Table 3. As expected, participants scored more accurately in the
0-back condition than in the 2-back condition. Accuracy in the 0-
back condition was at ceiling level, therefore no inferential
statistical analysis was conducted. This is also in line with
earlier literature employing the n-back task, in which statistical
analysis commonly focused on response time (Heinzel et al,
2014; Meule, 2017).

Response Time
To examine the effects of the acoustic condition on response time
in the n-back task, a repeated measures ANOVA was conducted.
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FIGURE 2 | Mean Response Time For all Conditions of Acoustics and Cognitive Load. Note. Error bars = 95% Confidence Intervals (Cl).

Treated with Noise

The results revealed a significant main effect of acoustics, F
(2,82) = 5.38, p = 0.006, n2 partial = 0.12. A statistically
significant main effect of cognitive load (i.e. 2-back vs. 0-back)
was also found, F (1,41) = 44.57, p > 0.001, n2 partial = 0.52. A
nonsignificant interaction of Acoustics x Cognitive Load was
revealed, F (2,82) = 1.15, p = 0.321. The significant main effects
are shown in Figure 2. The simple main effect of acoustics was
investigated using post hoc pairwise comparisons (Bonferroni
corrected). The results indicated that the no background sound
condition led to significantly faster response times (M = 788.97,
SE = 14.58) than the untreated sound condition (M = 817.73,
SE = 16.28; p = 0.042). Further, the untreated sound condition
presented significantly slower response times (M = 817.73,
SE = 16.28) than the treated sound condition (M = 789.55, SE
= 15.76; p = 0.012). There was no significant difference between
the no background sound condition (M = 788.97, SE = 14.58) and
the treated sound condition (M = 789.55, SE = 15.76; p = 1.00)
response times. These results indicate the acoustical treatment
successfully reduced the negative impact of background sound on
cognitive performance, for tasks with low as well as high
cognitive load.

Physiological Indicators of Stress

Skin Conductance Level

To examine the effects of acoustic condition and cognitive load
on skin conductance, a repeated measures ANOVA was
conducted. No significant main effect of acoustics was found,
F(2,76) = 0.17, p = 0.840. Further, no significant interactive effect
of Acoustics x Cognitive Load was revealed, F (1.68, 63.96
Greenhouse-Geisser) = 0.34, p = 0.677. The results revealed,
however, a significant main effect of cognitive load, F (1,38) =
5.03, p =0.031, n2 partial=0.12.

Heart Rate

To examine the effects of acoustic condition and cognitive load
on heart rate, a repeated measures ANOVA was conducted. The
results revealed a nonsignificant effect of acoustic condition F
(2,76) = 0.42, p = 0.660, and a further nonsignificant Acoustics x
Cognitive Load interaction F (2, 76) = 0.77, p = 0.467. The results
revealed, however, a significant effect of cognitive load on heart
rate, F (1,38) = 16.50, p < 0.001, n2 partial = 30.

Heart Rate Variability

To examine the effects of acoustic condition and cognitive load
on heart rate variability (RMSSD), a repeated measures ANOVA
was conducted. There was no statistically significant main effect
of acoustics on heart rate variability, F (2,76) = 1.33, p = 0.270.
The results further revealed the Acoustics x Cognitive Load
interaction was nonsignificant, F (2,76 Greenhouse-Geisser) =
3.30, p = 0.050, 2 partial = 0.08. The results revealed, however, a
significant main effect of cognitive load, F (1,38) = 24.45,
p < 0.001, n2 partial = 0.39.

Mood

A repeated measure MANOV A was used to investigate if there
were significant differences in positive and negative mood
across the three levels of the independent variable (Acoustics;
No Ambient Noise, Untreated with Noise, Treated with
Noise). The use of a multivariate analysis is appropriate as
the two dependent variables are moderately negatively
correlated. The assumption of sphericity was tested using
Mauchly’s test of sphericity, which revealed that both
dependent variables met the assumption; Positive Mood,
X*(2) = 2.65, p = 0.265, Negative Mood, X*(2) = 5.20, p =
0.074. The one-way repeated measures MANOVA revealed
that overall the factors of acoustics had a nonsignificant effect
on mood, F (4,164) = 2.20, p = 0.071.

