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In the last few years the field of Virtual Reality (VR) has experienced significant

growth through the introduction of low-cost VR devices to the mass market.

However, VR has been used formany years by researchers since it has proven to

be a powerful tool across a vast array of research fields and applications. The key

aspect of any VR experience is that it is completely immersive, whichmeans that

the virtual world totally surrounds the participant. Some game engines such as

Unity already support VR out of the box and an application can be configured for

VR in a matter of minutes. However, there is still the lack of a standard and easy

to use tool in order to embody participants into a virtual human character that

responds synchronously to their movements with corresponding virtual body

movements. In this paper we introduce QuickVR, a library based on Unity which

not only offers embodiment in a virtual character, but also provides a series of

high level features that are necessary in any VR application, helping to

dramatically reduce the production time. Our tool is easy to use by coding

novices, but also easy extensible and customizable by more

experienced programmers.
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1 Introduction

Virtual Reality (VR) is a well-established technology that has been used for many

years in many research and application fields. However during the last decade we have

witnessed VR becoming a popular platform for the game and entertainment industry.

Reduction in cost but also the development of lightweight, high resolution and relatively

simple to use Head Mounted Displays (HMDs) and other VR devices are moving this

technology from being something exclusive to industry and specialized VR labs to an

affordable system by the average consumer, certainly less expensive than many

smartphones. There is currently a wide variety of VR devices in the market that cover

different needs, from systems that are connected (physically wired or not) to a powerful

VR-ready computer offering the most demanding and visually pleasant VR experiences,

to other fully portable but less powerful solutions.

When the participant puts on the HMD, the real physical world is no longer seen (and

maybe not heard) and the participant is completely surrounded by a 3D computer
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generated Virtual Environment (VE) that does not necessarily

follows the same rules as physical reality. For example, we can

modify the illusion of gravity in the virtual world, how the

different physical forces interact, or create situations and

effects that are simply not possible in the real world. We can

obtain the head position and head gaze direction from the HMD

in real time to dynamically update the point of view of the

participant inside the VE, so the participant has the feeling of

being immersed in the simulation. The VR system with six

degrees of freedom head-tracking and at least one hand

affords sensorimotor contingencies for perception, at least in

the visual field, approximately the same as perception in physical

reality. This typically leads to the illusion of being in the virtual

world, usually referred to as presence (Sanchez-Vives and Slater

(2005); Sheridan (1992); Slater (2009)).

But in VR we can go a step further as we can also replace

the participant’s real body by a virtual body (or ‘avatar’), a

synthetic humanoid representation of the participant in the

VE. We use the term Virtual Embodiment (or simply

Embodiment) to describe the process involving the

necessary VR hardware and software to that end. When we

use the data obtained by the different VR devices attached to

the participant’s body to make the avatar move synchronously

with the participant’s real movements, the Body Ownership

Illusion (BOI) and Agency may arise (Kilteni et al., 2012). The

BOI is when participants have the illusion that a virtual body

or body part is their own and that it is the source of their

sensations (Tsakiris, 2010). By Agency we mean that the

person recognizes themselves as the cause of the actions

and movements of the virtual body. Hence, the participant

can see the VE from the first-person perspective (1PP) of the

virtual body but also interact with virtual objects that only

exist in that alternative reality, integrating the participant as

being part of the simulation instead of a mere observer.

The illusions of presence, BOI and agency make VR a very

powerful tool to carry out different experiments, for example,

in the fields of neuroscience and psychology in a secure and

controlled environment. VR has been shown to be an effective

way to address different fears and phobias such as fear of

public speaking (Slater et al., 2006) and fear of heights

(Emmelkamp et al. (2002); Freeman et al. (2018)) and its

positive effects may persist in the long term (Coelho et al.,

2006). However, the real potential of VR is that we are able to

put participants in situations that are simply not possible in

the real world. For example (Peck et al. (2013); Banakou et al.

(2016)), show that VR can be used to reduce implicit racial

bias by embodying light skinned participants in a dark

skinned avatar. Also, the avatar we are embodied in may

change how we perceive the VE as demonstrated in (Banakou

et al., 2013), where results show that participants tend to

overestimate the size of the objects when they are embodied as

a child. In (Seinfeld et al., 2018), male gender violence

offenders were embodied in a female virtual body and they

experienced verbal aggression from a virtual male from the

1PP of the woman. VR has been used also for pain

experiments and to study how changing some properties of

our virtual body may affect our own pain perception (Martini

et al. (2015); Matamala-Gomez et al. (2019); Matamala-

Gomez et al. (2020)). An extreme use of VR can be found

in (Barberia et al., 2018), where participants experienced a

complete life cycle with sessions every day over several days,

culminating in a near death experience.

