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Virtual reality is increasingly used in rehabilitation and can provide additional motivation
when working toward therapeutic goals. However, a particular problem for patients
regards their ability to plan routes in unfamiliar environments. Therefore, the aim of this
study was to explore how visual cues, namely embedded context-sensitive attractors,
can guide attention and walking direction in VR, for clinical walking interventions. This
study was designed using a butterfly as the embedded context-sensitive attractor, to
guide participant locomotion around the clinical figure of eight walk test, to limit the use
of verbal instructions. We investigated the effect of varying the number of attractors for
figure of eight path following, and whether there are any negative impacts on perceived
autonomy or workload. A total of 24 participants took part in the study and completed
six attractor conditions in a counterbalanced order. They also experienced a control VE
(no attractors) at the beginning and end of the protocol. Each VE condition lasted a
duration of 1 min and manipulated the number of attractors to either singular or multiple
alongside, the placement of turning markers (virtual trees) used to represent the cones
used in clinical settings for the figure of eight walk test. Results suggested that embedded
context-sensitive attractors can be used to guide walking direction, following a figure
of eight in VR without impacting perceived autonomy, and workload. However, there
appears to be a saturation point, with regards to effectiveness of attractors. Too few
objects in a VE may reduce feelings of intrinsic motivation, and too many objects in a VE
may reduce the effectiveness of attractors for guiding individuals along a figure of eight
path. We conclude by indicating future research directions, for attractors and their use
as a guide for walking direction.

Keywords: guidance, navigation, virtual reality, virtual environments, virtual rehabilitation, autonomy,
self-determination theory, attractors

INTRODUCTION

Virtual Reality (VR) technology may be introduced into both clinical and community-based
environments and has supported patients in a range of therapeutic activities. Examples include
training for function led tasks (e.g., crossing a road, or shopping in a supermarket) (Corbetta et al.,
2015; Dawson and Marcotte, 2017; Parsons et al., 2017), and construct led tasks, sometimes referred
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to as “exergames” (Dawson and Marcotte, 2017). Both function
led, and construct led tasks can be managed safely (Fox et al,
2009; Borrego et al.,, 2016), and provide additional motivation
in VR (Cikajlo et al., 2020), thus reducing patient boredom,
increase patient motivation and compliance to engage with
therapeutic activities (Chen et al., 2020). Although, VR supports
a variety of different therapeutic activities, explicit instructions
are often provided verbally to guide a patient through a task
(Johnson et al., 2013; Jie et al., 2018; Mak et al., 2018; Kleynen
et al., 2019). Information provided typically regards motor
movement and technique performance (Denneman et al., 2018;
Gokeler et al., 2019). However, this may increase reliance
on declarative knowledge, increasing working memory due
to patients having to remember and recall instructions and
movement sequences (Buszard et al., 2017), and thus reduce
movement automaticity (Denneman et al., 2018; Johnson et al.,
2019). Implicit instructions can target these problems (Gokeler
et al,, 2019; Dahms et al., 2020), focus of implicit instructions in
VR may be placed upon how a patient moves, often regarding
the adaption of movement, based upon visual guidance (Anglin
etal., 2017; Bonnette et al., 2020), for example, some applications
have used biofeedback in conjunction with visual shape matching
(Bonnette et al., 2020).

A vparticular challenge for patients when discharged to
community-based environments is the ability to plan routes in
unfamiliar environments, and partake in outdoor recreational
activities (Palstam et al., 2019). This can lead to a decrease in
social and familial interaction (Liu and Ng, 2019; Palstam et al.,
2019), and thereby a decreased quality of life (Corbetta et al.,
2015; Liu and Ng, 2019). Therefore, focus to address this problem
could be placed upon introducing scenarios, that develop
patient’s route planning and anticipatory movements toward
different simulated environments. Additionally, autonomy
supported motivation may further support effective motor
(re)learning (Wulf et al., 2015; Lemos et al,, 2017). When a
patient responds to controlled events, they might experience less
autonomy, as their motivation is generated through controlled
means (Keatley et al, 2013). A motivational theory which
considers both controlled and autonomous motivation along
a continuum is “Self-Determination Theory” (SDT) (Ryan
and Deci, 2017). Within SDT there are three fundamental
psychological needs including: autonomy, competence and
relatedness (Ryan and Deci, 2017). When these needs are
fulfilled, they may support patient confidence and may lead to an
increase in physical activity (Sweet et al., 2012). Furthermore, it
is important that the opportunities for patients to practice their
decision making and anticipatory skills are developed within the
safety of clinical environments (Johnson et al., 2013), ensuring
that patients’ skills are appropriately assessed by clinicians with
regards to everyday functional tasks (Jie et al., 2018).

During everyday functional tasks, both curved and straight
walking are utilized to navigate around obstacles in an
environment (Schack et al, 2019). A widely-used walking
intervention which assesses both straight and curved path
walking is the “figure of eight walk test” (FO8WT) (Hess et al.,
2010; Wong et al., 2013; Welch et al., 2016). However, if focus
is placed upon patients’ planning and anticipatory movements

when implementing the FOSWT into VR, there needs to be
balance between providing enough information to guide the
patient along the figure of eight path whilst supporting autonomy
to allow the patient to make their own navigational decisions.
This raises the question of how the design of VR rehabilitation
applications can accommodate the required information for
the FOSWT through visual guidance mechanisms to complete
relevant clinical activities/assessments, promote aspects of SDT
(autonomy, competence, and relatedness), and reduce impact on
working memory.