DISCUSSION

The current study aimed to investigate if the psychological
effects of an acoustic intervention focused on reducing
reverberation can be evaluated in VR. Although there is
growing interest in the use of VR applications for the built
environment (Zhang et al., 2020) and immersive sound
simulation (Serafin et al., 2018), there is still only limited
research being conducted on using VR for evaluating
building acoustics and their effect on cognitive performance
(Muhammad et al., 2019). Results of the current study showed
that cognitive performance, irrespective of working-memory
demands, was negatively affected by ambient noise, and that
simulated acoustic interventions that reduced reverberation
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were effective in alleviating those impairments. In contrast, the
physiological measures and mood were not affected by the
presence of background noise and the simulated room
acoustics. The consistent significant effect of cognitive load
on the physiological measures indicates that the equipment
and the task duration were in principle sufficient to detect
physiological effects of cognitive strain. Given that earlier
studies have found detrimental effects of irrelevant speech
noise on self-reported wellbeing (Klatte et al., 2010a; Scannell
et al., 2015) and physiological indicators of stress (Ising and
Kruppa, 2004; Tiesler et al., 2015), the most parsimonious
explanation for the lack of effects of noise on physiology and
mood, and hence a limitation of the current study, is that the
noise was not disruptive enough (i.e., low intelligibility of
background chatter), or that the task duration (i.e., 3 min)
per condition was too short to cause robust physiological and
affective changes.

Moreover, the participant sample in the current study
consisted primarily of female university students, who are
an academically high performing group, used to working on
demanding cognitive tasks in the presence of irrelevant sounds
and poor acoustics. Younger children, the elderly, or
individuals not attending university may find the situation
more stressful and therefore more likely to display changes in
psychophysiological and self-reported stress responses. The
study by Prodi et al. (2019) found an interaction effect on
performance between type of noise, age and task, in a quite
homogenous group (i.e., 11-13 year old high-school students),
suggesting that these effects could be further amplified in more
diverse samples.

Nevertheless, the fact that high levels of reverberation
produced a significant impact on cognitive performance
highlights that the manipulations were strong enough to
affect the participants. It also suggests that participants can
be impaired in their cognitive performance in the short term
without immediate effects on their well-being. Longer term
exposure, as is typical in a work or school day, may well have
physiological and affective consequences. Future research
should explore the effects of longer-term exposure to typical
work and classroom environment noise and various
treatments to mitigate it. A further limitation of our study
was that the control condition of no background noise is likely
to be impossible to achieve in shared work and study settings,
hence the need to assess acoustic treatments to ameliorate the
effects of otherwise unavoidable ambient noise. Finally, since
we did not compare the VR with a real-life classroom, our
study could not determine whether the effects of noise are
identical. This is important since an evaluation of current
acoustic modeling algorithms showed that they can generate
plausible but not entirely authentic simulations, i.e. human
observers could distinguish simulations from recordings
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(Brinkmann et al, 2019). Nevertheless, our study shows
that the cognitive effects of acoustic inventions can be
successfully obtained in VR, as highlighted by earlier work
that successfully measured the cognitive effects of simulated
acoustic insulation (Muhammad et al., 2019).

In conclusion, our study highlights that high-fidelity-dynamic
VR simulations of the built environment hold great promise for
more efficient evaluation of acoustic interventions, and will
ultimately allow more people to work and study in
environments that provide optimal conditions for performance
and well-being.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession numbers can be found below: The data is
available at Open Science Framework (DOI 10.17605/
OSE.IO/X5ZWR).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Human Research Ethics Committee of Bond
University. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

All authors contributed to conception and design of the study. RD
performed the data acquisition and analysis. All authors wrote
and revised sections of the manuscript, read and approved the
submitted version.