Game Engines such as Unity (Unity Technologies, 2021b)

and Unreal (Epic Games, 2021) are widely used for general game

development on multiple platforms. They offer a consistent

solution to produce rich VEs with high quality graphics,

physics, animations, particles, sound, networking and in short,

a complete set of tools needed in any commercial game.

Additionally, we can extend its capabilities with many plugins

and assets or create our own to enrich our applications. Those

engines are being used also by academic VR research groups due

to the fact that they support most of the current VR devices either

natively or by installing the corresponding plugin, so we can see

our environment in many VR displays with almost no extra

effort.

In order to obtain a complete immersive VR experience with

full body tracking, we may need to combine the input of different

tracking systems. In (Spanlang et al., 2014) the technical

infrastructure needed to construct a VR lab for embodiment

is discussed. They describe the hardware that they used but also a

generic modular solution at the software level is presented for

studying BOIs, combining the input coming from distinct VR

devices. The library we present in this paper applies and extends

such concepts, offering a fully functional implementation in

Unity which potentially works on any hardware natively

supported by this game engine.

There exist some packages and tools that extend the capabilities

of Unity’s VR built-in system, such as the XR Interaction Toolkit

(Unity Technologies, 2021c) and VRTK (Extend Reality Ltd, 2021)

by adding other functionalities such as teleporting and interacting

with the environment and the elements of the user interface.

However just a few tools address the problem of embodying in a

virtual avatar. An example is AvatarGo (Ponton et al., 2022).

However it currently only works with SteamVR compatible

devices such as HTC Vive. Instead, QuickVR supports any device

out of the box that implements the XR Unity Framework (Unity

Technologies, 2021d).

Some other tools for creating VR experiments in Unity have

been recently proposed (Watson et al. (2019); Brookes et al.

(2019); Bebko and Troje (2020)) that simplify the process of

writing the logic of the experiment and variable manipulation.

This is often a time consuming and repetitive task that is

common to most VR experiments. However, they do not

offer a built-in solution to produce BOIs. To the best of our

knowledge, our library is the first toolset in Unity that offers a

cross platform solution for applications requiring embodiment
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in VR, but also proposes a methodology that simplifies the logic

coding and other helpful utilities useful in any VR application.

2 Overview

QuickVR is the result of the technical research and

development in Virtual Reality that we have carried out over

many years, and offers a series of tools to quickly develop your

own VR applications with Unity. The main target is to be able to

reuse as much code as possible from our past applications.

Therefore, QuickVR is not something fixed or closed, but it

keeps constantly evolving responding to the new requirements of

the applications that we develop and the new features that Unity

introduces. It is created also taking usability into consideration,

so it is straightforward for anyone to start using it with a basic

knowledge of Unity, as well as being easy to extend and add new

functionalities and customize the existing ones.

As depicted in Figure 1 QuickVR is built on top of the Unity

XR (VR/AR/MR) Framework, which is an abstraction that

exposes the common functionalities of all the XR devices

natively supported by Unity. It does not need to know about

each specific implementation of a specific XR provider, but it

acts directly on the common framework. The Unity XR

Framework is a relatively new addition in the engine

(present as a stable feature since version 2019.3), and

nowadays it is the normative way for supporting XR

devices so XR providers are advised to develop their

plugins using the Unity XR Framework standard. This

way, we only need to install the corresponding plugin for

the desired XR device and it will be automatically recognized

and usable by Unity out of the box and by extension, by

QuickVR. So the core principle of Unity engine “Build once,

deploy anywhere” is kept by design.

However, other XR providers do not supply such a plugin but

they provide a Standard Unity Package, either because they are

old devices that appeared before the introduction of the Unity XR

Framework, as in the case of Kinect for Windows, or for some

other technical reasons. There are also some specific features for

some devices that are not supported yet through the Unity XR

Framework. This is the case for the Oculus (now Meta) Quest

family, where the HMD and the controllers are supported

through the Oculus XR Plugin while the Hand Tracking

feature is currently supported using a Standard Unity Package

also provided by Oculus. In any case, QuickVR is designed in a

way that can be easily extended to support such devices and

features.

