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Background: Numerous studies have investigated emotion in virtual reality (VR)
experiences using self-reported data in order to understand valence and arousal
dimensions of emotion. Objective physiological data concerning valence and arousal
has been less explored. Electroencephalography (EEG) can be used to examine correlates
of emotional responses such as valence and arousal in virtual reality environments. Used
across varying fields of research, images are able to elicit a range of affective responses
from viewers. In this study, we display image sequences with annotated valence and
arousal values on a screen within a virtual reality theater environment. Understanding how
brain activity responses are related to affective stimuli with known valence and arousal
ratings may contribute to a better understanding of affective processing in virtual reality.

Methods:We investigated frontal alpha asymmetry (FAA) responses to image sequences
previously annotated with valence and arousal ratings. Twenty-four participants viewed
image sequences in VR with known valence and arousal values while their brain activity
was recorded. Participants wore the Oculus Quest VR headset and viewed image
sequences while immersed in a virtual reality theater environment.

Results: Image sequences with higher valence ratings elicited greater FAA scores than
image sequences with lower valence ratings (F [1, 23] = 4.631, p = 0.042), while image
sequences with higher arousal scores elicited lower FAA scores than image sequences
with low arousal (F [1, 23] = 7.143, p = 0.014). The effect of valence on alpha power did not
reach statistical significance (F [1, 23] = 4.170, p = 0.053). We determined that only the
high valence, low arousal image sequence elicited FAA which was significantly higher than
FAA recorded during baseline (t [23] = −3.166, p = 0.002), suggesting that this image
sequence was the most salient for participants.

Conclusion: Image sequences with higher valence, and lower arousal may lead to greater
FAA responses in VR experiences. While findings suggest that FAA data may be useful in
understanding associations between valence and arousal self-reported data and brain
activity responses elicited from affective experiences in VR environments, additional
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research concerning individual differences in affective processing may be informative for
the development of affective VR scenarios.

Keywords: virtual reality, mobile EEG, frontal alpha asymmetry, affective images, valence, arousal, emotion, frontal
alpha asymmetry burst analysis

1 INTRODUCTION

Physiological input can be brought into games and virtual reality
(VR) experiences to create a more personalized, dynamic
experience. The increasing popularity of physiological data
monitoring in games and the simultaneous advancement in
consumer-grade physiological tracking technologies has led to
a great increase in affective gaming research, effectively
enhancing the player experience (Robinson et al., 2020).
Research in affective experiences, however, remains in its
infancy, as there exist few standard protocols for evaluation
(Robinson et al., 2020).

Numerous studies have investigated affective responses to
better understand user emotions elicited during various VR
experiences. Affective responses in VR have been investigated
through self-reported data (Felnhofer et al., 2015; Lin, 2017;
Voigt-Antons et al., 2021) as well as physiological data
(Kerous et al., 2020; Kisker et al., 2021; Schöne et al., 2021).
Self-reported data often examines affect from the perspective of a
dimensional model of affect (Poria et al., 2017).

Russell’s circumplex model of affect (Russell, 1980) includes
two dimensions commonly explored in affective research: valence
(pleasantness; unpleasant to pleasant) and arousal (intensity; low
to high). Valence represents the level of pleasantness of an

affective stimulus, while arousal represents the level of
intensity or excitement elicited from an affective stimulus. A
visualization of this model can be seen in Figure 1. For example,
Bored is shown in the lower left quadrant of Figure 1, as it is an
unpleasant, mild intensity affective state, while Astonished is
shown in the upper right quadrant of Figure 1, as it is a
pleasant, high intensity affective state. While VR research
investigating valence and arousal dimensions of affect has
increased in recent years (Marín-Morales et al., 2018), arousal
is investigated more frequently than valence in head-mounted
display (HMD) based VR experiences (Marín-Morales et al.,
2020).

While questionnaire data can increase knowledge concerning
user emotional states, combining self-reported with objective,
physiological data is recommended to increase interpretability of
results, which may also increase efficacy of VR experiences in
serious applications (Checa and Bustillo, 2020). Therefore, it is
our belief that additional research is needed to elucidate findings
related to affect by increasing efforts to understand associations
between self-reported and physiological data.

