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Previous studies have demonstrated how augmented feedback can accelerate

motor learning. Still, how specific feedback features of complexity and

intermittency can influence learning a challenging, force-driven motor task

remains largely unknown. This study is an initial investigation of how variations

in the complexity and intermittency of augmented visual guidance affect the

performance of an isometricmuscle control task with a computerized platform.

This novel platform has been developed to rehabilitate upper-extremity

function after neuromuscular dysfunction (e.g., spinal cord injury, stroke)

while utilizing: 1) a position-adjustable arm brace for gravity support; 2) a

myoelectric command interface; 3) virtual reality (VR) for motor training.

Results from this study elucidate new motor control principles and suggest

how augmented guidance may be leveraged in designing VR motor

rehabilitation programs, which are highly flexible and customizable to

individual users. This study demonstrated that simpler and more intermittent

feedback typically resulted in better performance (i.e., shorter computerized

motion pathlengths). Supplementary results suggested these feedback modes

also reduced cognitive loading (i.e., alpha/beta band magnitudes in

electroencephalography) but increased physical arousal (i.e., higher skin

conductance). In sum, this study indicates that for complex, force-driven

tasks, augmented guidance must be presented selectively to accelerate

gains in motor performance. This study suggests that simple and

intermittent feedback avoids cognitively overwhelming the user while

encouraging physical engagement that supports better performance.
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Introduction

Neuromuscular traumas, such as spinal cord or traumatic brain

injuries, often affect upper-extremity functional capabilities

(Johnson and Griswold, 2017; Wyndaele and Wyndaele, 2006).

Therefore, physical rehabilitation is commonly prescribed to aid in

the recovery of motor task skills by training strength, flexibility, and

neuroplasticity (Howard, 2017; Hakim et al., 2017). Previous studies

have demonstrated how augmented sensory-driven cues encoding

spatial errors can significantly improve motor training (Sigrist et al.,

2013a; Young and Schmidt, 1992). Feedback tools as rudimentary as

a mirror can provide real-time visual feedback that effectively guides

spatial positioning (Sewall et al., 1988). Computerized interfaces

with customizable displays or audio and hapticmodules offer greater

flexibility in delivering enhanced sensory feedback. For

rehabilitation, informative augmented feedback cues are often

presented to guide persons towards a target trajectory (Sigrist

et al., 2013a). Previous research has determined that levels of

complexity (amount of information provided) (Sanford et al.,

2020; Wulf and Shea, 2002) and intermittency (frequency of

providing information) (Sadowski et al., 2013; Sanford et al.,

2021) in visual feedback can uniquely affect the consistency of

achieved motor patterns, including those representing muscle

activation (Sanford et al., 2021; Sanford et al., 2020). However,

the visual feedback features of complexity and intermittency, and

their potential effects on learned performance, have not been

thoroughly examined or leveraged for virtual reality (VR) motor

rehabilitation despite the highly programmable nature.

Virtual reality can readily support augmented visual feedback

paradigms and perceptions of embodiment through avatars

(Kilteni et al., 2012). For example, target trajectories could be

transparent overlays between avatar body segments representing

the user’s actual position in space separate from segments

indicating the desired position (Blana et al., 2016). Additionally,

computerized training environments can accommodate various

command interfaces, including those driven by myoelectric

control. Muscle activation patterns, as measured using

electromyography (EMG), can be used to control virtual devices

or game objects (Garcia-Hernandez et al., 2019). Computerized

training environments are highly effective for training muscle

activity patterns that can be leveraged for high-order function,

including control over myoelectric devices (Antfolk, 2010; Perry

et al., 2018). Highly complex EMG patterns can be classified as an

equivalent command space using flexible machine learning

structures (Walsh et al., 2021; Toledo-Pérez et al., 2019) that

are customizable to individual users. Thus, computerized

environments are powerful platforms for customizing

rehabilitation interfaces in both the training regime and

usability for persons of varying ability levels.