FUNDING

The study was funded internally by Bond University (Faculty of
Society and Design & Business School).

ACKNOWLEDGMENTS

We also thank Christopher Nolan for writing software for
extraction, processing and averaging the behavioural and
physiological data. We also thank Yuxiao Chen for
assisting with development of the MAX and ODEON
acoustic models.

Frontiers in Virtual Reality | www.frontiersin.org

April 2021 | Volume 2 | Article 620503


https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Doggett et al.

REFERENCES

Astolfi, A., Puglisi, G. E., Murgia, S., Minelli, G., Pellerey, F., Prato, A., et al. (2019).
Influence of classroom acoustics on noise disturbance and well-being for first
graders. Front. Psychol. 10, 2736. doi:10.3389/fpsyg.2019.02736

Ballou, G. (2013). Handbook for sound engineers. Abingdon, United Kingdom:
Taylor & Francis.

Beaman, C. P., and Holt, N. J. (2007). Reverberant auditory environments: the
effects of multiple echoes on distraction by ’irrelevant’ speech. Appl. Cognit.
Psychol. 21, 1077-1090. doi:10.1002/acp.1315

Begault, D. R,, and Trejo, L. J. (2000). 3-D sound for virtual reality and multimedia.
San Diego, CA: Academic Press.

Berglund, B,, and Lindvall, T. (1995). Community noise. Stockholm: World Health Organization.

Birenboim, A., Dijst, M., Scheepers, F. E., Poelman, M. P., and Helbich, M. (2019).
Wearables and location tracking technologies for mental-state sensing in
outdoor environments. The Prof. Geogra. 71, 449-461. doi:10.1080/
00330124.2018.1547978

Braat-Eggen, E., Poll, M. K. V. D., Hornikx, M., and Kohlrausch, A. (2019).
Auditory distraction in open-plan study environments: effects of background
speech and reverberation time on a collaboration task. Appl. Acoust. 154,
148-160. doi:10.1016/j.apacoust.2019.04.038

Bradley, J. S., Reich, R., and Norcross, S. G. (1999). A just noticeable difference in C
50 for speech. Appl. Acoust. 58, 99-108. doi:10.1016/S0003-682X(98)00075-9

Brinkmann, F., Aspdck, L., Ackermann, D., Lepa, S., Vorlidnder, M., and Weinzierl,
S. (2019). A round robin on room acoustical simulation and auralization. The
J. Acoust. Soc. America 145, 2746-2760. doi:10.1121/1.5096178

Clark, C., and Sorqvist, P. (2012). A 3 year update on the influence of noise on performance
and behavior. Noise Health 14, 292-296. doi:10.4103/1463-1741.104896

Di Blasio, S., Shtrepi, L., Puglisi, G., and Astolfi, A. (2019). A cross-sectional survey
on the impact of irrelevant speech noise on annoyance, mental health and well-
being, performance and occupants’ behavior in shared and open-plan offices.
Int. J. Environ. Res. Public Health 16, 280. doi:10.3390/ijerph16020280

Dockrell, J. E., and Shield, B. M. (2006). Acoustical barriers in classrooms: the
impact of noise on performance in the classroom. Br. Educ. Res. J. 32, 509-525.
doi:10.1080/01411920600635494

Fontanella, L., Ippoliti, L., and Merla, A. (2012). Multiresolution karhunen loéve
analysis of galvanic skin response for psycho-physiological studies. Metrika 75,
287-309. doi:10.1007/s00184-010-0327-3

Heinzel, S., Lorenz, R. C., Brockhaus, W.-R., Wustenberg, T., Kathmann, N., Heinz,
A, et al. (2014). Working memory load-dependent brain response predicts
behavioral training gains in older adults. J. Neurosci. 34, 1224-1233. doi:10.
1523/jneurosci.2463-13.2014

Imran, M., Heimes, A., and Vorlidnder, M. (2019). Real-time building acoustics
noise auralization and evaluation of human cognitive performance in virtual
reality. Proc. DAGA. 18-21.