Whilst the Unity XR Framework is more focused on low level

functionality such as stereo rendering, device tracking and input

management, QuickVR is focused on higher level features that

are also necessary in our developments, with body tracking the

most important one, but also additional capabilities such as

planar reflections, logic workflow management, locomotion or

interaction with the environment. So the different applications

that are built using QuickVR, have access to all those features

already implemented. Without this library, those features would

need to be implemented from scratch on every new application,

which would increase the production time dramatically. With

this approach, we can have a prototype of a new VR application

in a matter of hours to days, depending on its complexity.

FIGURE 1
QuickVR is built on top of Unity’s XR Framework, thus natively supporting any XR device implementing that interface. QuickVR can be also
extended to support other XR devices and features provided through Standard Unity Packages. Our library is focused on supporting high level
features commonly found in any VR application, whilst the Unity XR Framework covers the lower level details that are common in any XR system.
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3 Using QuickVR

QuickVR is publicly available and free for non-profit and

research projects.1 The main page of the GitHub repository

contains the source code and the instructions to install it into

your Unity project. It is installed as any other Unity package. On

theWiki section you will find the instructions needed to prepare

your project depending on your target device (Meta Quest, Pico

Neo 2/3, OpenXR, . . . ). Next there are a series of tutorials of

increasing difficulty that progressively introduce the main

features of the library and how to use them through practical

examples. Finally there is an in depth description of such features

and how to enable other advanced features for specific devices,

like Hand Tracking forMeta Quest and Eye Tracking for the Pico

Neo Eye devices.

Themain feature provided byQuickVR is to be embodied in a

virtual humanoid body, that we refer to as the Avatar, moving it

synchronously (or asynchronously if required) with the

movements of the real body and perceiving the scene from

the point of view of this virtual surrogate body. Acquiring this

is straightforward, we just need to add the component

QuickUnityVR (see Figure 2) to an avatar that has been

previously configured as a Humanoid, so that it has two legs,

two arms and a head. Any Humanoid avatar is compatible with

QuickVR, no matter the source (Mixamo, Fuse, Character

Creator, Rocketbox . . . ).

When the application starts, the system needs to be

calibrated, i.e., we need to obtain some data in order to

correctly map the real body pose of the participants to their

avatars. In our case, we only require the participants to look

forward (their forward direction in the real world) and the system

is ready to go. We assume that the participant is embodied in an

avatar of similar height and proportions. Embodiment into

avatars with different shapes and proportions is discussed in

section Update Copy Pose. Then a custom Inverse Kinematics

algorithm is used to compute the pose of each defined kinematic

chain. We can modify the update mode of each kinematic chain

by using the controllers exposed by the QuickUnityVR

component:

• Tracking: This is the default update mode. The kinematic

chain is updated with the tracking data provided by the VR

system being used. If the target VR system does not provide

tracking data for that body part, this mode behaves as in

IK mode.

• IK: The IK target is driven by the application. The

developer manually sets the target to the desired

position and orientation.

• Animation: The pose of that kinematic chain is driven

completely by the animation, if any.

In both Tracking and IKmodes, we can determine the weight

of the IK system on that bone by tweaking the IKPosWeight and

IKRotWeight attributes, which defines the influence of the IK

target to determine the position and rotation respectively of that

specific kinematic chain. Those values are in the range [0,1],

where 0 is completely driven by the animation and 1 is

completely driven by the IK system. The fingers for the left

FIGURE 2
The QuickUnityVR component is used to achieve
embodiment in an avatar. We can specify how we apply the
tracking data to each body part using the exposed controls, which
are classified into different categories. In this example, the
upper body is driven by the Tracking data, the hips are driven by the
IK and the feet are driven by the Animation.

1 https://github.com/eventlab-projects/com.quickvr.quickbase
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and right hand can be controlled the same way using the

corresponding finger control exposed in Left Hand Fingers

Controls and Right Hand Fingers Controls and we will be able

to move the fingers of the avatar with our own fingers if the VR

devices supports finger tracking. Finally, The controllers for the

eyes are found in the section Face Controls and we can manage

the gaze direction and eye blinking of our virtual counterpart

using such controls.

Our IK solution implements a basic two bone IK solver that is

applied to each kinematic chain in the same order that can be

seen on Figure 2. This guarantees that the bone parenting is

respected as the final bone position of a specific chain will depend

on the position of the previous bones in the Humanoid skeleton.