Visual guidance approaches such as manipulation of optic
flow for example, increasing vection have previously been
used to induce postural adjustments in individuals to alter
the direction of navigation during walking (Furukawa et al,
2011). Similarly, redirected and reorientation techniques may
make use of environmental and/or perspective manipulation
to alter a user’s path in both the virtual environment (VE)
and the physical tracked space (Vasylevska et al., 2013; Nilsson
et al., 2018). The manipulations introduced in extant literature
have meant that users must compensate for differences between
visual, vestibular, and somatosensory information to alter their
walking direction, often without awareness (Vasylevska et al.,
2013; Langbehn et al,, 2017). Alongside visual manipulation
approaches, haptic feedback can be used to induce changes in
walking direction. One example, is the use of robotic guide dogs,
who can help to guide the visually impaired safely along paths
(Chuang et al., 2018), which may be implemented so that the
user holds onto a cane/handle (Chuang et al., 2018), and when
the robot turns the user receives haptic feedback based on the
mass of the robot indicating movement (Hersh and Johnson,
2010). Another example is galvanic vestibular stimulation in
which the placement of electrodes behind an individual’s ear,
can induce postural adjustments through the use of electrical
currents (Maeda et al., 2005). Galvanic vestibular stimulation has
been used to support reorientation techniques. For example, Sra
(2017) made use of three different electrical current variations
to elicit three different balance responses in order to influence
walking direction (Sra, 2017). Even though these approaches have
been shown to induce changes in walking directions, they require
the user to compensate for any changes, and therefore in this
context, it may be that these visual guidance mechanisms may
not provide an appropriate level of autonomy.

If we wish to support navigational decisions and autonomy, we
need to foster opportunities that can influence guidance, whilst
reducing reliance on postural adjustment responses. Instead
providing opportunities for individuals to respond as they would
like, without negative consequences would appear particularly
beneficial. Thus, an important consideration when designing
visual guidance with the use of head-mounted display (HMD)
VR applications is that the user can look freely around the
VE. Consequently it is harder to visually guide their attention
toward an intended direction (Grogorick et al., 2018). Whilst
traditional visual guidance principles such as signs, maps, and
continuous lines can be used in VR to aid in directing attention
toward an intended area (Miller, 1992; Vilar et al., 2014), they
can be obtrusive, and distracting from a given task (Grogorick
et al.,, 2018). Therefore, subtle approaches to guidance can be
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considered, such as manipulation of light and artificial markers
(e.g., colored dot) (Grogorick et al., 2018). However, for guidance
purposes, current subtle approaches such as a colored dot
may not appear natural within in a VE. Consequently, if a
VR application is being used within the context of training
applications these approaches should be used minimally, to
ensure immersion remains high and increases the learning
potential of an application (Lin et al., 2012; Cuperus et al., 2018;
Grogorick et al., 2018).

VR based research areas such as cinematic VR, use visual
saliency to attract attention (Nielsen et al, 2016), whilst
redirected and reorientation techniques may make use of
distractors as well as attractors in order to guide attention
away from manipulations in a VE (Peck et al., 2009; Sra et al.,
2018). Distractors used in redirected walking often gravitate
toward explicit cues (Peck et al., 2009), where explicit cues
are defined by Nielsen and collegaues (Nielsen et al.,, 2016),
as using explicit communication to direct attention toward a
certain object (Nielsen et al., 2016), for example with having to
keep a distractor within their field of view, to aid unnoticeable
rotational manipulations (Peck et al., 2009). Distractors may also
be used in conjunction with audio only or a mixture of both
visual and audio distractors, to guide navigation in a virtual
environment (Rewkowski et al., 2019). In contrast attractors
are often embedded into the design of a VE, and become
the forefront for interaction within a VE (Sra et al., 2018).
In particular embedded context-sensitive attractors are objects
which are appropriate within a VE setting, which ensures that
they are representative and designed with relation to the task
and VE (Sra et al,, 2018). However, current attractor approaches,
in redirected walking techniques have been used in strict path
following scenarios (Sra et al., 2018), and have not explored the
design of attractors within autonomy based scenarios. Therefore,
the primary aim of this study was to investigate how the design
of embedded context-sensitive attractors may guide attention
and walking direction in VR, during explorative walking, to
invite the completion of the clinical FO8WT. The secondary
aim was to ascertain whether the use of embedded context-
sensitive attractors provided a sense of autonomy and minimized
perceived workload in participants.

MATERIALS AND METHODS

We conducted a within-subjects experiment designed to examine
the use of embedded context-sensitive attractors to convey
instructions to walk a figure of eight path in a VE, when
participants are given the opportunity to explore and of the
effect of such attractors on perceived autonomy, and perceived
workload. These studies were conducted at the University of
Portsmouth (UK), and ethical approval was provided from the
Faculty of Creative and Cultural Industries.