Virtual reality is an increasingly popular tool for motor

rehabilitation (Sveistrup, 2004), including for upper-extremity

function (Lim et al., 2020), because of how VR cognitively

engages and motivates its users through colorful displays,

immersive environments, and gamified constructs (Howard,

2017; Garcia-Hernandez et al., 2019; Zimmerli et al., 2013).

Yet, the gains in motor function when using VR rehabilitation

compared to conventional therapies are negligible when

controlling for therapeutic dosage (Prasad et al., 2018). Thus,

the potential for VR rehabilitation therapies has not been

realized. It is crucial to investigate how customizable VR

training elements, such as augmented guidance features, can

be optimized for motor learning. Visual guidance, in particular,

should be considered, given how VR is a visually-driven medium

and because visual feedback has a central role in accelerated

motor learning (Salmoni et al., 1984; Lee et al., 2016).

Augmented visual feedback improves motor task performance

through trajectory-level guidance for either motion or muscle

activation targets (Sigrist et al., 2013a). Compared to other

sensory modalities, such as audio and haptic, visual feedback

best guides spatial positioning during movement exercises

(Sigrist et al., 2013b; Nesbitt, 2003). Two visual feedback

features, complexity and intermittency, can uniquely affect

performance gains (Sanford et al., 2020; Sanford et al., 2021)

and could be optimized for rehabilitation. The optimal visual

features for a particular training regimen can depend upon a

wide range of co-factors, primarily how challenging the task is and

a person’s current level of experience (Wulf and Shea, 2002; Wulf,

2013). Thus, sensory guidance features for rehabilitation may need

to be strategically adapted throughout multiple training sessions as

task difficulty is adjusted to a person’s changing skill level (Ávila-

Sansores et al., 2013; Zimmerli et al., 2013).

Visual feedback complexity increases as more visual

information, e.g., more concurrent targets (Sigrist et al., 2013a;

Sanford et al., 2020), is presented to the user. The greater

complexity of the performance task necessitates greater visual

feedback complexity (Wulf and Shea, 2002). Still, highly complex

feedback could generate cognitive overloading that deteriorates

learning potential (Bannert, 2002), especially if the person

interprets the information as extraneous or irrelevant to the task

directive (Proteau et al., 1992). Given our previous findings (Sanford

et al., 2020), we hypothesize that complex feedback can support

better tracking of a primary target if the supplementary information

is represented synergistically as a body-level movement.

Feedback intermittency alters the frequency of visual

guidance presented during concurrent feedback training

(Schiffman et al., 2006; Sanford et al., 2021). While

continuous feedback is the constant provision of a person’s

motor actions against desired trajectories, intermittent

feedback is presented with reduced frequency. For example,

bandwidth feedback reduces feedback frequency by removing

augmented cues during periods of low error, i.e., error falls below

a predetermined threshold. Intermittent feedback can

progressively reduce the reliance on external guidance cues

and better promote the development of intrinsic mechanisms,

such as proprioceptive memory, resulting in better performance

in retention (i.e., after training and with no augmented guidance)
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(Sadowski et al., 2013; Sanford et al., 2021). The guidance

hypothesis suggests (Salmoni et al., 1984; Schmidt et al., 1989)

that reducing the feedback frequency can enhance motor

learning by promoting greater reliance on intrinsic

mechanisms. Thus, we hypothesize that bandwidth feedback

should result in greater post-training performance than

continuous feedback, even for a myoelectric control task.

Previous studies have examined the effects of augmented

sensory feedback for technology-enhanced motor rehabilitation

platforms (Wannstedt and Herman, 1978; Kearney et al., 2019;

Morone et al., 2021), including with focus on upper-extremity

function (Carmeli et al., 2009; Van Dijk et al., 2005). However,

identifying and applying specific feedback features (e.g., nature,

timing, frequency, type) to most effectively precipitate desired

motor learning outcomes for rehabilitation applications remains

elusive (Molier et al., 2010). In this study, we investigated how the

complexity and intermittency of augmented visual guidance can

facilitate improved functional performance of a muscle-based

(myoelectric command) training task for upper-extremity

rehabilitation. We utilize a novel computerized platform that

incorporates myoelectric control of a virtual robot avatar to

perform reach-to-touch tasks while the participant receives

augmented visual guidance during training. The task employs

a position-adjustable brace of the upper extremity to support

users, such as those with a spinal cord injury who are challenged

to move their limbs against gravity (Ajiboye and Weir, 2005;