We have decided to implement our own IK solver because we

need a very fine control on when the IK step is executed.

4 Implementation

In Unity the logic update loop is distributed into two main

parts, the Update and the LateUpdate. When creating a new

Unity logic script, one can define an Update and/or a LateUpdate

function that will be automatically called on the corresponding

logic block at each frame. In between these two blocks there is the

Animation Update where basically the animation graph is

processed and the resulting animation is applied to the

animated characters. Finally, Unity proceeds to render the

virtual scene in the Scene Rendering block. This loop is

repeated every frame until the application finishes (see

Figure 3). In the following sections we explain in detail the

main systems ofQuickVR and how they are distributed inside the

Unity logic loop.

4.1 Avatar tracking system

This is the core system of QuickVR, which covers the

embodiment into a virtual humanoid avatar. The Avatar

Tracking System occurs in the LateUpdate block, after the

animation is processed and it is subdivided into different steps

as depicted in Figure 4. Before and after the execution of each one

of these steps, an event is triggered where you can register to

execute your own code. For example, the UpdateVRNodes will

trigger the OnPreUpdateVRNodes event before its execution and

the OnPostUpdateVRNodes once it is finished.

4.1.1 Update VR nodes
The VR Nodes are all the possible tracked points in a

human body exposed by QuickVR as depicted in Figure 5. In

this step, we read the tracking data from the VR system and

apply it to the corresponding VR Node. On the most common

VR devices, we have an HMD and a pair of hand-held

controllers, so the position and rotation of the VR Node in

FIGURE 3
Unity’s game loop. The different scripts can be registered to
the Update or LateUpdate blocks depending on whether we want
to execute that logic before or after the Animation Update block
has been processed. The Scene Rendering block is the last
step in the game loop and renders the scene from the defined
virtual camera.

FIGURE 4
The Avatar Tracking System is divided into the following
steps: Update VRNodes, Update Tracking, Update CopyPose and
Update Camera. Before and after each one of these steps, an event
is triggered where one can register in order to execute
custom logic before or after any of such steps.

FIGURE 5
The green dots represents the available tracked points (VR
Nodes) in a human body in QuickVR. There are tracking points for
the main body parts: head, hips, wrists, elbows, shoulders, knees
and feet. In the case of the hands, we have up to four tracking
points on each finger. The points effectively trackedwill depend on
the VR systems that we are using.
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the head is obtained from the HMD, whilst the data of the VR

Nodes on the wrists is obtained from the controllers. However,

the number of tracked VR Nodes as well as the data we can

obtain on each will depend on the VR devices being used. For

example, if we are using Meta Quest we can track the fingers.

With Pico Neo two Eye we can feed our system with eye

tracking data such as the gaze direction and blinking

information. In the case of the VIVE, we can attach a VIVE

Tracker to any part of the body of the participant to obtain the

position and rotation of that specific body point. Finally, it is

possible also to combine different VR systems. For example,

we can use a generic HMD combined with OptiTrack to get an

immersive experience with high precision full body tracking,

or use the Kinect system instead for a more portable and

economic solution although the body tracking quality will not

be so high.

4.1.2 Update Tracking
In this step we apply the tracking data acquired in the previous

stage to an avatar. Its body pose is estimated by using a custom Inverse

Kinematics (IK) systemwhich adapts to the specificVRNodes that are

effectively tracked by the VR devices currently being used. More

specifically, the upper body is estimated using the data on the head

andwrists nodes. The lower body pose is estimated by the feet nodes if

such data is available on the VR system. Otherwise, the position and

rotation of the feet are driven by the application. The position of the

virtual elbows and knees can be either retrieved from the

corresponding nodes if those body points are tracked, otherwise

they will be estimated in a postprocessing stage by the IK avoiding

weird and impossible positions. This way, our VR library offers a

flexible solution that works on any VR platform, ranging frommobile

to desktop, and adapts to the different number of tracked nodes

exposed by each VR platform.

Note that the same build can be used for the same platform

with different numbers of tracked devices. As an example,

consider the case A where anHTC Vive is used for tracking the

head and wrists and two extra trackers are attached to the feet.

On the other hand, case B only uses the HTC Vive. In both

cases, we use the same build, the only difference is that in case

A the feet pose will be extracted from the tracking data

provided by the trackers on the feet, whilst in case B the

feet pose will be estimated by applying an animation that takes

into account the displacement of the HMD. The available

tracking devices are automatically detected, so this is

transparent to the programmer.