Ising, H., and Krupa, B. (2004). Health effects caused by noise: evidence in the
literature from the past 25 years. Noise Health 6, 5-13.

Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., and Meier, B. (2010). The concurrent
validity of theN-back task as a working memory measure. Memory 18, 394-412.
doi:10.1080/09658211003702171

Kim, H.-G., Cheon, E.-]., Bai, D.-S., Lee, Y. H., and Koo, B.-H. (2018). Stress and
heart rate variability: a meta-analysis and review of the literature. Psychia. Inves.
15, 235-245. doi:10.30773/pi.2017.08.17

Klatte, M., Hellbriick, J., Seidel, J., and Leistner, P. (2010a). Effects of classroom
acoustics on performance and well-being in elementary school children: a field
study. Environ. Behav. 42, 659-692. doi:10.1177/0013916509336813

Klatte, M., Lachmann, T., and Meis, M. (2010b). Effects of noise and
reverberation on speech perception and listening comprehension of
children and adults in a classroom-like setting. Noise Health 12, 270-282.
doi:10.4103/1463-1741.70506

Kuschpel, M., Liu, S., Schad, D., Heinzel, S., Heinz, A., Rapp, M., et al. (2015).
Differential effects of wakeful rest, music and video game playing on working
memory performance in the n-back task. Front. Psychol. 17, 354-381. doi:10.3389/
fpsyg.2015.01683

Leue, A, and Lange, S. (2011). Reliability generalization. Assessment 18, 487-501.
doi:10.1177/1073191110374917

Using VR to Evaluate Acoustics

Ljung, R, and Kjellberg, A. (2009). Long reverberation time decreases recall of spoken
information. Building Acoust. 16, 301-311. doi:10.1260/135101009790291273
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. ., et al.
(1996). Heart rate variability: standards of measurement, physiological
interpretation, and clinical use. Eur. Heart J. 17, 354-381. doi:10.1093/
oxfordjournals.eurheartj.a014868

Meule, A. (2017). Reporting and interpreting working memory performance in
n-back tasks. Front. Psychol. 8, 352. doi:10.3389/fpsyg.2017.00352

Monk, A. F., Jackson, D., Nielsen, D., Jefferies, E., and Olivier, P. (2011). N-backer:
an auditory n-back task with automatic scoring of spoken responses. Behav. Res.
43, 888-896. d0i:10.3758/s13428-011-0074-2

Muhammad, I, Vorlidnder, M., and Schlittmeier, S. J. (2019). Audio-video virtual
reality environments in building acoustics: an exemplary study reproducing
performance results and subjective ratings of a laboratory listening experiment.
J. Acoust. Soc. America 146, EL310. doi:10.1121/1.5126598

Owen, A. M., McMillan, K. M., Laird, A. R., and Bullmore, E. (2005). N-back
working memory paradigm: a meta-analysis of normative functional
neuroimaging studies. Hum. Brain Mapp. 25, 46-59. doi:10.1002/hbm.
20131

Prodi, N., Visentin, C., Borella, E., Mammarella, I. C., and Di Domenico, A. (2019).
Noise, age, and gender effects on speech intelligibility and sentence
comprehension for 11- to 13-year-old children in real classrooms. Front.
Psychol. 10, 2166. doi:10.3389/fpsyg.2019.02166

Rantala, L. M., and Sala, E. (2015). Effects of classroom Acoustics on teachers’
voices. Building Acoust. 22, 243-258. doi:10.1260/1351-010X.22.3-4.243

Reeves, J. P., Knight, A. T., Strong, E. A., Heng, V., Neale, C., Cromie, R., et al.
(2019). The application of wearable technology to quantify health and wellbeing
Co-benefits from urban wetlands. Front. Psychol. 10, 1-10. doi:10.3389/fpsyg.
2019.01840