Indicative of neural processes, electroencephalography (EEG)
is often used to investigate correlates of emotional responses in
VR environments, such as valence and arousal (Marín-Morales
et al., 2020). Several VR studies have examined emotional
correlates through the measurement of frontal alpha
asymmetry (FAA) (Rodrigues et al., 2018; Kisker et al., 2021;
Schöne et al., 2021); a score measuring the difference between
right and left prefrontal cortical activity (Harmon-Jones and
Gable, 2018).

Perhaps the most investigated model, the valence model of affect
(Davidson et al., 1990) proposes that relatively greater left prefrontal
cortical activity is associated with both positive emotions and
approach, while relatively greater right prefrontal cortical activity
is associated with negative emotions and withdrawal. However,
Harmon-Jones and Gable (2018) suggest an FAA model based
on motivational direction alone, as the negatively valenced
emotion of anger is associated with greater relative left frontal
cortical activity, while Lacey et al. (2020) propose that FAA may
instead indicate effortful control of emotions rather than emotions
themselves. While multiple models of FAA exist, none have proven
to be universally valid (Kisker et al., 2021). Despite the lack of an
agreed upon model of FAA, for the purposes of this study, we
consider the valence model of affect (Davidson et al., 1990) in order
to interpret our results.

Because images can elicit a dynamic range of affective
responses from viewers, numerous studies across varying fields
of research have used images to examine emotional responses
(Quigley et al., 2014; Kurdi et al., 2017). In the present study, we
aimed to investigate FAA responses to image sequences with
known self-reported valence and arousal values. Therefore, we

FIGURE 1 | The valence-arousal circumplex model of affect as defined
by Russell (Russell, 1980). The horizontal axis represents valence, while the
vertical axis represents arousal.
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used image sequences comprised of images from the Open
Affective Standardized Image Set (OASIS) (Kurdi et al., 2017).
These image sequences have been evaluated in a previous study
(Mousas et al., 2021) in which users rated the level of arousal and
valence of each image sequence. The image sequences are
described in more detail in Section 2.5.

To examine FAA responses to the image sequences in virtual
reality, we presented the images on a screen within a virtual movie
theater environment, as described in Section 2.2. In this way, we
could investigate FAA responses to the image sequences with
known self-reported values within a virtual environment. Our
goal was to investigate the relationship between FAA responses
image sequences with annotations of valence and arousal ratings,
in order to understand how FAA responses related to the self-
reported data from the image sequences.

Similar work by Schöne et al. (2021) also investigated FAAwithin
VR using affective stimuli that the authors developed. Schöne et al.
(2021) classified their affective stimuli as positive, neutral or negative
based on its appetitive/aversive nature. Appetitive stimuli is that
which is positively valenced and which may result in approach
behavior, while aversive stimuli is negatively valenced andmay result
in avoidance behavior (Hayes et al., 2014). While members of their
research team agreed upon the classifications of their affective
stimuli, our study differs in that we examine affective image
sequences previously annotated with user-rated values of valence
and arousal. In our study, participants wore an EEG headset while
viewing these image sequences in a VR theater environment.

While we conducted additional exploratory analyses based on
our findings, we list our primary research questions and
hypotheses here:

• RQ1: Will FAA differ between image sequences with
different valence and arousal levels?
–We hypothesize that FAA will be greater during positively
valenced image sequences, as the valence model of affect
would predict.

• RQ2: Will left prefrontal cortical activity be greater than
right activity during high valence image sequences?
–We hypothesize that during high valence image sequences,
left prefrontal cortical activity will be greater than right
activity.

• RQ3: Will FAA during baseline differ from FAA during the
image sequences?
– We hypothesize that FAA during baseline will
significantly differ from FAA during the high valence
and high arousal image sequence, as this image sequence
is the most positive and intense.

Our contribution seeks to build a greater knowledge base
concerning objective affective data in virtual environments.