Context Embedded-Sensitive Attractor

To examine the effect of attractors and their effectiveness of
providing information for completing the clinical FOSWT in
VR, the participants were encouraged to explore the VR tracked
space, making use of one-to-one mapping. The FOSWT may vary

in length from 1.5 x 1.2m (Hess et al., 2010), to the length of
10m (Barnett et al., 2016). However, VR room-scale tracking
spaces are ~5 m (Langbehn et al., 2017). Therefore, it was decided
that the representation of the FO8WT should be smaller than
5m, but larger than 2m in length to ensure continuity with
other room-scale VR setups. Additional considerations include
the assessment criteria in the FOSWT i.e., speed, amplitude
(number of steps) and the accuracy of their turn (Hess et al., 2010;
Odonkor et al., 2013; Barker et al., 2019). Therefore, elements
used within the FO8WT such as cones (turning markers) should
be considered when implementing the walk test into VR (Hess
et al,, 2010), being mindful that when represented in a VE, they
make logical sense within the context of the setting. However,
it is not known whether the use of turning markers will impact
the guidance from the attractors. Therefore, turning markers will
be present in some VE conditions and not others (Figure 2).
Based on the application aiming to provide a sense of autonomy
and using visual guidance mechanisms as instructions it was
important to move away from architectural spaces and paths to
reduce the number of confined paths within the VE (Bruder et al.,
2013; Vasylevska et al., 2013; Nilsson et al., 2018). Therefore, in
order to implement a VE that is not limited by confined paths,
the present study made use of a natural environment—namely
a forest—to overcome challenges of scale and shape in the VE,
whereby the turning markers were replaced by trees. To, ensure
similarity with the FOSWT though, participants started at the
center of the FOSWT (Welch et al., 2016).

To ensure that the attractor was easily distinguishable within
the VE, saliency properties including color, contrast, form,
motion, location and size (Nielsen et al., 2016; Davis et al,
2017), were taken into consideration. Color is a saliency property
which is considered relatively stable even with older populations
(Davis et al, 2017), and objects which have complementary

FIGURE 1 | Embedded context-sensitive attractor.
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colors such as red and green are thought to be more noticeable
(Thorpert et al., 2019). However, based on some types of
color blindness, it is important to ensure that color is not
the only saliency property. Moving objects are reported to
attract large amounts of attention (Rothe and Hufimann, 2018;
Yang et al.,, 2018), even in the absence of sounds (Rothe and
Hufimann, 2018), and therefore, movement animation was added
to the attractors.

To ensure that the attractor was representative of something
found in a forest environment a “monarch butterfly” was chosen
to represent the attractor(s) (Figure 1). The trees, and attractor
were created using 3D Studio Max, and textured using Adobe
Photoshop (Tree Material Reference Images (Textures.com,
2017a,b,c,d) and Substance Painter (hand-drawn texture for
attractor). Due to the small size of the attractor, and the use of
trees to represent turning markers in some conditions, it was

Condition 1 & 2:
Control

Condition A:
No Turning Markers &
1 Attractor

Condition B:
No Turning Markers &
3 Attractors

Condition C:
Turning Markers &
1 Attractor

Condition D:
Turning Markers &
3 Attractors

Top-Down View

Travelling in Opposite Directions

Forward View

2 Sets of Attractors:

Top Down View

FIGURE 2 | Virtual environment conditions.

Condition E:
No Turning Markers

*All assets were kept the same size in all Virtual Environment conditions,
but may appear as different sizes in the above images due to screenshot angles

Condition F:
Turning Markers
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important to acknowledge that dependent on the attractor and
participant location visibility to the attractor may be reduced.
Therefore, the number of attractors used were altered from
either 1-3 (Figure2). In order to guide walking direction
along a figure of eight path, the location of the attractor(s)
responded dynamically to participants’ position within the VE.
The attractor(s) were programmed to move along the same pre-
defined figure of eight path in each VE condition, but only when
the participant was moving behind the attractor(s) and along
the path in the correct direction. This was implemented with
the use of a trigger box (not visible to participants) surrounding
the attractors (which was the same size in all VE conditions,
including when the attractors are not visible in the control
conditions), in which the participants would trigger the attractors
movement along the path, if they were behind the attractor(s)
but still within the trigger box. The attractors would then move
forward along the pre-defined figure of eight path until, the
participants were no longer within the trigger box. Therefore,
the speed of the attractors was not predefined but kept relative
to the speed of the participants. Within eye movement literature,
it is suggested that point of gaze is often kept slightly below the
horizon line (Foulsham et al., 2011; Vansteenkiste et al., 2014;
Tong et al., 2017). Therefore, the position of attractor(s) were
kept just below the horizon line, at a height of 1.5 m.

Based upon the attractors introducing an affordance within
the VEs, it was hypothesized that the use of attractor(s) will
lead to a significant difference in participants following the
figure of eight path, when compared to no attractor(s). The
implementation of turning markers and increased amount
of attractors, were design decisions to ascertain whether
they had any impact on guidance, perceived autonomy and
perceived workload.

Two Sets of Embedded Context-Sensitive

Attractor

Two additional conditions were added to investigate whether
participants would always follow the same set of attractors, when
presented with two different sets of attractors (1 or 3 Attractors)
which moved at the same time in the opposite direction of the
figure of eight path (Figure 2).

Participants

Twenty-four Participants (11 Male, 13 Female) aged 21-65 (M
= 34.25, SD = 11.29) were recruited from staff and students
at the University of Portsmouth, and via word of mouth. All
participants completed the experiment and were naive to all
experimental conditions. They did not receive any compensation
for taking part in the study. The total duration of the study for
each participant was ~1 h.

