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Virtual engineering as a new working method in product development should

make it much easier to validate the development progress and facilitate team

communication. Work steps are brought forward and start with the virtual

components instead of real ones. To validate mechanical and electrical CAD as

well as programming, automated virtualization systems should create the virtual

twin of the machine at the push of a button. For this purpose, generic

intelligence is added to enable complex interactive virtual models that can

be used for training, monitoring and many other applications. Advanced

applications are for example training and support applications, especially in

combination with augmented reality and remote collaboration. We propose a

system that combines virtual reality, virtual engineering and artificial intelligence

methods for the product development process. Geometry analysis algorithms

are used to process mechanical CAD data and thus, for example, to

automatically parameterize kinematic simulations. In combination with

electrical CAD data and the simulations of electric circuits as well as the

original machine program allow simulating the behavior of the machine and

the user interaction with it. This article will describe the virtualization method in

detail and present various use-cases in special machine construction. It will also

propose a novel method to use causal discovery in complex machine

simulations.
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1 Introduction

Engineering machines is a dream at least as old as the ancient Greeks. Machines are a

way to give us frail humans the power of many, maybe even of gods. They allow us to

move heavy things with great speed, communicate with others far away in real time, fly to

the skies and explore the depths of our oceans. To help design and build those machines

with ever-growing complexity, sophisticated tools were invented. Then came automation

and computing, they revolutionized the way we engineer machines by extending our

hands and brains with computer aided design (CAD), machining tools and 3D printing

just to name a few. Traditionally, the engineering domain is very fragmented, each

subdomain using their own software ecosystems like mechanical CAD (MCAD), electrical
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CAD (ECAD), numerical simulations and programming.

Communication between teams and disciplines is key to

creating successful products. Virtual reality is the ideal

technology to enhance the exchange of information and offer

an environment to collaborate and validate planning data from

CAD systems. Virtual reality in engineering (or Virtual

Engineering) encompasses the whole product life cycle and

supports it with a variety of applications like the design

review during the product development process, production

planning for manufacturing, training applications and many

more. The concepts, methods and systems are well known for

years, but struggle to get adopted, especially in small and

medium-sized enterprises. More advanced applications are the

training of workers for the configuration, operation and

maintenance of products, often machines or production plants.

We will show alongside the use case of a virtual simulation

for a tunnel boring machine (TBM) how the integration of such

strategies as well as software and hardware in the loop can be

deployed to generate an intelligent virtual twin. With the

integration of the programming of the complete machine as a

foundation of the virtual representation, the behavior of the

virtual machine can replicate real world scenarios with highly

customizable settings. The original TBM machine program runs

on a programmable logic controller (PLC). Our virtual reality

simulation of the TBM communicates with the PLC via the

OPCUA protocol. The control panel is using the commonly used

hardware-to-software communication ProfiNet. Currently, the

simulator of the virtual tunnel boring machine is used for

training new machine operators without the risks of

endangering equipment and human safety and even offers the

possibility to train for simulated critical failures.

The aim of this work is to give insights into current research

and innovation that tackles the issues like CAD data integration

and workflow automation, artificial intelligence (AI) supported

model introspection to maximize added value and overall

usability. The related works section will give an overview of

available software solutions and current research activities in the

domains described above. The implementation section presents

our recent work in the field of virtual machine simulations,

followed by the discussion and outlook section where we

summarize our research and present our thoughts, ideas and

plans on next steps towards the ideal virtualization system.

2 Related works

The relevant state of the art for this article, especially

regarding virtual engineering, is structured as follows. First, it

is important to get an overview of state-of-the-art design review

tools, they are software products used during product

development to validate CAD planning data. Next to the

industrial software systems are solutions being developed in

research project. The second part is about virtualization

methods, a more advanced integration of CAD data from

different domains towards creating virtual twins of machines

and products. Then an important aspect to introduce is

combining AI methods to infuse the virtual models with

intelligence. AI methods will also greatly enhance the added

value when validating models involving complex simulation

systems. Lastly we present the related works to our main use-

case, the virtual simulation of a tunnel boring machine.

2.1 Design review applications

First, there are the tools that provide the classic range of

functions of a design review tool (Wolfartsberger, 2019). These

include, for example, IC. IDO from ESI and CMC ViewR from

CMC Engineers. Both tools offer a wide variety of data and

communication interfaces in order to be able to visualize CAD

data in immersive VR hardware systems. Then engineers can

validate the CAD design with various tools such as measurement

tools, cutting planes, drag-and-drop interaction or a physics

simulation of the model components. In contrast, TechViz is a

middleware that extends CAD software and other OpenGL-based

3D software and taps the data as an OpenGL stream and can display

it in immersive VR hardware systems (Bayart et al., 2015). The focus

here is also on the design review application. Then there are tools

that have amodular systemwith which virtual machines up to entire

systems and production facilities can be modelled. These include

tools from LivingSolids, iPhysics from Machineering and the RF:

Suite from EKS Intec. All of these tools functionalities for the virtual

commissioning of machines (Hauf et al., 2017). They are also united

by the complexity of the user interfaces, with which the user has to

configure the virtual machines. The user imports 3D data from

machines and systems, and then has to add any dynamic and

functional properties meticulously by hand. The simulation

modules have to be activated and parameterized, and the

production processes have to be defined. This means that the use

of such technologies on a broad scale and especially in the product

development process is not attractive, especially for SMEs. The costs

of building up personnel and know-how, working with these tools,

and the time it takes to build up virtual functional models is difficult

to outweigh the potential advantages or represent an entry hurdle

that is too high. There is also the problem of the acceptance of such

technologies, strongly linked to the ease of use. This is essential to

successfully introduce virtual engineering in the product

development process, otherwise the systems will be used less and

less until they lie derelict.

2.2 Summary of limitations

Solving the limitations of state of the art virtual

engineering systems and research projects is key to

unlock the acceptance of such technologies in SMEs.
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• Design review and virtual commissioning systems require

expert knowledge to be used productively. SMEs are

reluctant to employ someone only for virtualizing

machines.

• Only static CAD validations are possible without an expert,

but this greatly limits the added value generated. Dynamic

and functional aspects need to be validated as well.

• Using those systems for virtualizing machines is very time

and effort intensive. This makes them unsuitable to use

during the product development as the virtual model will

quickly fall behind.

2.3 Machine virtualization

The virtualization process of machine models is key for

applications like virtual commissioning and software and

hardware in the loop. There are two major research directions

in the field of virtual commissioning. On the one hand, there is

research and development at manufacturers of automation

solutions such as Siemens, who develop software in order to

be able to implement software and hardware-in-the-loop more

easily. This includes, for example, Simit, with which PLC systems

can be emulated (Siemens, 2022a). Another important research

effort is the AutomationML (AML) initiative (AutomationML,

2022). This is primarily about efforts to develop an exchange

format for functional models, especially for virtual

commissioning. AML makes it possible to map geometry,

kinematics and logic together, to reference each other and

thus map entire functional models (Schroeder et al., 2016).

For example, the wiring can be mapped, or the kinematics of

robots. Development is still in its infancy for both the emulation

of PLC systems and tools that support AML. The range of

functions is very limited and heterogeneous, depending on the

tool and its specialization.

2.4 Automating the machine virtualization

Now we want to take a look at promising technologies to be

able to efficiently create interactive virtual machine models

infused with intelligent behavior. To add behavior to a

machine, the simplest way is to hard-code it using the tools

mentioned above. A more modular approach is to use a

knowledge base and a reasoning engine to build up a

semantic layer for your virtual environment, where all

semantic information is aggregated and linked to virtual 3D

assets. This approach essentially allows adding generic behavior

to the virtual environment based on generic ontologies. It is

especially interesting for automatically parameterizing

simulation models. Simulation systems can directly interact

with the semantic layer and greatly increase the possible

machine behaviors, like simulating electric signals, mechanics,

hydraulics and many more. Using those highly complex

interwoven simulation systems, it is possible to do design

reviews using dynamic, interactive models with a realistic

behavior.

In this regard we identify a clear research gap. Thongnuch

et al. (Thongnuch and Fay, 2017) propose a practical and semi-

automatic workflow to derive kinematics from a CAD model for

robot simulations. Their method is very use-case specific. Chang

et al. (2011) proposed a procedure for the kinetic modeling of the

slider-crank mechanism. Their algorithm extracts the kinetic

model from the geometric model of a fixture, their algorithm

works efficiently but its application is limited to the slider-crank

mechanism. Park et al. (2010). (Ko et al., 2013) developedmethods

to derive behavior models from PLC programs. But the approach

is still very limited. Reinhardt et al. (2019) made a survey of

methods for automatic simulationmodel generation. They identify

the same issues and challenges with automating the creation of

simulation models, especially for machine simulations. Current

research is very use-case oriented. “We argue that accessing and

finding (all) required information in typically-heterogeneous

distributed data landscapes of manufacturing enterprises still

poses an essential issue that has to be solved to advance

industrial usage of automatic simulation model generation.

Future research, therefore, should strongly focus on

universality.” This is the exact focus of our work.

2.5 Causal discovery in machine
simulations

A major issue persists that the added value from the design

review is limited by the possibility to extract insights from the

virtual models. At this point, the only way to do this is to

interactively investigate the models, supported by rudimentary

tools like clipping planes and 3D measuring. Engineers can also

look at explicit data structures like scene graphs or simulation

parameterization, but this is very limited andmost of the intrinsic

data is not transparently available for investigation. This is where

Causal AI (Moraffah et al., 2021), a machine learning and data

mining technology, can help process all extrinsic and intrinsic

knowledge contained in the virtual simulation and offer a

window to it. There is an open source project called

CausalML (Chen et al., 2020), which is a Python

implementation of algorithms that aim at bridging causal

inference and machine learning technologies. The aim in our

research and development strategy is to create the virtualization

and simulation system as described above to make virtual

engineering a practical tool for everyday engineering,

especially in small and medium-sized enterprises. We will

explore the use of CausalAI methods to create powerful

introspection tools and leverage advanced applications in

virtual environments like training, monitoring and

maintenance simulations.
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2.6 Virtual simulation of tunnel boring
machines