Minkel, 2000). The brace holds the arm isometrically to support

resistance strength and coordination training at varied arm

positions (Oranchuk et al., 2019). Thus, we are fundamentally

investigating the effects of variations in augmented guidance for

the performance of a force-driven rehabilitation task (Alavi et al.,

2015; Tiboni et al., 2018). Another crucial and novel element of

our investigation is the examination of concurrent feedback, as

previous bandwidth investigations have utilized terminal

feedback (Salmoni et al., 1984; Schmidt et al., 1989).

Concurrent feedback distinguishes itself by providing

performance feedback during the action, while terminal

feedback entails providing feedback about performance after

the movement is completed (Park et al., 2000).

Furthermore, we measure and evaluate user-centered

response variables to potentially explain an underlying

mechanism in how augmented guidance may induce the

observed performance patterns. Specifically, we assess

participant perceptions in agency (Aoyagi et al., 2019) over

the command interface. In addition, we measure the

physiological stresses that are endured at cognitive

[electroencephalography measures for loading (Kumar and

Kumar, 2016)] and physical [electrodermal activity indicative

of body arousal (Critchley, 2002)] levels. These physiological

stresses indicate well-being during training, which may help

further identify participant tolerance of various visual

feedback modes and may be an additional dimension of

person-specific customization of VR-based training.

Materials and methods

Human participation

Thirteen healthy participants signed an informed consent

approved by the local Institutional Review Board. They were

recruited from a university campus (Seven Females: 21.2 ±

2.0 years, 165.1 ± 3.7 cm, 56.5 ± 2.6 kg. Six Males: 22.3 ±

2.1 years, 179.3 ± 5.9 cm, 77.5 ± 6.4 kg). All participants were

right-hand dominant, and the right armwas used for training. All

participants were naïve to both the brace device and muscle-

driven command interfaces. Individuals were excluded from

participating if they reported any of the following: 1) Clinical

diagnosis of cognitive or neuromuscular impairment. 2) Previous

surgery to an upper extremity or the spine/neck. 3) Hearing or

vision issues not correctable to normal levels. 4) Proneness to

epileptic seizures due to visual stimuli.

Supportive brace apparatus

A novel computerized platform for isometric training of

muscle function has been developed for motor rehabilitation

of the upper extremity (Figure 1). The first principal component

of this platform is a position-adjustable brace that isometrically

supports the upper arm undergoing training. The brace was

custom constructed using 3D printing and essential hardware

components, allowing the user to assume variable arm

configurations. Support at varying configurations can enable

physical therapists to develop training programs that promote

muscle strength and coordination at different muscle lengths

(Folland et al., 2005; Noorkõiv et al., 2015), even for persons with

severe motor dysfunction. In cases of severe motor disability, the

brace provides gravity support to assume different configurations

while a person can focus training effort on preserved muscles

executing the computerized task. Fundamentally, the person will

exert directional efforts against the brace’s padded interior

(contact-side). In addition, isometric resistance from the brace

helps to amplify the skin-surface EMG signals used to drive the

motion of virtual avatars (Berger and d’Avella, 2017; Gordon and

Ferris, 2004).

The brace comprises an arm mount, an adjustable rod, and a

secondary mount on the table directly in front of the participant.