Procedure
Participants were briefed on the procedure and safety of the
study. Once consent was obtained, participants completed a
demographics questionnaire (Table 1).

The participants were informed that there were different VEs
within this study, and that the researchers would be unable to
respond to any questions during the experiment. Their task in

TABLE 1 | Demographics questionnaire results.

Statement topic Scale Results
Familiarity with VR 1 (Very unfamiliar) — Mdn = 3.5
Participants: 14/24 5 (Very familiar) SD =147
Duration of playing 1 (Under 1h), 2 (1-3h) Mdn =2
video games 3(3-5h), 4 (5+h) SD =0.49
Participants: 13/24

Frequency of playing 1 (Very infrequent) — Mdn = 3
video games 5 (Very frequent) SD =147

Participants: 13/24

each VE remained the same in which they were free to explore the
VEs so long as they stayed within the tracked space. Participants
were directed to the starting location, indicated by a cross on
the floor (Figure 3), and instructed for that VE (which remained
the same for each VE) “you have one minute to walk wherever
you like, without walking outside of the blue cage, which is for
your safety.”

Each participant experienced the attractors based VE
conditions in a counter-balanced order, with the control
conditions (no attractor and no turning markers), being present
both at the very beginning and end of the study. In each
condition, participants were given 1min to explore the VE.
The chosen duration of 1min has been used in a similar
assessment of dynamic balance when walking along a FO8 path
(Gil-Gémez et al., 2011). In between each VE condition, the
participants answered questionnaires, whilst they were seated
without the HMD.

The VEs were loaded by the researcher in the pre-defined
sequence for each participant once the participants were standing
on the starting position and facing the correct direction. The VE
faded to black for the 10s at the beginning of each condition, as
an adjustment period for each participant.

Apparatus

The study took place in an 8 x 8m laboratory, with a 4 x
4m tracked space. All objects were kept securely out of the
way, and any wires were taped down around the edge of the
room. Participants wore the HTC vive 2016 HMD for ~10 min
altogether and were instructed to take breaks if needed. For
participant safety, the HTC vive guardian boundary was included
and appeared when the participant moved toward the edge of
the 4m? tracked area, this was referred to as the “blue cage”
when talking to participants. Positional data (X, Y, and Z)
from the HMD was recorded from the HTC vive lighthouses®
continuously at 6 hz. The VE conditions were designed to be
symmetrical, in both the X and Y axis, in order not to introduce
directional bias and were rendered in real time using Unreal
Engine 4.14.

Dependent Variables

Participant and attractor(s) trajectories were recorded in cm by
measuring the x and y co-ordinates of every 10th of a second,
with the participants location was recorded from the position of
the HMD. The distance in which participants followed the figure
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Study Layout:
Room Size: 8m x 8m

Starting Position

Across = 3.10m
Down = 4.27m

Tracked Space = 4m x 4m

!

FIGURE 3 | Room and example virtual environment layouts.

Example Virtual Environment Layout:
Tracked Space: 4m x 4m

| Path which the

| attractor followed
(not visible P

to participants)  /

Starting\ Moy l
Position - S
v 8
/ W
‘\\ 74
e O S O 1

of eight path was calculated taking the sum of the Euclidean
distances calculated from the attractor coordinates. To analyze
whether participants followed one particular set of attractors over
the other (1 or 3 attractors), the sum of total time followed
in seconds was computed. Calculated by taking the smallest
Euclidean distance between the participants to the moving
attractors indicating whether the participant was following the
set with 1 attractor or 3 attractors. Euclidean distance was also
used to calculate the largest distance a participant deviated away
from the attractor(s).

Self-determination was measured using the 22 statement task
evaluation questionnaire (Self-Determination, 2020), which is
a subset of the intrinsic motivation inventory (IMI) (Ryan,
1982; Deci et al., 1994). There are four subscales that make
up the task evaluation questionnaire including: interest and
enjoyment (considered a subscale of intrinsic motivation),
perceived competence, perceived choice and pressure/tension
(considered as a negative predictor of intrinsic motivation) (Deci
etal,, 1994). The ending of statement 7 was altered from “I think I
did pretty well at this activity, compared to other students” “...to
other participants.” Although, each participant would have been
the only person currently undertaking the activity of exploring
the VE they were asked to make their own judgement of how
well they think they did. This statement is used in the calculation
of perceived competence (Deci et al., 1994), this subscale needs
to be analyzed with consideration that they were naive to
experimental conditions, and were the only people taking part in
the experiment at a given time. Therefore, analysis focused upon
whether they felt there was any difference within the conditions.

The modified NASA—Task Load Index (NASA-TLX) was used
to measure perceived workload (Hart, 2006; Bustamante and
Spain, 2008). The chosen approach to using the NASA-TLX was
to use the shorter version, as the weighted version can be time

consuming (Hart, 2006; Bustamante and Spain, 2008), and may
introduce participant errors (Bustamante and Spain, 2008).