The maturity of digital and virtual twins has iteratively been

improved in recent years of research and development. A formal

description of digital twins, which is a subset of the virtual twin was

formally described by Bönsch et al. (2022). The highly specific use

case of a tunnel boring machine (TBM) is a rather broadly spread

implementation with multiple subsystems to handle different tasks

during the tunneling process. For single subtasks, complete physical

simulations often require enormous amounts of computing power

and computing time, which must be heavily reduced for a virtual

simulation running in real time. Cutting properties through various

underground types such as soft soil or rocks have been simulated

through numerical means including FEM which run offline with no

real-time capabilities (Li and Du, 2016; Wu et al., 2022).

Advancement of the whole tunneling process has been analyzed

and simulated, the modeling includes analytical, numerical and AI-

based approaches such as fuzzy logic andmachine learning methods

(Ninić and Meschke, 2015; Xu et al., 2019). Finally, virtual

representations of TBMs and the process of tunneling has rarely

been implemented, mostly due to lack of added value in the product

life cycle itself. For research purposes in the area of virtual twins,

there have been works in this area (Jun et al., 2009; Li et al., 2010).

Isolated submodules of the TBM such as the navigation and control

system or the cylinder presses have been virtualized (Mao et al.,

2013). Further work has been done similarly to our use case of

teaching newmachine operators or distributing the knowledge of the

functionalities within the TBM to other engineers (Sepasgozar,

2020). Most of the aforementioned results specialize in defined

research areas of a TBM in offline use. While there have been

some approaches to generate virtual TBMs, the results were not as

intricate as our system due to our integration of the PLC running real

machine control code coupled in real time to the virtual simulation.

3 Implementation

3.1 Virtual tunnel boring machine

In this section, we present a software- and hardware-in-the-

loop project of a tunnel boring machine for training purposes.

The simulation is highly complex, utilizing various simulation

modules with multiple interfaces between each other. This

example will be used to demonstrate the potential of

interactive intelligent virtual models.

3.2 Machine control stand

Tunnel boring machines are highly complex systems. Their

operation is permanently monitored during run-time, both by

safety programs and by the machine operator. The overview of

the machine as a whole and individual subsystems of the tunnel

boringmachine are presented to themachine operator on a visual

dashboard (see Figure 1). This dashboard shows parameters such

as the tunneling advancement speed and the revolutions per

minute of the cutting head - similar to a car’s dashboard cluster.

Additionally, the dashboard displays the temperatures, the

position of the machine’s cutting shield, the pressures of the

hydraulics for either steering cylinders as well as propulsion

cylinders and a view of the installed water circuit. The water

circuit is used to transport the excavated material back through

the dug out tunnel segments to the surface, where the sediment is

filtered out. The filtered water is then re-fed into the water circuit.

Lastly to be seen it the bentonite supply, which serves, among

other purposes, as a lubricant for the machine and following

tunnel segments in the borehole. This dashboard is driven by the

programmable logic controller (PLC), which basically writes a set

of variables corresponding to displayed aforementioned

information.

3.3 Machine simulation

The aim of this project is a virtualization of the tunneling

experience for training purposes. The simulator is intended to

provide a prospective machine operator with a safe training

environment containing a realistic interface and displaying a

machine behavior resembles reality as close as possible. Other

aspects include a rudimentary configuration of the geology and

route planning. In this way, unforeseen borderline cases such as

faults, errors and load peaks can be virtually predefined,

reproduced and safely trained. For this purpose, a digital

representation of the machine in the ground is created and

used for simulation in the Earth. The simulation is connected

to the control system on a PLC. The control program of the

FIGURE 1
Physical operator terminal, steering panel and display for
showing system status.
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tunnel boring machine is connected to the machine simulation

via the communication protocol OPCUA. The PLC is supplied

with input data from the real-time simulation of the machine, as

if a real machine was present and drilling in the ground. Inputs

include sensor data (pressures, speeds, laser distance

measurements, and temperatures) and actuator data (valve

positions, power settings of pumps and motors, cylinder

positions).

The simulator consists of three parts: Physical Control Panel,

Programmable Logic Controller (PLC) Program, Machine

Simulation, which are subdivided again into further modules.

Figure 1 shows the physical control panel with two attached

displays very close to the Human Machine Interface (HMI)

which the operator faces on a construction site to control the

tunnel boring machine. This is necessary for both the real

machine as well as the simulator to guarantee that the learner

has the same haptic feeling and visual cues just like on site. While

within the virtual simulation a virtual representation of the

control panel is possible and implemented as well, one benefit

of a real control station is, that already the feelings of familiarity

are primed for the machine operators. The PLC program runs

between the physical control panel and the simulation and is

responsible for the behavior of each moving component of the

tunnel boring machine. In this program, the data from all the

sensors are consolidated and processed. Depending on set targets

and safety limits, specific behavior (e.g. power cut off, or safety

valve position) is programmed into the software to protect both

the machine and human personnel in the vicinity. Reactionary

behavior according to the operator’s input is also commanded by

this software (e.g. variable pump output, valve position, motor

speeds).