2 METHODS

2.1 Participants
Students at Purdue University were invited to participate in this
study via email announcements. The study was approved by the
Purdue University institutional review board (IRB), and
participants provided written consent before participation. We
collected data from 29 participants in total. Five participants were
removed from the analysis due to poor data quality from either an
inadequate EEG headset fit or head movement during the
experiment, leaving 24 participants (14 male, 10 female; age:
M = 24.38, SD = 3.50; age range: 19 − 33) for our statistical
analysis. All participants were right-handed with the exception of
two (one: left-handed, one: ambidextrous). We examined FAA
values recorded during four image sequence events (see Section
3). An a priori power analysis was conducted using G*Power3
(Faul et al., 2007) to test the difference between four image
sequence measurements (two levels of valence and two levels
of arousal) using a repeated measures Analysis of Variance
(ANOVA), a medium effect size 0.25 (partial η2 = 0.06)
(Cohen, 1988), and an alpha of 0.05. This analysis showed
that 23 participants were necessary to achieve a power of 0.80.
Our group sample size is greater than that of Schöne et al. (2016),
who displayed images to participants while investigating FAA
through EEG, and similar to Kisker et al. (2021), who used EEG to
investigate FAA during an immersive VR experience. Participants
received a 10 United States dollar Amazon gift card as
compensation.

2.2 Virtual Environment
We presented our virtual environment (VE) to participants using
the Oculus Quest VR headset. The Oculus Quest VR headset has a
visual resolution of 1,440 × 1,600 per eye, a refresh rate of 72 Hz,
and user adjustable interpupillary distance (IPD). While slight
viewing distortion may exist in HMDs, all participants used the
IPD settings on the headset and determined a comfortable
viewing setting. No participant stated that the images were
unclear.

We used a movie theater environment downloaded from the
Unity Asset store and placed image sequences on the screen,
mimicking a movie playing at a theater, as seen in Figure 2. Our
decision to place participants in a virtual theater environment was
based on work by He et al. (2018), who stated that making
participants feel like they were in a theater could create a strong
immersive experience for them, in turn inducing a strong
emotional effect (Ding et al., 2018). Additionally, Kim et al.

FIGURE 2 | Virtual reality movie theater environment used in the study.
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(2018) showed that such an immersive experience could more
significantly impact emotional responses of participants
compared to a non-immersive experience.

Although a direct, one-to-one relationship between color and
emotion does not exist, the color red is thought to contain the
most energy (Lindström et al., 2006). Therefore, it is possible the
red seats and carpet of the virtual environment provided an
energizing atmosphere for participants, which may have
influenced feelings towards image sequences. Because all
participants experienced the same virtual theater environment,
we assume any effects from the color of the environment are
comparable between participants. Participants were positioned a
few rows back, in the middle of the theater environment. Images
were positioned in the virtual environment with no degree of tilt;
the z-axis rotation parameter was set at zero. Our image sequence
viewing application was developed using the Unity game engine.

2.3 EEG Data Collection and Preprocessing
To collect brain activity data from participants, we used the
consumer-grade Emotiv Epoc X EEG headset1 (Emotiv Systems
Inc., San Francisco, CA, United States), which has demonstrated
EEG data consistent with conventional EEG recordings (Bobrov
et al., 2011; Duvinage et al., 2013) as mentioned in Le et al. (2020),
and relatively good research performance (Sawangjai et al., 2019).
Additionally, this EEG headset is quick to set up and comfortable
for participants, making it potentially more ecologically valid
than wet electrode set-ups. The Emotiv Epoc X is a 14 channel
headset based on the international 10–20 system which includes
electrode sites AF4, AF3, F3, F4, F7, F8, FC5, FC6, O1, O2, P7, P8,

T7 and T8. Additional electrodes, M1 and M2, served as the
reference and ground electrodes, respectively. Felt pads used to
make contact between the electrode and the participant’s scalp
were fully soaked in saline solution prior to inserting into each
electrode compartment of the headset. The Emotiv Epoc X
records data at a 256 Hz sampling rate which ensured that
alpha power data was free from aliasing. Emotiv acquisition
filters consist of built-in 5th order Sinc filters, with
bandwidths set to 0.16–43 Hz; the maximum bandwidth
available. In line with best practices in human EEG (Sinha
et al., 2016), broadband EEG signals were acquired in situ
with alpha bands extracted in data analysis. Line noise at
50 and 60 Hz were filtered using built-in 5th order Sinc notch
filters. We used F3 and F4 electrodes to calculate FAA, as this
electrode pair is both common in FAA research (Smith et al.,
2017; Kuper et al., 2019; David et al., 2021), and unobstructed by
the VR headset during recording.