RESULTS

There were two participants with tracking issues regarding the
first control condition only. One participant had an HMD
tracking error, in which they had a fixed offset of —94 on
the x axis, for the first control only. Although the participant
trajectory can be easily translated, due to the implementation
of the attractors correspondence along the figure of eight path
raises concerns over accuracy. In addition, another participant
completely lost tracking data. Therefore, both participants were
excluded from trajectory-based data analysis, for the following
variables: following of the attractor(s) and largest distance away
from attractor(s), but not the two sets of attractors as this analysis
was separate from the control conditions. All statistical analysis
used a 95% confidence interval, unless otherwise stated.

Following of Embedded Context-Sensitive

Attractor

The total distance in cm, that the participant followed the
attractor(s) was not normally distributed at the 5% confidence
interval level. Therefore, the non-parametric Friedman Test was
used to compare the distance in cm, that the participant followed
the attractor(s), in the control (averaged between the control at
the beginning and end of the study), compared to the other VE
attractor conditions. There was a significant difference X%4)
15.72, p = 0.003, with regards to the total distance participants
followed the attractor and the VE attractor conditions. Post-hoc
analysis with the Wilcoxon signed-rank test were conducted with
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TABLE 2 | Wilcoxon signed-rank test—distance spent following the attractor.

Pairing Median Quartiles Z val. P val. r
Control 79.55 41.50-149.53 -3.62 <0.000* 0.77
A 502.93 101.32-2031.20

Control 79.55 41.50-149.53 -3.75 < 0.000* 0.80
B 276.74 190.53-1219.20

Control 79.55 41.50-149.53 —3.00 0.003*  0.64
C 367.55 92.97-954.23

Control 79.55 41.50-149.53 -2.13 0.03 0.45
D 165.96 45.26-649.57

A 502.93 101.32-2031.20 -1.19 0.24 0.25
B 276.74 190.53-1219.20

A 502.93 101.32-2031.20 -1.70 0.09 0.36
C 367.55 92.97-954.23

A 502.93 101.32-2031.20 -1.77 0.08 0.38
D 165.96 45.26-649.57

C 367.55 92.97-954.23 —0.44 0.66 0.09
B 276.74 190.53-1219.20

D 165.96 45.26-649.57 —0.93 0.36 0.20
B 276.74 190.53-1219.20

D 165.96 45.26-649.57 -1.03 0.31 0.22
C 367.55 92.97-954.23

Control, Averaged values from the 1st and 2nd control; A, No Turning Markers and 1
Attractor; B, No Turning Markers and 3 Attractors; C, Turning Markers and 1 Attractor; D,
Turning Markers and 3 Attractors. "significant value at p < 0.005.

a Bonferroni correction applied, resulting in a significance level
set at p < 0.005, there were 3 significant pairings (Table 2).

On visual observation of participant trajectories, some
participants did not appear to follow the attractor once it was
introduced but may still make both clockwise and anticlockwise
turnings (Figure 4).

The largest distance away from the attractor(s) in cm, was
not normally distributed at the 5% confidence interval level.
Therefore, the non-parametric Friedman Test was used. There
was a significant difference X%4) = 15.49, p = 0.004, with regards
to the largest deviation away from the attractor and the VE
attractor conditions. Post-hoc analysis with the Wilcoxon signed-
rank test were conducted with a Bonferroni correction applied,
resulting in a significance level set at p < 0.005, there were 3
significant pairings (Table 3).

Two Sets of Attractors

The total time in seconds, that the participants followed one set
of attractors were not normally distributed at the 5% confidence
interval level. Therefore, the results were analyzed using the non-
parametric Friedman test to compare the time spent following
one set of attractors (1 or 3 attractors) and the placement of
turning markers in seconds. There was not a significant difference

X(23) =2.81, p = 0.42 (Table 4).

Task-Evaluation Questionnaire
One participant was removed from statistical analysis within the

task-evaluation questionnaire statistics as they had not completed
all forms.

The non-parametric Friedman test was used to compare all
the task-evaluation variables. There was a significant difference
between the use of attractors and turning markers and the
perceived interest and enjoyment scores (a measure of intrinsic
motivation) Xé) = 31.56, p < 0.000. Post-hoc analysis with the
Wilcoxon signed rank test were conducted with a Bonferroni
correction applied, resulting in a significance level of p < 0.005,
there were 5 statistically significant pairings (Table 5).

There was a significant difference between the use of attractors
and turning markers and the perceived “Pressure/Tension”
(negative predictor of intrinsic motivation) scores X%s) = 23.52,
p = 0.001. Post-hoc analysis with the Wilcoxon signed rank test
were conducted with a Bonferroni correction applied, resulting
in a significance level of p < 0.005, there were 2 statistically
significant pairings (Table 6).

There was not a significant difference between the use of
attractors and turning markers and the perceived competence
scores Xﬁé) = 5.81, p = 0.45. Along with no significant difference
between the use of attractors and turning markers, and the

perceived choice scores X%6) = 8.28, p = 0.22 (Table 7).

NASA-TLX

The NASA-TLX results from all conditions were analyzed using
the non-parametric Friedman Test and there was no statistical
difference between any of the VE attractor conditions and the
NASA-TLX variables (Mental Demand: X%, = 10.64, p = 0.10,

©
Physical Demand: Xé) =4.81, p=0.57, Temporal Demand: X%6)

=4.59, p = 0.60, Performance: X%6) = 6.22, p = 0.40, Effort: X%6)

=7.98, p = 0.24, Frustration: X{;) = 5.63, p = 0.47, Overall: X7
=5.15, p = 0.52) (Table 8).