On the virtual side of the simulator, as depicted on Figure 2,

the virtual representation covers the tunnel boring machine up to

a certain degree of detail. In the most optimal case of

implementation, the machine would be virtually identical to

the real counterpart. Due to typical restrictions such as

computational power and the real-time constraint, the

simulation has to be simplified, especially regarding the detail

and behavior of mechanical parts as well as the accuracy and

correctness of the physical simulations. This should not impact

the machine operation experience for the user.

3.4 Data preparation for the simulation

The virtual tunnel boring machine consists of the machine’s

visual representation, which is derived from the CAD-model.

The CAD-model was supplied by Herrenknecht as a STEP file.

The PLC program is provided as a TIA Portal project and pre-

installed on the Soft PLC. The STEP file is read and processed

when starting the simulation. The model’s geometries, CAD

parts and components, are restructured according to motion

groups, especially the cutting wheel group, the head group of

the machine and the tail group. The wheel is attached to the

head with a rotation joint and the head and tail are linked

through a complex joint, in fact four pairs of individual joints in

parallel, as seen on Figure 4B. The position in space of those

motion groups is controlled in real time by the simulation, but

those geometric positions and orientations are also used to

show the current machine and boring wheel position and

direction to the user. The geometric representation also

allows the user to see an accurate 3D representation of

steering cylinder expansions, the cutting head’s steering

capabilities, and it is cutting wheel rotation speed. To

calculate these parameters, the virtual simulation is

implemented on a physically based model of the machine.

The modular architecture of the simulation contains the

following subsystems of the tunnel boring machine: The

propulsion of the whole machine is handled by hydraulically

actuated cylinders (Figure 3) which have pressure sensors to

show how much force is applied to drive the boring machine

into the Earth. The cutting head is driven by a hydraulic motor

(Figure 4A) with varying swallowing volume to allows for

variable torque of the cutting head and in dependence of

that a varying rpm. The resulting pressure of this hydraulic

motor needs to react both to disturbances like rocks in the

underground, as well as the level of pressure passed through the

tunnel segments from the propulsion cylinders. Another

submodule is introduced for the water circuit with all the

integrated pumps, valves and sensors. Lastly, the hydraulic

steering cylinders (Figure 4B) are simulated with a simple

multi body system. A double hinged spring and damper

system ensures a stiffness of the cylinders when holding

their position through physical stop valves. An important

characteristic of the system is that it has some flex, which

allows the movement of single cylinders without interlocking

the whole cutting shield in front of the machine. An overview of

the individual subsystems and interaction interfaces can be seen

in Figure 5. The PLC runs the original machine code and gets

FIGURE 2
Visualization of the virtual tunnel boring machine.
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sensor inputs over OPCUA, those inputs are computed in the

simulation. The higher level machine simulation is scripted and

reads state variables from lower level simulation modules.

Actuator commands from the PLC are read vie OPCUA and

processed in the simulation.

While the PLC is run on proprietary tools such as classical

Siemens PLC and programmed in TIA, the virtual side of the

simulator is developed and run in our in house open source

virtual engineering system “PolyVR” (Haefner, 2014; Häfner,

2019). This open source 3D engine has been developed at our

institute for research and industrial use cases mostly covering

mechanical engineering but also interdisciplinary projects from

other research areas such as building planning, chemistry,

material science as well as education. We deploy this software

environment to drive highly immersive visualization systems

such as CAVEs or 3D Powerwalls and have extended in recent

years to HMDs such as consumer-grade VR-glasses running

through the SteamVR pipeline. While the source code of the

engine, which holds all the connection modules for data

exchange, communication protocols and interactive simulation

cores is publicly available in C++ on GitHub (Häfner, 2014), the

code of each single project is written mostly in Python with

bindings to the functionality of PolyVR’s code base and usually

not published.

3.5 Summary of contributions

Developing this simulation of the tunnel boring machine

aimed at creating a driving simulator to train workers at

monitoring and steering the tunnel boring process. The

contributions of our work are:

• Developed a simulation system for a virtual tunnel boring

machine, including the hydraulic subsystems and the water

circuit.

• Developed an interface from the virtual tunnel boring

machine to the original PLC code to obtain an authentic

machine behavior.

• Developed a basic system to configure the simulated boring

process.

• Developed a driving simulator to train driving a tunnel

boring machine.

The development of this simulation has clearly shown the

problems and challenges in creating virtual machine models. In

the next section, methods to address these challenges will be

presented in the context of another use case.

FIGURE 3
Propulsion cylinders in red.