Raw EEG data was recorded in Emotiv’s software, EmotivPro,
and exported to EEGLAB (Delorme andMakeig, 2004) inMATLAB
(MathWorks) for preprocessing. Data was filtered between 2Hz
(high pass) and 30 Hz (low pass) using eegfiltnew. Next, bad
channels were rejected and then interpolated. An average reference
was applied to the data, and Independent Component Analysis
(ICA) was run on the data with the goal of removing artifacts from
the data without removing those portions of data which are affected
by artifacts (Delorme and Makeig, 2004). Eye components were
removed from the data with 70% probability. Continuous EEG data
was segmented into 2 s epochs for each event. Epochs that were
±100 μV were rejected. spectopo from EEGLAB was used on the
cleaned EEG data to determine the power spectra in the 8–13 Hz
alpha range. To determine FAA, the natural log-transformed alpha
power of the left electrode (F3) was subtracted from the natural log-

FIGURE 3 | Image sequences, from top to bottom: (A) V2A2, (B) V2A8, (C) V8A2, and (D) V8A8.

1https://www.emotiv.com/epoc-x/.
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transformed alpha power of the right electrode (F4) using the
following formula: (ln [Right] − ln [Left]) (Smith et al., 2017).

2.4 Quantification of FAA Bursts
As an exploratory analysis, temporal dynamics of FAA bursts
were investigated using time series wavelet decomposition
analyses adapted from studies by Allen and Cohen (2010).
FAA burst analysis codifies fluctuations of FAA activity over
shorter time scales than standard FAAmeasures, and is used to
assess micro-scale FAA changes underlying conventional FAA
measures. For example, FAA burst analysis has been utilized in
understanding resting state neural dynamics in major
depressive disorder (MDD). Participants exhibiting lifetime
presentation of MDD have shown a high number of total
negative FAA bursts as well as increases in temporal precision
of positive FAA bursts relative to participants without MDD
(Allen and Cohen, 2010). For our FAA burst analysis, EEG
signals were mapped to analytic signals by way of the Hilbert
transform (Equation 1):

F t( ) � 1
π
∫∞

−∞
f x( )
t − x

dx. (1)

The analytic signal F(t) is a complex-valued function analogous to
Fourier representations with negative frequencies discarded.
Instantaneous power reflective of the squared magnitude of
the total EEG signal at each time sample was calculated from
the resulting analytic signal as (Equation 2):

PI t( ) � ln |F t( )|2( ). (2)
FAA through time between two given electrodes was then
calculated as (Equation 3):

A t( ) � PI1 t( ) − PI2 t( ). (3)
Density estimation of FAA values was performed to estimate the
underlying FAA distribution. Positive FAA bursts corresponding
to greater relative right EEG power across all frequency bands

FIGURE 4 | Participant wearing the Emotiv EEG headset and Oculus
Quest VR headset.

FIGURE 5 | Flowchart of study procedures.
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were taken as values greater than the 90th percentile of the FAA
distribution. Likewise, negative FAA bursts corresponding to
greater relative left EEG power were taken as values less than
the 10th percentile of the FAA distribution.

After identification of positive and negative FAA bursts,
wavelet decomposition was performed to extract instantaneous
alpha power for assessment of time-frequency dynamics of FAA
bursts. The time-frequency decomposed signal Φ(t, f) was
calculated by convolving the 2s epoch FAA time series with a
complex Morlet mother wavelet of the form (Equation 4):

Ψ t( ) � ej2πftpe−
t2

2σ2 , (4)
with t being t, f being frequency, and j being the imaginary
number

���−1√
and represents a complex sinusoid windowed by a

Gaussian kernel. For this study, sigma was set as 4.5
2πf in line with

previous studies Allen and Cohen (2010). Frequency for the
complex Morlet wavelet was increased from 7.9 to 13.04 Hz
corresponding to the alpha power band in 50 logarithmic
spaced steps. Instantaneous power per frequency was
calculated as (Equation 5):

PI f( ) � real Φ t, f( )( )2 + imag Φ t, f( )( )2. (5)
Average alpha power was calculated as the mean power per
frequency in the alpha band and converted to a decibel scale.