DISCUSSION

This study explored how the use of visual attractors can be
implemented for guidance in completing the clinical FO8WT,
whilst keeping verbal instructions minimal. In addition, it
examined whether the use of attractors in VEs can negatively
impact perceived autonomy and workload. The results from this
study indicate that, even when a verbal instruction encourages
exploration, the use of attractors can guide walking direction
with participants following an implied figure of eight path. This
may be due to the implementation of the attractors, in which
there is an action and feedback loop provided to participants.
Where movement of the attractors along a predefined figure of
eight path, occurs if the participant is behind the attractors and
within a trigger box (not visible to participants), thus providing
a (perceived) affordance for the participants within the VEs
(Norman, 1999; Lee et al., 2018). There was also a reduced
distance away from the implied path with the introduction of the
attractor(s). The use of attractors being effective at supporting
guidance for where to move, aligns with existing literature in
which visual guidance mechanisms have previously been used to
support implicit motor (re)learning, and have focused upon how
to move (Anglin et al., 2017; Baird and Stewart, 2018; Bonnette
et al., 2020).
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Example 2

Example 1

Control 1:
No Turning Markers
No Attractors

Condition A:
No Turning Markers
1 Attractor

Condition B:
No Turning Markers
3 Attractors

Condition C:
Turning Markers
1 Attractor

Condition D:
Turning Markers
3 Attractors

Control 2:
No Turning Markers
No Attractors

Time in Seconds 0 20

Attractor 10

Example Trajectories

Example 3

30 A 50

FIGURE 4 | Example participant trajectories from each group—minus conditions E & F.

Example 4 Example 5

Example 6

Time in Seconds 20 40 @ 60
Participant 30 ® 50

Although the attractors were found to be beneficial at
guiding participants along a figure of eight path, condition D
(Turning markers and 3 attractors) did not significantly differ
from the average control (no attractors or turning markers).
Upon observation of the participant trajectories there are some
emergent patterns. Some participants appear to always follow the
attractor; however, there were other participants who decreased
in following the attractor when more attractors and turning
markers were introduced.

This observation appears to suggest that an increase in objects
in a VE may impact the effectiveness of guidance. The reason
for this occurrence, may be visual crowding, as objects may
become more difficult to differentiate (Whitney and Levi, 2011;
Henry and Kohn, 2020). This is often as a result of attention
and spatial integration (Henry and Kohn, 2020), in which the
distance between objects in an environment are crucial for being
able to identify a target object (Bouma, 1970; Whitney and Levi,
2011; Melnik et al., 2020). Although this study did not infer the

attractors as a target object, participants may have identified this
as a target object within the VE, however visual crowding may
have occurred when placing more objects into the VE, making it
more difficult to identify the attractors as a target object.

Alternative to the theory of visual crowding (Bouma, 1970),
Schmitz and colleagues (Schmitz et al., 2020) suggest that
individuals may become desensitized to visual cues, due to
constant stimulation. However, it is perhaps unlikely that this
explains why following of the implied path in condition D
(turning markers and 3 attractors) did not significantly differ
from the average control (no attractors or turning markers), as
participants only experienced all attractor conditions for a total
of 6min, in a counter-balanced order. This raises important
questions as to whether there are saturation points of attractors
and other visual methods when guiding attention.

The secondary aim of this study was to ascertain whether
the use of attractors provided a sense of autonomy and
minimized the impact of perceived workload in participants.
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TABLE 3 | Wilcoxon signed-rank test—largest distance away from attractor.

TABLE 5 | Wilcoxon signed-rank test—interest and enjoyment scores.

Pairing Median Quartiles Z val. P val. r Pairing Median Quartiles Z val. P val. r

Control 275.92 237.95-297.95 —3.26 0.001*  0.70 Control 4.93 4.15-6.15 —2.00 0.05 0.42

A 184.56 103.07-235.35 A 5.14 4.43-6.57

Control 275.92 237.95-297.95 —2.97 0.003*  0.63 Control 4.93 4.15-6.15 —2.99 0.003*  0.62

B 170.99 106.44-251.80 B 5.14 4.71-6.58

Control 275.92 237.95-297.95 -3.33 0.001*  0.71 Control 4.93 4.15-6.15 —2.87 0.004*  0.60

] 215.74 159.53-246.81 C 5.57 4.14-6.71

Control 275.92 237.95-297.95 —2.65 0.008 0.56 Control 4.93 4.15-6.15 —3.46 0.001*  0.72