The arm mount component straps twice over the upper arm,

once over the forearm, and allows adjusting and locking of the

elbow angle. The arm mount has cut-outs for EMG sensors on

the upper arm and forearmmuscle mid-bellies. An adjustable rod

attached to the forearm connects the arm mount to a second

mount clamped to the table in front of the participant. The

adjustable hinges on the mounts and rod allow the arm position

to be adjusted at elbow and shoulder angles that are comfortable

and within desired limits. In this study, we searched for arm

positions deemed comfortable and neutral for each participant
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within the following angular ranges: shoulder ad/abduction

(45–75°), shoulder internal rotation (0–45°), and elbow flexion

(90–120°). We defined neutral as an arm position where

participants perceived they could produce high forces in the

four orthogonal directions (forward, back, left, right) used to

command the virtual avatar (robot arm).

Measurement of physiological
signals—electromyography,
electroencephalography, and
electrodermal activity

Fourteen wireless electromyography (EMG) sensors (Trigno

Wireless EMG System, Delsys, Natick, MA, United States) were

used to measure real-time muscle activity and provide the

myoelectric inputs to control the virtual robot. EMG sensors

were placed on the mid-belly of fourteen individual muscles of

the arm and torso: brachioradialis, extensor digitorum, biceps

brachii, triceps brachii, upper trapezius, middle trapezius, lower

trapezius, infraspinatus, serratus anterior, latissimus dorsi,

pectoralis major, anterior deltoid, lateral deltoid, and posterior

deltoid. These muscles were identified as primary force-

generating muscles in upper-extremity movements and targets

for physical rehabilitation (Keenan, 1988; Reinold et al., 2007;

Selkowitz et al., 2007; Fox et al., 2015). All EMG data were

sampled at 1728 Hz.

A 64-channel electroencephalography (EEG) scalp-recording

cap (g.USBamp, g. tec neurotechnology United States, Inc.)

measured brain activity during all experiment phases. Power

spectrum analyses were performed offline to identify mean

power in alpha (8–12 Hz) and beta (13–30 Hz) frequency bands

as measures of cognitive loading. Only seven of the thirteen

participants were available to have EEG measurements taken

during all experiment phases. All EEG data were sampled at

256 Hz. Electrodermal (EDA) activity was measured as a proxy

for emotional and physical arousal based on increased skin

conductivity (in microsiemen) of the left hand. Changes in

galvanic skin response due to moisture were measured from

electrode readings (Shimmer3 GSR + sensor, Shimmer,

United States) at the index and middle fingers. Only four of the

thirteen participants were available to have EDA measurements

taken during all experiment phases. All EDA data were sampled at

51 Hz. All EMG, EEG, and EDA data were synchronized offline.

FIGURE 1
Experiment Overview. (A) Participant arm placed in supportive brace fastened to the table to apply isometric muscular exertions. Worn EMG
sensors record myoelectric patterns to command the VR robot arm avatar. EEG and EDA signals additionally recorded to measure participant
cognitive loading and physical arousal, respectively. (B) For each visual feedback mode, participants completed pre-training and post-training trials
(with no feedback) before and after training trials (with visual feedback). (C) Isometric muscle control was used to command a virtual device
through a variety of reaching tasks while receiving real-time visual feedback for making movement corrections to reduce error to the shortest path
between targets.
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Survey measurement for perception of
control

Immediately following each visual feedback block,

participants completed a survey inquiring about their

perception of control of the virtual avatar during training.

Only ten of the thirteen eligible participants completed the

survey. The survey asked participants to rate their level of

agreement on a scale of 1 (disagree) to 100 (agree) with a

single statement. The statement reflected the sense of agency

(Moore and Obhi, 2012) and read as: I was in full control of the

virtual prosthetic arm during training.

Utilizing support vector machines for
electromyography classification

A support vector machine (SVM) (Toledo-Pérez et al., 2019)

was used as the machine learning classifier for translating EMG

activation patterns (14 muscle inputs) to direction outputs to be

used as commands for the end-effector of the virtual robot arm.