FIGURE 4
(A) Directional steering cylinders marked with arrows. (B) Visualization of the underlying physics simulation of the steering cylinders.
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3.6 Methods for automated machine
virtualization

The section above described the making of a virtual tunnel

boring machine. This section will present methods of creating

virtual machine models using algorithms, essentially trying to

automate the virtualization process as much as possible. The

use case here will be an integrated production line of chewing-

gum. Virtual commissioning generally enables extensive

validation of the planning data during product development,

especially in special machine construction. However, the effort

to create functional virtual models, to model the dynamics and

kinematics, to parameterize the interaction with scripts and the

real-time simulations is an enormous effort, for every machine

model, version, variant and development progress. The

automation of the creation of virtual functional and

interactive machine models is a research field that has been

addressed by the authors for several years (Häfner et al., 2020).

They use it as a basis for all virtual engineering methods such as

design reviews during product development, the virtual

commissioning of production lines, training applications,

maintenance simulations, material flow simulations and

much more. Virtual engineering as a new working method

in product development should make it much easier for

engineers and product managers to validate the partial

development or interfaces between the groups of engineers

working on different parts of the product or machine. In

addition, software and hardware in the loop methods and

systems allow bringing work steps forward that can already

start with the virtual components instead of real ones. Virtual

commissioning allows validating models, including process and

processing simulations. In order to consistently validate

mechanical and electrical CAD as well as programming,

automated virtualization systems must integrate all planning

data into a virtual twin of the machine, system or integrated

production line at the push of a button as depicted on Figure 6.

For this purpose, generic intelligence is automatically added

with the help of Semantic Web technologies and enables

complex interactive models that can be used for training,

monitoring and many other applications beyond the mere

validation of planning data (Häfner, 2019; Häfner et al.,

2020). Advanced applications that are based on virtual

machine models are for example training and support

applications, especially combined with augmented reality

systems and remote collaboration systems, synchronous and

asynchronous. In order to achieve this high degree of

automation, geometry analysis algorithms were developed to

capture as much intrinsic knowledge as possible in the

mechanical CAD data and thus, for example, to

automatically parameterize kinematic simulations. Such

interactive simulation modules are important to simulate the

behavior of the machines and processes and to give the user

extensive interaction options. Another aspect is the automated

aggregation of the entire knowledge from the planning data, in

particular the merging of the component data in MCAD and

ECAD. The software system used to implement the sub systems

mentioned above, data interfaces, interactive simulations and

virtual engineering applications is the virtual engineering

system PolyVR (Haefner, 2014; Häfner, 2019).

3.6.1 Mechanical simulation
For the simulation of a machine, the dynamic properties of

the mechanical components are required. If the modeling of the

mechanics and kinematics is not explicitly available in the

FIGURE 5
Simulation architecture of the virtual tunnel boring machine.
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MCAD data, this informationmust be determined elsewhere. For

this purpose, after importing the mechanical design, geometry

analysis algorithms are applied to the virtual model to calculate

the parameters required for the simulation setup. The semantic

layer contains the information which algorithms and parameters

are required for the kinematic simulation of the different

components. Figure 7 shows an example of the geometry

analysis of a gear. First, a principal component analysis is

used to determine the rotational axis of the gear. In the next

step, by projecting the points of the geometry model into 2D

polar coordinates and then fitting a sinusoidal function, tooth

spacing and tooth height, among others, can be determined.

Finally, the topology of the mechanical system is determined as

shown in Figure 8. Then the simulation model is ready. The

kinematic simulation determines the motion of mechanical

components, considering the constraints imposed by collisions

with other parts and mechanical connections. In addition, the

user should be able to interact with the simulation. In PolyVR,

mechanics can be simulated with interactive performance. In

part, the classic physics engine Bullet (Coumans and Bai, 2016) is

used, supplemented by an analytical simulation of mechanical

constraints such as the interaction between gears, threads and

chains. Here, movements of components are propagated through

the mechanical chain. The most common combinations are gear-

gear, gear-chain and gear-thread. Other links such as gear-axis

and other kinematic joints attached to the mechanical parts are

simulated by the physics engine. The way the simulation

workflow is designed makes it very flexible. The simulation

responds to any change in the model, especially user

interaction. It may happen that the model undergoes changes

on two mechanical elements that are mechanically inconsistent.

This can be, for example, a collision or an incorrectly designed

gearing. In this case, the mechanism locks. In the automated

virtualization process, the mechanics simulation is automatically

instantiated and parameterized. For this purpose, the relevant

parameters are taken from the semantic layer (see Section 2.3).

This contains, among other things, the mechanical properties of

the components such as the gear pitch.

3.6.2 Electrical simulation
An important step in the virtualization process is the import

of the ECAD data and its linkage with the MCAD models. The

ECAD data and PLC programming are exported from the

respective modeling tool. The data on which the

implementation described here is based comes from EPLAN

(EPLAN, 2022) and TIA Portal (Siemens, 2022b). The electrical

CAD data, electrical components and wiring, are imported into

PolyVR and inserted into the geometric mechanical model.

Components are for example terminals, switches and PLC.

Wiring consists of electrical cables and usually a bus system.

Each electronic component has a unique ID and other metadata

that is important for merging all data.