4.1.3 Update Copy Pose
In many of our applications we are required to be embodied

in different avatars throughout the virtual experience. The most

immediate solution would be to add aQuickUnityVR component

to each of the virtual characters in which we need to be embodied.

However, this approach requires a calibration of the system each

time we switch from one character to another, as each character

may differ in size and proportions. Moreover, the character may

differ considerably in size with respect to the real participant,

which can deal to visual artifacts when applying the IK system

directly to that character. Thus we require only one calibration of

the system, when the application starts, and to be able to embody

the participant in any kind of virtual Humanoid, independently

of its size.

In this situation, we define two types of avatar, the Master

Avatar and the Target Avatar. The Master Avatar is a standard

avatar ideally with a similar size as the real participant. The more

accurate the match between the size of this avatar and the real

participant, the better the result will be when applying the IK

system. Therefore, the Master Avatar is the one we attach the

QuickUnityVR component to which receives the tracking data

from the different VR devices. The Target Avatar copies the full

body pose from the Master Avatar after the tracking data has been

applied, basically by transforming the rotations of each bone from the

Master Avatar coordinates system to theTarget Avatar one. This way,

theTarget Avatar can have an arbitrary size and proportions, contrary

to theMaster Avatar. In Figure 6 we can see that the body pose of the

real participant is correctly mapped to distinct avatars with different

body sizes and proportions.

Of course this solution is not perfect and there is room for

improvement. For example, if participants are embodied in an

avatar with a size or shape very different to how they really look

and they try to touch the virtual body, visual artifacts may arise in

the form of joint intersections or endpoints on the IK chain not

reaching the contact point. In order to mitigate this, we are

considering the introduction of an extra IK step as a post process

after the pose is copied to the Target Avatar, to account for self

intersections as well as intersections with the environment, and

correct the position of the joints accordingly.

Also the mapping quality depends on how good the match is

between the real participant and the Master Avatar as stated

before. But even if theMaster Avatar is not exactly the same size

as the participant (by default we use a standard avatar as the

master of about 1.7 m tall), it works pretty well in the vast

majority of cases as we can extract from the empirical

observation of our results in the body ownership illusion

related questions that we have used in many studies, some of

these referenced in section Results. For the most accurate

mapping, we would need to retrieve more data during the

calibration process such as forcing the participant to be in a

specific position at the start (like the T-Pose). However, we

consider that this can only be guaranteed under laboratory

conditions, with the supervision of an experimenter. If the

participants run the application at home without supervision

(as we are currently doing in some experiments), we cannot

guarantee that they will do the calibration process correctly.

4.1.4 Update Camera
The final step of the loop simply sets the virtual camera to

match the point of view of the Target Avatar, i.e., the camera is set
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in the midpoint of the eyes and matches the head orientation.

This process is delayed as much as possible in the update loop in

order to get the best match between the virtual positioning of the

camera and the physical participant’s head pose.

4.2 InputManager system

The InputSystem by Unity already accounts for the most

common input devices such as keyboard, mouse, gamepads and

those XR controllers implementing the XR Framework such as

the Oculus/Meta or VIVE controllers. The InputManager from

QuickVR works on top of that and extends its capabilities. It

defines a set ofVirtual Axes andVirtual Buttons. AVirtual Axis is

an input type that returns a value in the range [−1,1], whereas a

Virtual Button is an input type that can have four possible states:

Idle, Triggered, Pressed or Released. Figure 7 shows the state graph

of a Virtual Button.

We can define any number of Virtual Axes/Buttons and then

for each available InputManager implementation, we just need to

map each Virtual Axis/Button to a specific axis/button exposed by

that implementation. QuickVR offers an InputManager

implementation for the most common types of input, but you can

also easily create your own implementations to account for hand

gestures, body postures, eye gaze movement and in short, anything

that you consider that can be translated to a Virtual Axis/Button and

use it to control the input of the application. When we are writing the

logic of our application and we want to access to the input on a script,

we just need to access using the corresponding accessor function using

the Virtual Axis/Button name as follows:

FIGURE 6
The real participant (A) and theMaster Avatar (B). The pose of (A) is applied to (B) and then it is copied to different Target Avatars: A giant (C), a
skinny and very tall humanoid figure (D) and a cartoon-like girl (E). The vertical axis next to each figure represents the height in meters.