SVMs were trained uniquely for each participant. During pilot

testing with our platform, we attempted to use a single SVM to

output eight directional commands (four orthogonal, four

diagonal). However, the single SVM produced challenges in

EMG control of multiple degrees of freedom, as is well-cited

(Parajuli et al., 2019), and participants reported poor intuitive

control. Thus, we alternatively created an ad hoc command

architecture using two SVM structures in parallel. One SVM

was trained to identify forward and backward command

directions, and the other was separately trained to identify

right and left command directions. Training trials with

diagonal data were included in both classifiers. A manual

threshold was specified in series with classifier output to

denote “no movement” of the end-effector when average

EMG activity across all muscles was within 20% of the

baseline (i.e., resting periods between target plateaus) EMG

amplitude, presumably from sensor noise or hyperactivity at rest.

The main consequence of this command scheme was that

participants primarily utilized sequences of diagonal movements

(i.e., both SVM classifiers were producing command outputs

concurrently) to move towards target locations. Our platform

justified this approach since participants reported seamless and

natural control of the robot avatars. This perception may partly

explain endpoint stiffness regulation as a function of arm posture

(McIntyre et al., 1996), and diagonal translations may better align

with user endpoint forces. However, considerations of mapping

arm posture to endpoint force synergies were beyond the scope of

this study and held secondary to finding arm postures

accommodating user comfort and stated preferences. More

sophisticated approaches to the command interface may be

enacted in future deployments, including those that better

facilitate robust and concurrent control of multiple degrees of

freedom. Still, the current scheme provided a sufficiently stable

and consistent interface to discern performance effects due to

variations in visual feedback features, as this study’s main

objective.

For classifier training, each participant would be placed in the

brace to perform voluntary isometric contractions in specific

directions as instructed by the experimenter. First, the participant

would perform maximum voluntary isometric contractions

(MVIC) in the four orthogonal directions: forward, back, left,

and right. From these trials, we identified the average EMG across

all muscles signifying 100% MVIC for normalizing target force

levels during training trials. Second, data to train an SVM were

collected in sixteen individual trials within the VR environment.

In each trial, participants would exert effort at one of two force

level targets, 20% or 40% MVIC, in one of eight movement

directions, the four orthogonal directions, and their

corresponding four diagonal directions in that same plane. If

they reached and exceeded the force target, the virtual end-

effector would slowly start moving in the intended direction to

encourage them to maintain that force level. Participants

maintained an isometric hold for no longer than 12 s at the

desired force level for each trial, resulting in over 20,000 data

points collected per trial. A total of 10,000 sample points of EMG

activity were extracted (centered within an isometric hold) for

each movement direction and utilized for SVM training (“svm”

function in Matlab). As demonstrated in our prior work that

characterized machine learning classifier outputs for a similar

version of this platform (Walsh et al., 2021), we achieved over

90% in classification accuracy, precision, and recall for SVM

training when utilizing all fourteen muscle inputs. The 90%

accuracy threshold was universally reached for all participants

within the single session of training. Real-time input data to each

SVM was provided as the root mean square filter with a window

of 200 samples for the fourteen EMG sensors.

Virtual reality task environment for
training and testing

The 3-D VR task environment (Figure 2) was primarily

comprised of a robot arm whose end-effector moves within

the transverse plane (forward-back-right-left) based on SVM

outputs commanded by the participant’s myoelectric patterns.

The remainder of the robot-arm linkage follows the end-effector

according to inverse kinematics (Kucuk and Bingul, 2006). The

end-effector moved towards target locations (marked by spheres)

for both training and testing trials of functional performance.

Participants were instructed to pursue targets as quickly as

possible while adhering to the shortest pathlength between

targets. Participants were informed that performance was

positively assessed by minimizing the end-effector pathlength.

Participants performed reach-to-touch tasks with the robot arm

either in training trials with augmented visual guidance or during
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testing trials with no added feedback. With point-to-point

reaching, efficient (shorter pathlength) trajectories are desired.