One challenge when importing ECAD data is that EPLAN

does not provide a central project file with all the required data.

The distributed data is imported to a data model of the power and

communication network. One file contains a list of ECAD

components and metadata. The next file contains the cabling

as well as the cable designation, start addresses and destination

addresses. An address is mostly structured according to the

scheme

machine − component − socket: port

Where a component is identified with

machine − component

and

FIGURE 6
Integration of heterogeneous data sources towards the virtual prototype.
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socket: port

is relevant for the simulation. Here in particular, the

assignment of some ports to LAD variables is important. The

difficulty now consists in the assignment of the electrical and the

mechanical components to each other, at least for those

components, which are present in both planning worlds.

These are mostly actuators, sensors and HMI elements.

Mapping takes place when there is sufficient correspondence

between strings found in MCAD and ECAD data. Figure 9 shows

the mechatronic components that are present in both ECAD and

MCAD data and could be mapped automatically. The layout of

the graph is automatically generated based on the 3D positions of

the components. The visualization shows on which edges of the

graph a current signal is present and updates itself when a change

in the current network occurs due to the simulation described

below.

The mechatronic components and the power grid are

simulated using graph traversal methods. A node is an

electrical component and an edge is a cable. Starting from

the main power supply node, the entire graph is traversed. The

simulation essentially follows the electric current. The traversal

starts with the main power supply node. Each evaluated node is

marked to avoid duplicate evaluation. The components have

multiple ports, the simulation determines how the current flows

at the output ports depending on the component. The most

basic component like a fuse simply allows current to pass. A

more complex component is the switch, whose status defines

whether the current can flow or not. The most complex

components are the PLC modules, whose programming

defines the current at the output ports. User interaction can

change the state of the HMI components. For example, current

flows to a PLC by pressing a switch. The port on the PLC sets a

FIGURE 7
Process of geometry analysis to segment gear parameters like the pitch and teeth length.
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variable in the programming. The next section discusses

emulation of PLC programming.

To bring the virtual plant to life, the behavior must be

simulated, which is stored by the automation or the

programming of the PLC. The programming defines how the

PLC processes input signals and thus controls actuators, for

example. The state of certain variables can be changed by analog

or digital signals to the PLC from sensors or HMI components.

Internal variables are changed by the program flow. Output

variables define currents at the PLC output modules, these

determine for example the behavior of the actuators.

Machines often have touch panels that can be used to

configure the behavior of the PLC and thus the machine. For

example, actuators can be configured. The touch panels were

virtualized in the 3D model as an interactive 2D surface. This is

done with PolyVR’s website rendering module. The software and

its user interface on the panel are replicated as a website.

Machine-specific programming and configuration logic can be

loaded generically and automatically. The panel displays the

parameters that the user can change. This completes the

functional chain of the virtual model so that the user can start

and configure the virtual plant.

To simulate the behavior of the plant, the PLC programmust

be analyzed and its execution emulated. The programming

language analyzed in this work is the Ladder logic language.

The data used in the implementation of the LAD emulation is

divided into different files, each containing the actual program

logic, the variables with hardware addresses, the HMI

programming and much more. This data must be combined

to emulate the programming and interface with the wiring data

model. The program is divided into what are called

computational units, each containing a circuit diagram with

operators and function blocks, as shown in Figure 10. The

FIGURE 8
Kinematic chain, from the engine at the bottom to the
gearing on top.

FIGURE 9
Wiring graph and electrical components of the machine.
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operators have inputs and outputs, and they are also connected to

variables. When the operators are evaluated, the value of the

variable determines the traversal.

The correct traversal of a computational unit is to prioritize

the siblings, since nodes where two or more branches are merged

must know the values of all previous nodes. The algorithm starts

with the operator at the top left. The traversal is shown in

Figure 10. The nodes, LAD operators and programming

blocks, are evaluated in the process. When a variable is

changed, the programming is traversed. This can happen, for

example, after a user input or sensor activation. If the

programming logic itself changes variables, the programming

is run through as often as necessary until no more changes take

place.

3.7 Evaluation parameters and results

We evaluated our results by assessing the system complexity

for each component of the virtual machine model like the scene-

graph, the semantic layer and each sub-simulation module. The

machine model is the virtual production line described above.

Next to the complexity we indicate the computation time per

frame. The simulation ran on a gaming laptop with a GTX 1060,

with a 31 s start-up time. The results are shown in Table 1.

The simulation is fast enough for real-time user interaction.

There is also still enough buffer to simulate even larger machines

as well as add more simulation modules like for example a

material flow or a heat simulation.

3.8 Summary of contributions

With this work we were able to create a interactive virtual

machine based on mechanical, electrical and programming

CAD data using an automated workflow. The methodology

was validated using a model of an integrated production line.

Figure 11 shows the virtual plant. STEP data from SolidWorks,

ECAD data from EPLAN and programming from TIA Portal

were merged into a functional machine model. The

contributions beyond the state-of-the-art are:

• Data interfaces and algorithms to merge MCAD and

ECAD data into a common semantic data model.