2.5 Image Sequences
In this study, we investigated four image sequences: V2A2: low
valence and low arousal; V2A8: low valence and high arousal;
V8A2: high valence and low arousal; and V8A8: high valence and
high arousal, shown in Figure 3. The order of image sequence
presentation for each participant was randomized within our
application. Each image sequence included 10 images and was
displayed for 4 seconds, following image presentation
recommendations by Chen et al. (2006), for a total of 40 s per
image sequence. Please see Mousas et al. (2021) for more
information concerning the development of the image sequences.

The images used in our image sequences were originally taken
from the Open Affective Standardized Image Set (OASIS) (Kurdi
et al., 2017), which provides an open-access database of 900 color
images comprising a variety of themes. The OASIS dataset
additionally contains normative ratings of both valence and
arousal dimension of affect, collected from an online study
with 822 participants (aged 18–74) in 2015, with an equal
gender distribution. In our previous work (Mousas et al.,
2021) we developed a system to generate image sequences

with target valence and arousal values from the annotated
image dataset, and validated our image sequences through a
user study.

2.6 Procedure
Participants first signed our consent form upon arriving at the
lab. Next, participants were fitted with the EEG headset. The
researcher showed participants their brain signal visualization in
real-time within the Emotiv software, and asked participants to
try frowning, talking, and moving. In this way, participants were
able to see their brain signal and understand howmotion artifacts
could decrease data quality. Participants were fitted with the
Oculus Quest VR headset and could adjust the headset for
comfort. A participant wearing both devices can be seen in
Figure 4. Before starting the application, the researcher
explained that participants should think about how they feel
while viewing each image sequence.

Once the application was started, participants were invited to
look around and become familiar with the VE, so that they might
become immersed in the environment before beginning the
image viewing task. Once the participant was ready to start
the experiment, they faced the screen in the VE and the
researcher started the experiment in Unity. After starting the
experiment, the researcher left the room to ensure a private
viewing experience (Davidson et al., 1990). First, participants
viewed a fixation cross (white crosshair on black background) on
the screen in the VE for 40 s, which served as an FAA baseline.
Participants were instructed to minimize mental wandering
during this time and to remain as still as possible. After the
baseline period, image sequences were presented in a randomized
order. Each image sequence was separated by a 5 s fixation cross.
Participants were instructed to look at the fixation cross during
these intervals. Participants spent about 35 minutes in the lab to
complete the experiment. Please see Figure 5 for a flowchart of
the study and Figure 6 for a visualization of the VR application
components.

2.7 Statistical Methods
We investigated the following four image sequences: V2A2: low
valence, low arousal; V8A2, high valence, low arousal; V2A8, low
valence, high arousal; and V8A8, and high valence, high arousal.
We used Greenhouse-Geisser corrections when Mauchley’s test
of sphericity was violated. Bonferroni corrections were used for
post hoc comparisons. Missing data and outliers were replaced
with mean values prior to statistical analysis. Our statistical
analyses are described below.

FIGURE 6 | A visualization of the VR application showing two randomized image sequences.
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First, we used a two-way repeated measures Analysis of
Variance (ANOVA) to explore differences in FAA between
two levels of Arousal and Valence image sequences. The
Shapiro-Wilk test indicated these values were normally
distributed. These results can be found in Section 3.1.

As FAA scores alone do not indicate the contribution of left and
right prefrontal cortices to FAA (Smith et al., 2017), we conducted an
additional analysis to determine if greater FAA scores were
indicative of increased left cortical activity, or decreased right
cortical activity. We investigated alpha power from each side
separately in order to learn about each hemisphere’s contribution
to the FAA score. FAA is calculated by subtracting the natural log of
the alpha power from the left electrode from the natural log of the
alpha power from the right electrode. Therefore, examining alpha
power of each electrode separately is informative in understanding
which side has higher cortical activity. Because alpha power is
inversely related to cortical activity, a higher alpha power from
the right electrode would indicate lower cortical activity from the
right electrode. According to Harmon-Jones and Gable (2018),
greater left than right activity is associated with happiness and
greater approach motivation; the tendency of an organism to
expend energy to go towards a stimuli, while greater right than
left activity is associated with fear and withdrawal motivation; the
tendency to expend energy to move away from a stimuli.