D 224.51 161.66-252.33 D 6.00 4.57-6.86

A 184.56 103.07-235.35 -0.15 0.88 0.03 Control 4.93 4.15-6.15 —3.26 0.001*  0.68

B 170.99 106.44-251.80 E 5.86 5.14-6.86

A 184.56 103.07-235.35 —1.38 0.17 0.29 Control 4.93 4.15-6.15 —2.83 0.005*  0.59

C 215.74 159.53-246.81 5.71 4.29-6.86

A 184.56 103.07-235.35 -1.22 0.22 0.26 A 5.14 4.43-6.57 1.03 0.30 0.21

D 224.51 161.66-252.33 B 5.14 4.71-6.58

C 215.74 159.53-246.81 -1.38 0.17 0.29 A 5.14 4.43-6.57 1.60 0.11 0.33

B 170.99 106.44-251.80 C 5.57 4.14-6.71

D 224.51 161.66-252.33 —0.50 0.62 0.1 D 6.00 4.57-6.86 —1.02 0.31 0.21

B 170.99 106.44-251.80 B 5.14 4.71-6.58

D 224.51 161.66-252.33 —0.05 0.96 0.01 D 6.00 4.57-6.86 -1.29 0.20 0.27

C 215.74 159.563-246.81 C 5.57 4.14-6.71

Control. A 4 values from the 1st and 2ndl control A No Turming Mark o F 5.71 4.29-6.86 0.03 0.98 0.01
ontrol, Averaged values from the 1st and 2nd control; A, No Turning Markers an £ 5.86 5.14-6.86

Attractor; B, No Turning Markers and 3 Attractors; C, Turning Markers and 1 Attractor; D,
Turning Markers and 3 Attractors. "significant value at p < 0.005.

TABLE 4 | Time spent following specific attractor set in seconds.

Time spent following Median Q1 Q3
Condition E—1 Attractor 4.15 0.98 8.65
Condition E—3 Attractors 4.05 1.33 10.05
Condition F—1 Attractor 3.15 0.60 6.33
Condition F—3 Attractors 2.80 0.80 5.80

Condition E, No Turning Markers; Condition F, Turning Markers.

Although this study was conducted with adults that were not
undergoing rehabilitation, the results indicated that not only
did the design of attractors provide guidance for following
an implied figure of eight path but do not negatively impact
perceived choice (range 6.7-7) or workload (reported low to
medium). The use of attractors was able to provide additional
interest and enjoyment results (considered a subscale of intrinsic
motivation), when compared to the control (except for condition
A). This aligns with other work suggesting that simple scenes
can convey information (Nielsen et al., 2016) but that open
world environments provide more enjoyment (Ijaz et al., 2020).
Furthermore, condition F (2 sets of attractors and turning
markers) was perceived to have less pressure/tension than both
the control and condition E (2 sets of attractors and no
turning markers). Although these were significant differences,
it is important to consider that these values were still mid
to high for interest and enjoyment and low for pressure and
tension. This is a beneficial aspect of the design of attractors,

Control, Averaged values from the 1st and 2nd control; A, No Turning Markers and 1
Attractor; B, No Turning Markers and 3 Attractors; C, Turning Markers and 1 Attractor; D,
Turning Markers and 3 Attractors; E, No Turning Markers—2 sets of Attractors; F, Turning
Markers—2 Sets of Attractors. "significant value at p < 0.005.

TABLE 6 | Wilcoxon signed-rank test— pressure/tension scores.

Pairing Median Quartiles Z val. P val. r
Control 1.60 1.30-2.60 -0.26 0.82 0.05
A 1.20 1.00-3.00

Control 1.60 1.30-2.60 —0.98 0.33 0.20
B 1.60 1.00-2.80

Control 1.60 1.30-2.60 -1.29 0.20 0.27
C 1.20 1.00-2.40

Control 1.60 1.30-2.60 -0.92 0.36 0.19
D 1.20 1.00-2.40

Control 1.60 1.30-2.60 —1.48 0.14 0.31
E 2.20 2.20-2.20

Control 1.60 1.30-2.60 -3.13 0.002*  0.65
F 1.00 1.00-1.20

A 1.20 1.00-3.00 0.44 0.66 0.09
B 1.60 1.00-2.80

A 1.20 1.00-3.00 0.74 0.46 0.15
C 1.20 1.00-2.40

D 1.20 1.00-2.40 —1.09 0.27 0.23
B 1.60 1.00-2.80

D 1.20 1.00-2.40 -0.20 0.84 0.04
C 1.20 1.00-2.40

F 1.00 1.00-1.20 —3.74 0.000*  0.78
E 2.20 2.20-2.20

Control, Averaged values from the 1st and 2nd control; A, No Turning Markers and 1
Attractor; B, No Turning Markers and 3 Attractors; C, Turning Markers and 1 Attractor; D,
Turning Markers and 3 Attractors; E, No Turning Markers—2 sets of Attractors; F, Turning
Markers—2 Sets of Attractors. "significant value at p < 0.005.
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as intrinsic motivation may impact learning as a result of the
individual behaving in a certain way because they desire to
Ryan and Deci (2020). Therefore, it would be interesting to
explore the use of attractors in the context of rehabilitation.
Ntoumanis et al. (2020) suggest that self-determination
interventions in healthcare could be used to target autonomy,
competence and relatedness at different intensity levels. Self-
determination was measured in relation to design decisions, of
both attractors and turning markers. Even though perceived
competence did not significantly differ, in this study were the
only individuals participating in the experiment at a given time
and were required to be able to walk and stand without difficulty
for 1-h. Therefore, in the context of rehabilitation attractors may
elicit different perceived competence results, and future research
will be needed to explore this further. Therefore, using attractors

TABLE 7 | Perceived competence and perceived choice—medians and quartile
values.