• Geometry analysis algorithms to analyse and extract

dynamic properties of gears and axles from CAD

models.

• Automation of parameterizing simulation modules using a

knowledge base.

• Automated integration of MCAD, ECAD, and PLC

programming to simulate the authentic machine behavior.

Next we list the impact our method has on the limitations of

state-of-the-art systems to clearly present the scientific value of

our work. The list of limitations has been presented in

Section 2.1.

• Design review and virtual commissioning applications

are turn-key ready fully automated systems, they will not

require expert knowledge to be used productively. This

should make it much more attractive for SMEs to invest

in virtual engineering methods and systems.

• Not only static, but also dynamic and functional CAD

validations are possible without an expert. This should

greatly increase the added value generated.

• The virtualization of machines is now possible in a few

minutes instead of days or weeks. This makes virtual

engineering suitable to use during the product

development as the virtual model will always be based

on the most recent planning data.

This technology is the basis for a variety of VR

applications in plant engineering. The automated

FIGURE 10
Example of ladder logic and the traversal of the operators.

FIGURE 11
Integrated production line for chewing gum.
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virtualization is a fundamental game changer for design

reviews with functional models up to virtual

commissioning. But this method also greatly simplifies the

authoring of more advanced applications that can use those

functional machine models for software and hardware-in-the-

loop, operation and maintenance training applications and

virtual twins for configuring and monitoring. In this regard,

the impact of optimizing the data interfaces, simulating as

many aspects of machinery as possible and interactively, goes

way beyond the product development process. For engineers,

this offers a new horizon of possibilities, especially to create

and deploy VR supported applications like training and

monitoring in production settings and not only as

demonstrators in academic settings. The next section will

present methods to combine AI technologies with the

virtual machine simulations.

3.9 Artificial intelligence and virtual
environments

The simulation of machines, logistics and processes is

complex as it is, especially when automating the creation of

the simulation models from CAD planning data. But it is still

rather classical development of data interfaces, data analysis,

simulation algorithms and automating their parameterization.

The next logical step in development is to infuse those fully

dynamic and interactive virtual environments with

intelligence. The following section will discuss the use of

semantic web technologies, knowledge bases and reasoning

engines, as well as causal inference in combination with

machine learning (ML), to add more semantics and

intelligent behavior to the virtual environments. We

present multiple proof of concept use-cases.

FIGURE 12
Semantic layer of a simple scene, gray boxes are the taxonomy concepts and the orange boxes the ontology entities.
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An ontology in the context of the semantic web is a data

structure that contains a taxonomy, a set of inference rules and

a set of entities (Leo Kumar, 2019). The taxonomy contains

concept labels with inheritance relationships that form a

hierarchical structure. Each concept has a set of properties.

The entities are data objects, instances of the concepts defined

in the taxonomy, with a properties map of key-value pairs. Such

an ontology allows to explicitly represent knowledge of the

virtual environment. This in itself is very useful, for example for

supporting complex application logic or enriching geometric

models with semantic information. But the fascinating usage is

combining the virtual environment with a reasoning system.

Without going into the details of the internals of such an engine,

it is important to understand its basic capabilities. A reasoning

can answer questions based on the available knowledge. It does

this using inference and other logic mechanics and analyze the

entities and their properties of the virtual environment

ontology.

Instead of training a system using labelled data, generic

knowledge is explicitly given in a machine and human-readable

FIGURE 13
Fully unrolled processing of a query to the reasoning system.
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form. This allows modeling complex knowledge, with many

concepts bundled into domain specific taxonomies. An example

of such an ontology that describes a virtual production is given in

Figure 12, the resulting reasoning process is visualized in Figure 13.

Those are of course only visualizations to explain the inner workings

of the system, the author of the virtual environment needs of course

tomodel the ontology for his application. This can be a lot ofmanual

work to define the concepts, properties and create the entities, but

using the automated virtualization process in combination with

generic domain taxonomies can greatly reduce the amount of work

in this regard. For the user who experiences the virtual environment,

it should create a highly immersive experience where all elements in

the environment behave consistently and intuitively. The goal is to

use reasoning to deduce on run-time the reaction of the

environment to the user interaction. This should greatly simplify

the creation of highly interactive virtual worlds, especially having the

ability to create new reactions based on logic to unexpected user

interaction.

3.10 Causal discovery in machine
simulations

Another emerging technology of the artificial intelligence

domain is Causal AI, in short it is about causal inference in

combination with machine learning (Vuković and Thalmann,

2022). The idea is to be able to compute the effect of changing a

variable on another variable using machine learning on time

series. Based on this, it is possible to create causal graphs where

the causal relations between variables are contained.

FIGURE 14
CausalVR concept, using CausalAI with simulations of interactive virtual models of machines and production lines.