To understand the contribution of left and right alpha power
to FAA, we conducted three-way repeated measures ANOVAs
with Side (left vs. right), Valence (high vs. low) and Arousal (high
vs. low) as factors. Alpha power data was not normally
distributed. Therefore, we transformed data following
recommendations by Templeton (2011) prior to conducting
our parametric analyses on the normally transformed data.
These results can be found in Section 3.2. Additionally, we
examined differences between FAA recorded during baseline
and FAA recorded during each image sequence through one-
tailed paired samples t-tests. These results can be found in
Section 3.3.

In our FAA burst analyses, we investigated total FAA bursts,
total positive FAA bursts, total negative FAA bursts, positive FAA
burst power, and negative FAA burst power; all of which were
normally distributed according to the Kolmogorov-Smirnov test
of normality. A two-way analysis of variance (ANOVA) was was
performed with Arousal and Valence of image sequences as
factors. These results can be found in Section 3.4.

3 RESULTS

Below we describe our results concerning FAA, left and right
prefrontal cortical activity, differences in FAA from baseline
measurements, and FAA burst analyses.

3.1 FAA Responses to High and Low
Valence and Arousal Image Sequences
While our results do not demonstrate a significant interaction
effect between valence and arousal
(F[1, 23] � 2.276, p � .145, η2p � .090), we determined a
significant main effect of valence (F[1, 23] � 4.631, p �
.042, η2p � .168) on FAA. Post hoc comparisons showed that
FAA was significantly greater for high valence (M = 0.28, SD =
0.27) than for low valence (M = 0.22, SD = 0.33) image sequences.
We determined a significant main effect of arousal on FAA
(F[1, 23] � 7.143, p � .014, η2p � .237). Post hoc comparisons
indicated that FAA was significantly higher for low arousal (M =
0.30, SD = 0.37) than for high arousal (M = 0.19, SD = 0.29) image
sequences.

3.2 Left and Right Prefrontal Cortical
Activity
We investigated the contribution of Side (left vs. right), Valence
(high vs. low), and Arousal (high vs. low) on Alpha Power values
with a three-way repeated measures ANOVA. From this analysis,
we determined a main effect of Side on (Λ � .773, F[1, 23] �
6.751, p � .016, η2p � .227) on Alpha Power. Pairwise
comparisons showed that Alpha Power on the Left (M = 1.29,
SD = 1.14) was significantly lower than Alpha Power on the Right
(M = 1.78, SD = 1.69). Because alpha power is inversely related to
cortical activity, our results suggest greater left prefrontal cortical
activity than right prefrontal cortical activity during the
experiment. Although it did not reach statistical significance,
our results suggest a trending main effect of Valence on Alpha
Power (Λ � .847, F[1, 23] � 4.170, p � .053, η2p � .153), with
Alpha Power greater during low valence (M = 1.63, SD =
1.61) than high valence (M = 1.46, SD = 1.22) image
sequences, suggesting greater cortical activity during high
valence image sequences.

3.3 Differences From Baseline FAA
To understand if FAA values during image sequence viewing
were different from baseline FAA, we conducted one-tailed
paired samples t-tests with FAA measured during V2A2,
V2A8, V8A2, and V8A8 image sequence viewing. We

FIGURE 7 | Increase in FAA from baseline for each of the four image
sequences.
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determined a significant increase in FAA from baseline to
V8A2 (t [23] = −3.166, p = 0.002), which showed that FAA
during V8A2 (M = 0.36, SD = 0.36) was significantly higher than
FAA during baseline (M = 0.15, SD = 0.37). Neither V2A8 (M =
0.19, SD = 0.29) nor V8V8 (M = 0.19, SD = 0.29) differed
significantly from baseline; (t [23] = −0.670, p = 0.255) and (t
[23] = −0.671, p = 0.254), respectively. Lastly, FAA during
V2A2 (M = 0.26, SD = 0.37) did not significantly differ from
than FAA during baseline (M = 0.15, SD = 0.37), (t [23] = −1.636,
p = 0.058), as seen in Figure 7.