Reinten, J., Braat-Eggen, P. E., Hornikx, M., Kort, H. S. M., and Kohlrausch, A.
(2017). The indoor sound environment and human task performance: a
literature review on the role of room acoustics. Building Envi. 123, 315-332.
doi:10.1016/j.buildenv.2017.07.005

Salamé, P., and Baddeley, A. (1982). Disruption of short-term memory by unattended
speech: implications for the structure of working memory. J. Verbal Learn. Verbal
Behav. 21, 150-164. doi:10.1016/s0022-5371(82)90521-7

Scannell, L., Hodgson, M., Garcia Moreno Villarreal, J., and Gifford, R. (2015).
The role of acoustics in the perceived suitability of, and well-being in,
informal learning spaces. Environ. Behav. 48, 769-795. doi:10.1177/
0013916514567127

Schlittmeier, S. J., Hellbriick, J., Thaden, R., and Vorldnder, M. (2008). The impact
of background speech varying in intelligibility: effects on cognitive performance
and perceived disturbance. Ergonomics 51, 719-736. doi:10.1080/
00140130701745925

Seddigh, A., Berntson, E., Bodin Danielsson, C., and Westerlund, H. (2014).
Concentration requirements modify the effect of office type on indicators of
health and performance. J. Environ. Psychol. 38, 167-174. doi:10.1016/j.jenvp.
2014.01.009

Serafin, S., Geronazzo, M., Erkut, C., Nilsson, N. C., and Nordahl, R. (2018). Sonic
interactions in virtual reality: state of the art, current challenges, and future
directions. IEEE Comput. Grap. Appl. 38, 31-43. doi:10.1109/MCG.2018.
193142628

Solhjoo, S., Haigney, M. C., McBee, E., van Merrienboer, J. J. G., Schuwirth, L.,
Artino, A. R,, et al. (2019). Heart rate and heart rate variability correlate with
clinical reasoning performance and self-reported measures of cognitive load.
Sci. Rep. 9, 14668-14669. doi:10.1038/s41598-019-50280-3

Stapelberg, N. J. C., Neumann, D. L., Shum, D. H. K., McConnell, H., and Hamilton-
Craig, I. (2018). The sensitivity of 38 heart rate variability measures to the addition of
artifact in human and artificial 24-hr cardiac recordings. Ann. Noninvasive
Electrocardiol. 23, €12483. doi:10.1111/anec.12483

Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J., and Wager, T. D. (2012). A meta-
analysis of heart rate variability and neuroimaging studies: implications for
heart rate variability as a marker of stress and health. Neurosci. Biobehavioral
Rev. 36, 747-756. doi:10.1016/j.neubiorev.2011.11.009

Tiesler, G., Machner, R., and Brokmann, H. (2015). Classroom acoustics and
impact on health and social behaviour. Energ. Proced. 78, 3108-3113. doi:10.
1016/j.egypro.2015.11.765