FIGURE 7
The possible states of a Virtual Button: Idle is the initial state.
In the first frame that the button is pressed, it goes to the Triggered
state. The button is in Pressed state during all the subsequent
frames that it is pressed. The state Released is produced the
first frame that the button is not pressed anymore, and on the next
frame, it returns to the Idle state.

Frontiers in Virtual Reality frontiersin.org07

Oliva et al. 10.3389/frvir.2022.937191

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.937191


• InputManager.GetAxis(virtualAxis): Returns the real value

in the range [-1,1] of any input device axis mapped to

virtualAxis.

• InputManager.GetButton(virtualButton): Returns true if

any input device button mapped to virtualButton is on

the Triggered or Pressed states; false otherwise.

• InputManager.GetButtonDown(virtualButton): Returns

true if any input device button mapped to virtualButton

is on the Triggered state; false otherwise.

• InputManager.GetButtonUp(virtualButton): Returns true

if any input device button mapped to virtualButton is

on the Released state; false otherwise.

The state of the Input Manager is updated inside the Update

logic block in the Unity game loop, and it occurs before any other

QuickVR System is executed. This way we guarantee that the

input state is consistent thorough the same frame.

4.3 Mirror system

In our research we find that having virtual mirrors in the

scene are either necessary (because we want participants to see

what they look like) or helpful for the BOI (see Figure 8).

QuickVR has a built-in system for virtual mirrors on planar

surfaces. A mirror is defined by a 3D quad mesh that represents

the reflection plane, whose equation is represented by the normal

vector and the world space position of the quad. An additional

virtual camera is created that takes the position and orientation

of the participant’s camera reflected by the plane equation. A

render to texture is done from the point of view of the reflected

camera, and this texture is then applied to the mirror’s mesh.

This process is carried out right after theUpdate Camera step and

before the scene is rendered.

It has to be taken into consideration that having virtual

mirrors in the scene is a costly process, since each mirror implies

an extra render of the scene. This is specially important in VR

experiences since internally each camera render is subdivided

into a render for each eye position for stereo. Therefore, having a

single mirror in VR implies that the scene is rendered 4 times

(2 times from the point of view of the Target Avatar and two

additional times from the reflected camera position).

4.4 Workflow system

The QuickVR library offers a tool to easily create andmanipulate

the workflow of an application. The entry point, the ‘main’ of the

application is defined by the GameObject containing the

QuickBaseGameManager component. Its purpose is to initialize

and configure the application and it automatically manages the

logic flow between the different groups of Stages. A Stage (named

QuickStage following theQuickVRnaming convention) can be seen as

each one of the steps into which we can subdivide the logic of our

application. Each one of these steps can be arbitrarily complex and it is

the developer’s decision and responsibility to subdivide the logic into

the appropriate number of QuickStages. Those logic pieces are

grouped together into three different main blocks, as depicted in

Figure 9:

• The StagesPre contains the logic that has to be executed

when the application starts, and before the main logic of

the application. Here we typically want to calibrate the

existing VR devices or make sure that the HMD is correctly

adjusted by displaying some text on the screen, so we make

sure that the participant will see the scene clearly.

FIGURE 8
In many of our experiments, there is an initial stage where the
participant is instructed to do some exercises in front of a virtual
mirror to see how the virtual avatar moves as his real body. This
greatly improves the BOI. Figure from (Slater et al., 2018).

FIGURE 9
The workflow of a QuickVR application is subdivided into the
following components: The main of the application
(QuickBaseGameManager) and three logic blocks called
StagesPre, StagesMain and StagesPost.
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• The StagesMain contains the main logic of the scene, what

the application has to do.

• Finally, the StagesPost contains the logic that we want to

execute just before closing the application. For example, herewe

want to save some data to the disk or to the cloud that we have

acquired during the execution of the application.

Also there is an event triggered before and after the execution

of these three main blocks. For example, if we want to do an

action just after the StagesPre are finished, but before the

StagesMain, we can do so by registering to the corresponding

event. There are some QuickStages already defined in QuickVR

that can be used out of the box and offers different possibilities

commonly used in many of our virtual experiences, like fading in and

out the scene or additively loading scenes in background. But there are

also other types of QuickStages that allow the creation of conditional

blocks or loops. TheQuickStage system is highly customizable, andwe

can inherit from any of the existing stages and override its behavior to

adapt it to our specific needs, or create completely new stages by

inheriting directly from QuickStageBase which is the base stage from

which any other stage inherits from. Finally, in the end those stages are

simply components contained in GameObjects in the scene’s

hierarchy. This means that we can reorder the logic by simply

moving the corresponding GameObject in the hierarchy, or enable

or disable that specific stage by simply enabling or disabling its

GameObject.