FIGURE 15
Simple hydraulics simulation to test causal discovery using machine learning.
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The automated virtualization is a complex system with many

parameters and simulation sub-systems. There is thus a lot of

intrinsic knowledge contained within the complex interaction

between simulation modules when actually simulating the

environment, for example a production line. The idea is to

significantly expand the added value of such a functional

model of an integrated production line by automatically

converting intrinsic causal relationships in the model and the

simulation into a graph structure using machine learning. The

user should then be able to carry out complex analyzes in order to

be able to optimize various aspects. This would be a perfect

addition to a virtual engineering dashboard, where the user can

introspect and interact with the virtualization system. One could

easily explore the network of observables and their causal

relations. An engineer could execute the most complex

holistic analyzes of the planning data supported by the causal

graph. Our concept to create such a causal discovery system is

depicted on Figure 14.

A basic example of using causal AI methods with a

machine simulation is based on the tunnel boring

simulation described above. A core module of that

simulation is the hydraulics simulation. This module has a

simulation model that is completely embedded in the

knowledge base. This greatly simplifies the process of

creating a set of observables, the first step of applying

causal analysis algorithms. The properties of all relevant

entities like pipe segments, pumps, tanks and valves are the

observables, they are logged during the simulation. Using

machine learning techniques, the causal relations between

those observables is computed. Figure 15 shows the first

setup used to create the first time series. Two tanks are

linked through a pipe with a pump in the middle and two

valves around it. The three green buttons allow the user to

toggle the valves and the pump. The blue dots and labels

hovering above the 3D components are the observables

deduced from the ontology model. After a short simulation

run, a naive application of the Causal AI methods to the time

series did indeed get promising results. The causality between

opening the right valve and increasing pressure in the tank on

the right was indeed discovered with a average treatment

effect of 0.96 with lower and upper bounds of 0.94–0.99.

4 Conclusion and outlook

The engineer of tomorrow will need to understand and

manipulate much more complex systems and tools to manage

the ever-growing requirements and complexity of product

development. Those methods will not focus on easing

modeling and planning like CAD systems, but much more on

simulations and artificial intelligence to allow much faster

development, much more advanced optimizations and much

more efficient validation iterations. We proposed a system that

combines virtual reality, virtual engineering and artificial

intelligence methods for the product development process.

In the described use case of a TBM, we showed that generating a

virtual simulation can easily reach a level of currently unwieldy

complexity. While the general systems are simple to comprehend,

most submodules require a platitude of parameters tomirror real life

behavior to reduce the necessity for in depth numerical simulation

models. We encountered many difficulties during the development

of the simulation, and some do persist. A major issue is the

communication over OPCUA which is very reliable but has

major issues with bandwidth and latency. Different

communication protocols such as MQTT might prove technically

faster with less overhead. Another promising workaround would be,

to connect directly onto the BUS system. While we currently cover

most of the main features involved in the tunneling process, further

supporting systems and submodules still need to be developed and

included, such as the lubrication of the advancement through the

deployment of bentonite to coat the TBM.

The TBM simulation was an important use-case to advance

our software and hardware-in the-loop research. It will also help

continue the research on automating the simulation

parameterization. But most importantly it will be the perfect

model, due to its semantic layer, for the causal AI research. In

contrast to the TBM simulation, the production line simulation

was created fully automatically. There the focus lies on the

product development process and the toolset for engineers

during that process for validating their planning data. There,

the integration of causal AI methods is very promising to greatly

increase the added value of virtual engineering methods. Our

vision is to be able to select a specific parameter of the machine or

production line to be optimised. Then the system displays all the

TABLE 1 Evaluation parameters and results.

Module Complexity Computation time [ms]

Traversal The scene graph contains 6,012 nodes 5

Rendering The scene contains 5.6 million triangles and 6.4 million vertices 7

Knowledge base The ontology contains 146 concepts and 4,911 entities

Mechanics 17 mechanical components 0.083

Electrics 115 electrical components 2.453

PLC Emulation 55 compile units with a total of 229 operators, 504 wires and 11,495 variables 0.985
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nodes from the causal graph that directly impacts the selected

parameter. Those are the adjusting screws that can be used for the

optimization. But it does not halt there, the user can check each

node to see its causal ramifications throughout the whole

simulation and decide, based on the causal effects of each

node, which one to actually change. Such a tool would be a

real game changer for virtual engineering as a whole. Further

integration of AI methods such as causal inference into our

software and hardware-in-the-loop approaches within the virtual

simulation system will improve the overall maturity and efficacy

of how its application can be employed in the product life cycle.

Further research and efforts to bring advanced causal inference

algorithms into virtual engineering applications will be pursued, as

will the topic of interactive reasoning to create true generic smart

virtual environments. The combination of knowledge based

inference engines with machine learning based causal discovery

is very promising. A next step in that direction is to build a system

that automate the process of creating that causal graph. Further,

explore the state-of-the-art causal AI algorithms and methods and

how to apply them to engineering use cases. Especially regarding

time series, there are methods like Granger and Toda-Yamamoto

causality (Moraffah et al., 2021) that may help handle the causal

effects delayed in time. It is also necessary to better scale

performance wise with big models and long time series, as part

of the algorithms should be applicable in real-time.
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