Frontiers in Virtual Reality | www.frontiersin.org

April 2021 | Volume 2 | Article 620503


https://doi.org/10.3389/fpsyg.2019.02736
https://doi.org/10.1002/acp.1315
https://doi.org/10.1080/00330124.2018.1547978
https://doi.org/10.1080/00330124.2018.1547978
https://doi.org/10.1016/j.apacoust.2019.04.038
https://doi.org/10.1016/S0003-682X(98)00075-9
https://doi.org/10.1121/1.5096178
https://doi.org/10.4103/1463-1741.104896
https://doi.org/10.3390/ijerph16020280
https://doi.org/10.1080/01411920600635494
https://doi.org/10.1007/s00184-010-0327-3
https://doi.org/10.1523/jneurosci.2463-13.2014
https://doi.org/10.1523/jneurosci.2463-13.2014
https://doi.org/10.1080/09658211003702171
https://doi.org/10.30773/pi.2017.08.17
https://doi.org/10.1177/0013916509336813
https://doi.org/10.4103/1463-1741.70506
https://doi.org/10.3389/fpsyg.2015.01683
https://doi.org/10.3389/fpsyg.2015.01683
https://doi.org/10.1177/1073191110374917
https://doi.org/10.1260/135101009790291273
https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
https://doi.org/10.3389/fpsyg.2017.00352
https://doi.org/10.3758/s13428-011-0074-z
https://doi.org/10.1121/1.5126598
https://doi.org/10.1002/hbm.20131
https://doi.org/10.1002/hbm.20131
https://doi.org/10.3389/fpsyg.2019.02166
https://doi.org/10.1260/1351-010X.22.3-4.243
https://doi.org/10.3389/fpsyg.2019.01840
https://doi.org/10.3389/fpsyg.2019.01840
https://doi.org/10.1016/j.buildenv.2017.07.005
https://doi.org/10.1016/s0022-5371(82)90521-7
https://doi.org/10.1177/0013916514567127
https://doi.org/10.1177/0013916514567127
https://doi.org/10.1080/00140130701745925
https://doi.org/10.1080/00140130701745925
https://doi.org/10.1016/j.jenvp.2014.01.009
https://doi.org/10.1016/j.jenvp.2014.01.009
https://doi.org/10.1109/MCG.2018.193142628
https://doi.org/10.1109/MCG.2018.193142628
https://doi.org/10.1038/s41598-019-50280-3
https://doi.org/10.1111/anec.12483
https://doi.org/10.1016/j.neubiorev.2011.11.009
https://doi.org/10.1016/j.egypro.2015.11.765
https://doi.org/10.1016/j.egypro.2015.11.765
https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

Doggett et al.

Watson, D., Clark, L. A., and Tellegen, A. (1988). Development and validation of
brief measures of positive and negative affect: the PANAS scales. J. Personal.
Soc. Psychol. 54, 1063-1070. doi:10.1037//0022-3514.54.6.106310.1037/0022-
3514.54.6.1063

Zhang, X, Lian, Z., and Wu, Y. (2017). Human physiological responses to wooden
indoor environment. Physiol. Behav. 174, 27-34. doi:10.1016/j.physbeh.2017.02.043

Zhang, Y., Liu, H,, Kang, S.-C,, and Al-Hussein, M. (2020). Virtual reality
applications for the built environment: research trends and opportunities.
Automation in Construction 118, 103311. doi:10.1016/j.autcon.2020.103311

Ziemus, B., Baumann, O., Luerding, R., Schlosser, R., Schuierer, G., Bogdahn, U.,
et al. (2007). Impaired working-memory after cerebellar infarcts paralleled by
changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia 45,
2016-2024. doi:10.1016/j.neuropsychologia.2007.02.012

Using VR to Evaluate Acoustics

Conflict of Interest: MO was employed by the company Marshal Day Acoustics.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Doggett, Sander, Birt, Ottley and Baumann. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Virtual Reality | www.frontiersin.org

April 2021 | Volume 2 | Article 620503


https://doi.org/10.1037//0022-3514.54.6.106310.1037/0022-3514.54.6.1063
https://doi.org/10.1037//0022-3514.54.6.106310.1037/0022-3514.54.6.1063
https://doi.org/10.1016/j.physbeh.2017.02.043
https://doi.org/10.1016/j.autcon.2020.103311
https://doi.org/10.1016/j.neuropsychologia.2007.02.012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles

	Using Virtual Reality to Evaluate the Impact of Room Acoustics on Cognitive Performance and Well-Being
	Introduction
	Materials and Methods
	Design
	Participants
	Virtual Environment
	Hardware
	Acoustic Conditions
	Measures of Cognitive Performance
	Psychophysiological Measures of Stress
	Positive and Negative Mood
	Procedure

	Results
	Effects of Task and Noise on Working Memory Performance
	Accuracy
	Response Time

	Physiological Indicators of Stress
	Skin Conductance Level
	Heart Rate
	Heart Rate Variability
	Mood


	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