Condition Perceived competence Perceived choice
median and quartiles median and quartiles
Condition A 5.00 (4.00-6.00) 6.80 (6.40-7.00)
Condition B 4.80 (4.20-6.20) 6.80 (6.40-7.00)
Condition C 5.00 (4.40-6.00) 6.80 (6.60-7.00)
Condition D 5.00 (4.00-6.00) 6.80 (6.40-7.00)
Condition E 4.80 (4.00-6.20) 6.80 (6.20-7.00)
Condition F 5.00 (4.20-6.20) 7.00 (6.40-7.00)
Average Control 4.70 (4.10-5.70) 6.70 (6.20-7.00)

Control, Averaged values from the 1st and 2nd control; A, No Turning Markers and 1
Attractor; B, No Turning Markers and 3 Attractors; C, Turning Markers and 1 Attractor; D,
Turning Markers and 3 Attractors; E, No Turning Markers—2 sets of Attractors; F, Turning
Markers—2 Sets of Attractors.

for guidance to complete clincal tests such as the FO8WT may
be best used as an autonomy supportive intervention. Future
research could explore, the use of attractors within the context
of the FO8WT, but with focus placed upon how a patient
moves, along with how they approach each aspect of the FO8WT
(e.g., clockwise and anti-clockwise turns). This is particularly
important as both curved, and straight walking are utilized in
everyday walking (Schack et al., 2019), and require patients to
use different muscles (Hess et al., 2010; Wong et al., 2013). This
may interlink with research that considers patient confidence
regarding their own motor capability, which is argued to interlink
with patient motivation and continued recovery (Morris et al.,
2017), and whether this may then impact how therapists target
different patients motor (re)learning.

Additionally, even though this study had no significant
statistical differences for preference of following a specific set
of attractors in the two VE conditions where two attractor
sets present (condition E and F), future research could explore
differences between personal preferences and presenting two
different types of attractors and the effect that this may have on
guidance within a VE. As personal preference interlinks with the
idea of enjoyment, it may explain the reason as to some of the
observed behaviors such as participants avoiding the attractor, or
always following the attractor regardless of other environmental
aspects. Although it was not measured in the study, some of the
participants stated that they disliked insects and therefore did
not try to follow the butterflies whilst the opposite was true for
other participants.

The overall results and observations from this study indicate
that attractors can be used as guidance for completing a
clinical FO8WT whilst allowing feelings of intrinsic motivation
and decision-making opportunities. Although this study was
conducted with a non-clinical group of participants, it is

TABLE 8 | NASA-TLX results.

NASA-TLX subscale results

A B C D E F Ave.
Mdn, Q1 and 3 Mdn, Q1 and 3 Mdn, Q1 and 3 Mdn, Q1 and 3 Mdn, Q1 and 3 Mdn, Q1 and 3 Mdn, Q1 and 3
MD 15 15 20 20 20 20 15
6.25-30 6.25-35 6.25-30 10-30 10-33.75 11.25-28.75 8.13-20
PD 15 12.50 15 15 15 15 15
6.25-27.5 6.25-30 6.25-25 10-23.75 10-28.75 10-28.75 10-19.38
TD 12.5 15 15 15 15 15 125
5-28.75 6.25-33.75 6.25-25 10-28.75 6.25-28.75 5-30 7.56-21.25
P 30 20 22.5 25 25 20 31.25
15-50 10-48.75 15-50 10-43.75 11.25-50 10-48.75 15.63-47.5
Effort 15 15 15 15 15 15 12.5
6.25-25 6.25-25 6.25-23.75 10-23.75 10-25 6.25-25 5.63-21.88
Frustration 10 10 10 10 7.5 10 10
5-18.75 5-20 5-13.75 5-28.75 5-23.75 5-15 5-25.63
Overall 17.5 19.17 17.5 16.67 18.34 15.83 15.42
10.21-27.71 12.71-25.21 11.88-24.17 12.83-29.17 12.71-26.67 11.88-26.25 11.67-23.12

Ave., Averaged values from the 1st and 2nd control; A, No Turning Markers and 1 Attractor; B, No Turning Markers and 3 Attractors; C, Turning Markers and 1 Attractor; D, Turning
Markers and 3 Attractors, E, No Turning Markers and 2 sets of Attractors; F, Turning Markers and 2 sets of Attractors.
MD, Mental Demand; PD, Physical Demand; TD, Temporal Demand; P, Performance; Overall, Overall Cognitive Demand.
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important to be mindful when using attractors in clinical settings,
to consider the overall design of a VE. Insufficient attractors
and additional environment objects may reduce feelings of
intrinsic motivation or may become less effective for walking
direction guidance. Both were observed in condition A (no
turning markers and 1 attractor) and D (turning markers and
3 attractors). Furthermore, it is important to consider when
implementing turning markers, the effects this may have on
the tightness of turns from participants. For example, fir trees
were used to represent turning markers in this application, but
trees that are smaller or larger may provide different control
with regards to size of turning circles. Furthermore, patient
preference may interfere with the effectiveness of guidance
so different ecologically valid attractors should be considered.
However, it is important to be mindful of visual crowding and
saliency as this can cause objects to appear similar (Melnik et al.,
2020) and possibly decrease the effectiveness of the attractors.
Therefore, we suggest that future research should explore (a)
the effectiveness of attractors as instructions, alongside aspects
of personal preference and saturation of interest, (b) the impact
attractors have on how someone moves, both inside and outside
of rehabilitation settings.
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