There are three main functions that we have to take into

consideration when creating a new QuickStage:

• Init: This function is called when the stage starts its

execution. You want to set here any logic that is

executed one time, when the stage starts.

• CoUpdate: This is the main coroutine that you want to

override and here is where you usually want to set the logic

of this specific stage. When CoUpdate ends, the next

function Finish is automatically called.

• Finish: This function is called when the stage finishes and it

basically ends the current stage and passes the flow control

to the next stage in the hierarchy.

4.5 Locomotion

In some scenarioswe require the participant tomove through and

explore the virtual world. We define the Tracking Area as the free

space that the participant has in the real world surroundings to freely

move without colliding with any physical obstacle. When the virtual

world is completely enclosed in the Tracking Area, this becomes a

trivial problem as we simply use the tracking data from the HMD (or

an extra tracker attached to participant’s hips for better results if this

option is available in theVR systems that we are using) to compute the

root displacement and orientation and apply it to the virtual avatar.

We refer to this method as Direct Locomotion. However, the virtual

world tends to be much larger than the physical Tracking Area. For

this case,QuickVR has several built-in solutions, such as Teleport and

Walk in Place.

5 Results

In this section we briefly describe some of the experiments

produced in our lab using QuickVR. While all use most of the

introduced systems to some degree, it is interesting to review

them to illustrate how the library has been evolving and changing

as new requirements for our experiments arose.

In (Bourdin et al., 2017) we studied two methods for

producing an out-of-body experience (OBE) in VR. In both

conditions, participants experienced the same initial stage

where they had to do some exercises in front of a virtual

mirror with their Virtual Body (VB), which moved

synchronously with the movements of the real body using the

Avatar Tracking System. We attached some vibration actuators to

the wrists and ankles of the participants that vibrated when some

virtual objects touched that part of the virtual body, thus

improving the BOI. Then the viewpoint was lifted up and

behind the VB while the VB remained in place. In one

condition participants had no further connection with the VB,

while in the other condition visuomotor and visuotactile

synchrony continued. This was the first experiment

implemented using QuickVR and the fundamentals were

introduced here.

The Island (Barberia et al., 2018) is the most complex

experiment that we have ever developed. Here we used the

potential of VR to study the effects of virtual mortality in

relation to life-attitudes. Participants were embodied in a

human-like body in a virtual beautiful island along with two

remotely located companions. They could explore the world and

carry out tasks together that required the collaboration of the

three of them to complete the task. The virtual body aged over

time and each participant witnessed the death of the two

companions and then her own death, which included some of

the features of near death experiences (OBE, life review, the

tunnel leading to white light). Results showed that this experience

had a positive effect on life attitudes of the participants with

respect to a waiting list control group, but also an interesting

result was that participants were able to transmit the knowledge

of how the world worked and how to solve the tasks from

generation to generation, even though they could not talk to

each other and they learnt by imitation from the older

participants. Apart from the core QuickVR systems, we

developed some specific locomotion metaphors using the full

body to move through the environment, suitable for that magical

world.

In (Slater et al., 2018) for the centenary of the 1917 Russian

Revolution, we reconstructed a famous photograph in VR

showing Lenin giving a speech to Red Army recruits in the
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Sverdlov Square of Moscow, 1920. Depending on the

experimental condition, we could see the scene from three

different perspectives: embodied as Lenin, or a crowd member

of the Red Army, or from a disembodied floating third person

perspective. Here we introduced the Copy Pose System as in some

conditions we required to be embodied in more than one avatar

through the execution of the experiment, but we wanted to

calibrate the application only once, at the beginning of the

experience. The initial version was executed using an Oculus

Rift or a HTC VIVE. In the latter case, additional trackers could

be added to the feet and hips to obtain lower body tracking and

get the root displacement of the participant thorough the scene.

A recent version for Quest has been developed, which makes it

fully portable and we can use the finger tracking feature of such

device.