3.4 FAA Burst Analyses
In examining the total number of positive and negative FAA
bursts, no significant differences in burst count between arousal
and valence levels were found, as seen in Figure 8. Furthermore,
there were no significant differences in number of positive bursts,
number of negative bursts, and burst power between arousal and
valence levels, as seen in Table 1.

4 DISCUSSION

We investigated FAA during affective image sequence viewing in
a VR theater environment. Twenty-four participants viewed
image sequences with predetermined valence and arousal
values while wearing a consumer-grade EEG headset. Our
results show that image sequences with higher valence ratings
elicited significantly higher FAA than image sequences with lower
valence ratings, supporting our first hypothesis. Our results
would seem to follow the theory that approach-motivation is
associated with positive emotions (Davidson et al., 1990; Kisker
et al., 2021). Interestingly, FAA was higher during image
sequence viewing of low arousal than during image sequence
viewing of high arousal. Considering that individual differences
may impact both reports of affect, as well as affective responses
(Kuppens et al., 2013), we imagine that future research could
reveal that a relationship between valence and arousal may exist,
perhaps in studies with a more diverse sample of participants.

FIGURE 8 | FAA temporal dynamics were analyzed using FAA burst measures. (A) A sample time-frequency wavelet decomposition from an FAA time series (red)
from one epoch of one image sequence (V2A2). Time-frequency power was smoothed via convolution with a Gaussian kernel with a standard deviation of 2 to ease
viewing. Power calculations were performed on raw data. (B). Total number of FAA bursts remained consistent between valence and arousal image sequence levels.
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In immersive environments, such as Cave Automatic Virtual
Environments (CAVE), self-reported ratings such as “sad,”
“funny,” “scary,” and “beautiful” have been shown to be
higher for immersive environments than for the same stimuli
presented in a 2D fashion (Visch et al., 2010). Considering that
emotional intensity/arousal can be greater in immersive
environments (Visch et al., 2010), and that VR can elicit
stronger emotional responses than 2D viewing (Gorini et al.,
2010), we understand FAA scores in this study may be different
from image sequence viewing in 2D. Therefore, it is possible that
participant arousal levels were higher due to the VR experience
generally. Because ratings of valence and arousal can be
modulated by differences in political and cultural attitudes
(Kurdi et al., 2017), it is also possible that our FAA values
reflected different perceptions of image context leading to
differences in arousal, as both perception and information can
mediate arousal (Diemer et al., 2015).

In a study investigating emotionally contagious sound stimuli
(Papousek et al., 2014), participants who were higher in emotion
regulation ability showed greater relative right frontal cortical
activity when listening to anxiety-inducing stimuli (Lacey et al.,
2020), indicating the role of individual differences in affective
processing and FAA. As effortful control of emotions is also
thought to play a role in FAA (Lacey et al., 2020), further
investigation concerning individual differences in emotion
regulation, and emotional reactivity would be helpful in
clarifying our results. Additionally, negative affect elicited from
negatively valenced stimuli can persist longer than positive affect
(Davidson et al., 1990). Because the image sequences order was
randomized, negative affect from previous image sequences may
have influenced certain participants more than others.

Considering that negative affective stimuli may cause
participants to exert significant effort in order to engage with
the stimuli, whereas, outside a laboratory setting, participants
would instead choose not to engage at all (Lacey et al., 2020), it is
possible that participants differed in their ability to exert effortful
control to engage with negative stimuli.

In examining alpha power from left and right electrode sites,
we determined that left prefrontal cortical activity was greater
than right prefrontal cortical activity during the image viewing
experience, which could be indicative of greater approach
motivation or positive affect during the VR experience more
generally. While our data suggests greater cortical activity during
high valence than low valence image sequences, these results do
not reach statistical significance at p = 0.053. Additionally, our
second hypothesis is not supported, as we determined no
difference in left and right prefrontal cortical activity during
high valence image sequence viewing.