In (Neyret et al., 2020) 60 male participants experienced a VR

scenario of sexual harassment (SH) of a woman by a group of males

in a bar. Participants were equally divided into three different

groups: they were only embodied as one of the males

committing the aggression, others were also embodied as the

woman and suffered the aggression from that 1PP and finally a

control group only experienced the empty bar, not the SH.Oneweek

later, they took the role of the teacher in a VR version of Milgram’s

obedience experiment. Participants were encouraged by a group of

three other virtual males to give electroshocks to a female learner.

Results showed that those who had been embodied as the woman in

the previous experience gave about half the number of shocks of

those from the first group, and the control groupwas in between. For

the first part of the experiment, we used the potential of QuickVR to

work with multiple VR devices. The SH was pre-recorded using

Perception Neuron for body tracking and the recorded animations

were refined in a postprocess stage. Participants experienced both

situations in the HTC VIVE.

6 Discussion

In this paper we have introduced QuickVR, a library for VR

embodiment using the Unity engine. The core library is subdivided

into different modules or systems, each one tackling a specific

problem which includes not only virtual embodiment in VR, but

also other high level features such as planar reflections, workflow

management or locomotion. Such modules have been added and

expanded in response to the requirements that we have had when

developing a new experiment as well as the changes and updates that

Unity has released during those years. Therefore, this is not a closed

API, but a dynamic set of tools that, thanks to its modular design,

makes it easy to use for anyone with a basic knowledge of Unity, but

also experienced developers can easily add their own modules and

extend the existing ones.

The way it is designed makes QuickVR a multiplatform tool.

It works out of the box with most of the current VR devices that

are available in the market. We have successfully developed

applications for mobile platforms like GearVR, Meta Quest

1 & two and Pico Neo two Eye. On the desktop side, we have

worked with several versions ofOculus including the Oculus DK2

and Oculus Rift as well as the HTC VIVE and VIVE PRO.

Although they are not all the VR devices available on the

market, they are the most common and also the way the

library is constructed makes it available for any VR device

implementing the Unity XR Plugin interface without doing

anything else apart from installing the corresponding plugin.

We also have additional support for other less common devices

that do come as a standard Unity package, such as Kinect,

OptiTrack and Perception Neuron and any VR developer can

add support for a specific device by implementing an exposed

interface by QuickVR.

The library is a well proven tool as it has been used and

matured for many years internally in our lab to produce our VR

applications. Although the library has been developed in a VR

research lab, we have developed a general solution that is usable

for any type of VR application, especially those requiring

embodiment in an avatar. We have recently released it to the

public free for use for non-commercial projects. Although

QuickVR is developed in Unity, the main concepts explained

here can be extrapolated to other game engines, thus serving as a

starting point for developers looking to construct a similar

solution on other engines.

Although the presented work is not something fixed but is

continuously evolving as Unity introduces new features, new VR

devices are released on the market and we find new use cases for

our studies, we consider that we have reached a point where the

current structure is quite solid and extensible, and we do not

expect that the core architecture and concepts introduced here

will radically change on the future. However, for the sake of

clarity, the specific revision that this paper is referring to is shown

in the footnote2.

As for future work, we are planing to introduce an extra IK

step after the pose is copied to the target avatar, to account for self

intersections with the body and other virtual elements in the

environment. Moreover, we want to explore other IK solver

algorithms (Caserman et al., 2019) as well as the introduction of

existing IK tools, such as the well known FinalIK (Root Motion,

2021) or the Unity Animation Rigging package (Unity

Technologies, 2021a). Those systems would bring even better

quality to the default built in IK solver, and the user would have

the possibility to choose the desired IK solver to apply.

We are also planning to introduce a more accurate

calibration step (Caserman et al. (2019); Ponton et al.

(2022)), which implies taking some body measurements

and so the user needs to keep a specific pose on the

calibration stage. However, this calibration process will not

2 Revision: 5d444b904e12f21eee4b833cc1d6869e1bc98c60
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replace the current one, but will be completely optional for

those applications and users where the default calibration does

not produce a good enough result and a more accurate

calibration is needed.

Finally, we want also to address the problem where feet

tracking is not provided by the VR systems. In that case, we

just apply an animation that takes into account the displacement of

theHMD. Sowe have a blend tree with several walking animations,

from walking very slow to running, it takes the speed of the HMD

on that frame and outputs a walking animation that matches that

speed. This solution is straightforward and easy to implement, but

obviously it has the limitation that the position of the feet of the

avatar are not going to match necessarily the position of the feet of

the participant.
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