We determined that FAA during V8A2 image sequence
viewing was significantly greater than FAA recorded during
baseline. However, neither V8A8, V2A2, nor V2A8 image
sequences elicited FAA significantly greater than FAA during
baseline. Therefore, we consider our hypothesis only partially
supported. Because we could only determine that FAA during the
V8A2 image sequence was significantly greater than FAA during
baseline, it is likely that the other image sequences did not elicit as
strong of an emotional response. Considering that our results
additionally showed that FAA was highest for high valence, and
low arousal image sequences, it is possible that arousal may play a
role in eliciting lower FAA.

All FAA values appear to increase from baseline, which
suggests that the immersive, engaging properties of the virtual
environment may have been stronger than the emotional
attributes of the majority of image sequences. It is also
possible that the consumer-grade EEG recording device may
not have performed well enough to detect smaller changes in
FAA, perhaps leading to statistically similar FAA values during
image sequence viewing and baseline. Although this device was
selected for its ecological validity, future research would benefit
from a comparison study using a medical-grade EEG device.

Lastly, our additional FAA burst analysis suggests that
temporal dynamics did not differ significantly across the four
image sequences, suggesting new avenues for research
investigating the time course of affective responses. While we
used a strict burst threshold of 90th percentile of FAA
distribution in line with previous work (Allen and Cohen,
2010), it is possible that lower-level bursting activity better
encodes valence and arousal levels, especially with a
consumer-grade EEG device.

Our study is limited in that we did not investigate presence,
which may influence emotional responses in VR experiences
(Diemer et al., 2015). Therefore, we do not know if FAA
responses were influenced by potentially varying levels of
presence among different participants. Because presence is
considered necessary in order for real emotional responses to
be elicited in VR (Parsons and Rizzo, 2008; Diemer et al., 2015),
we assume that participants felt some level of presence, as we were
able to determine differences in FAA with different image

TABLE 1 | FAA burst counts and powers.

Total Burst Count F p

Valence 2.82 0.0935
Arousal 2.79 0.0951
Valence × Arousal 0.64 0.4221

Count of Negative Bursts F p

Valence 0.94 0.3314
Arousal 2.62 0.1054
Valence × Arousal 0.58 0.4476

Count of Positive Bursts F p

Valence 3.28 0.0704
Arousal 1.39 0.2385
Valence × Arousal 0.34 0.5583

Power Per Negative Burst F p

Valence 0.00 0.9882
Arousal 0.05 0.8313
Valence × Arousal 3.43 0.0639

Power Per Positive Burst F p

Valence 1.47 0.2248
Arousal 0.00 0.9848
Valence × Arousal 1.14 0.2865
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sequences ratings of valence and arousal. Additionally, our
interstimulus intervals (ISIs) were fixed at 5 seconds, therefore,
predictability of image sequence presentation may have impacted
results as well.

In our future work, we would like to further examine the role
of individual differences in affective responses to VR experiences,
as individual differences appear fundamental in FAA (Lacey et al.,
2020). Considering participants had no task other than paying
attention to how they felt while viewing image sequences, it is
notable that we were able to determine differences in FAA despite
this passive experience. To examine how agency may influence
FAA, we would like to investigate FAA responses to affective VR
experiences in which participants have an active role in the
environment. Because VR embodiment has been shown to
increase emotional responses to virtual stimuli as seen through
self-reported data (Gall et al., 2021), we would like to examine the
role of VR embodiment in influencing FAA responses as well.
Future work might additionally include electrodermal activity
(EDA) in combination with EEG data in order to better
understand affective responses to stimuli with predetermined
arousal and valence values in VR.

5 CONCLUSION

Our results suggest that FAA recorded while viewing image
sequences in a VR theater environment may be influenced by
both valence and arousal values. We determined that FAA was
significantly greater during high valence image sequence viewing
than during low valence image sequence viewing. However, FAA
was significantly greater during low arousal image sequence
viewing than high arousal image sequence viewing.
Additionally, FAA elicited during the high valence, low
arousal image sequence was significantly greater than FAA
during baseline, further supporting the complex relationship
that may exist between valence and arousal concerning FAA.
While FAA data may be useful in understanding associations
between valence and arousal self-reported data and brain activity
responses elicited from affective experiences in VR environments,

it will be important to consider individual differences in affective
processing styles of participants, and further examine the
relationship between valence and arousal in future research.
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