For this motor task, modulated by EMG-level control, deviations

from an ideal straight-line path are relatively small, but

discernible. As such, augmented visual guidance of the

original straight-line trajectory provides a clear and persistent

reference path for participants to maintain during an entire

training reach. Presumably, larger deviations, such as those

induced by perturbations, would invoke motor planning and

execution of a new target trajectory. For training trials, there are

five target spheres arranged equidistantly (at 0°, 45°, 90°, 135°, and

180°) from the starting position for conducting a point-to-point

reaching task (Yue et al., 2002). A color change of a random

target sphere would cue the participant to command the end-

effector to reach and contact that target before immediately

returning to the starting position and pursuing the next

target. The five targets were arranged randomly for testing

trials, and participants could choose the order to contact all

targets serially. Allowing participants to select the order of

pursued targets strategically supports the development of

motor control (Levin et al., 2015). Participants were informed

about their pathlength during training through a “Pathlength

Score” display to facilitate learning with knowledge of results

(Cirstea and Levin, 2007) and score gamification (Kern et al.,

2019). Pathlength score was explicitly computed as the ratio of

the minimum pathlength (straight line distance) between targets

over the actual pathlength traversed by the end-effector

multiplied by 100. For the participant, score interpretations

were intuitive, whereby the goal was to achieve a score as

close to 100 as possible. Point-to-point reaching tasks have

been used extensively for evaluating motor control (Won and

Hogan, 1995; Ghafouri and Feldman, 2001), including

monitoring the functional recovery of the upper-body with

rehabilitative therapies (Dipietro et al., 2009; Celik et al., 2010;

Zhou et al., 2013).

Visual feedback modes utilized for
augmented training guidance

Augmented training guidance in this study was presented as

visual cues to suggest participant deviations from optimal

(shortest) pathlengths between initial positions and targets. A

second “ghost” (semi-transparent) robot avatar was presented

concurrently as a guide against the participant-controlled avatar

during training. The end-effector position for the guide avatar was

a projection of the participant-controlled avatar onto the optimal

pathlength. Four modes of augmented visual feedback were

created through concurrent variation of complexity (amount of

visual information) and intermittency (frequency of visual

information), with each feature tested at two levels (Figure 3).

Guidance complexity was specified as either simple, by

displaying only the end-effector of the guide robot, or

complex, which also displayed the guide robot’s arm linkage.

The arm linkage of the guide robot similarly follows inverse

kinematics of its end-effector and does not inherently provide

additional feedback about the performance error. However, our

previous work (Sanford et al., 2020) suggested that additional

visual cues, even if redundant due to biomechanical coupling,

may facilitate better motor learning if they signified greater body

representation, e.g., serial sequence of body segments. In this

previous study, the performance variable of interest was the thigh

angle during the squat. A serial body linkage improved motor

performance by adding additional visual information about torso

and shank segments. Thus, we seek to investigate if such feedback

may positively contribute to motor learning despite the

fundamental motor task difference of isometric, i.e., force-

driven, avatar control.

Guidance intermittency was specified as either continuous,

whereby the guide avatar is always present, or bandwidth,

whereby augmented guidance was provided only if position

error exceeded a particular threshold. This study specified the

threshold as the mean error for a given participant during two

FIGURE 2
Three-dimensional virtual reality task environment shown for
robot arm (white) under myoelectric control to make contact
between its end-effector and target spheres. TOP) During point-
to-point “training”, the targets were positioned equidistantly
from a central initial position as the participant received
augmented visual guidance in moving to (reach) and from (return)
the targets. BOTTOM) During “testing”, augmented visual
guidance was removed and targets were randomly positioned, and
participants pursued targets in series and in the sequence order
they choose.
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practice training as part of initial accommodation. When this

error is exceeded, a semi-transparent version of the guide arm

appears and becomes opaquer in proportion to increasing error.

The guide arm is fully opaque at twice the error magnitude of the

threshold value. Pilot experimental sessions for this study and

our previous work have indicated that modulating transparency

of the guide arm in proportion to error magnitude ensured that

intermittent transitions in feedback are not perceived as jarring

to participants. The guide arm was presented at 20%

transparency for continuous feedback modes. Pairing each

unique level of one feature to another feature resulted in four

visual feedback modes: 1) complex-continuous, 2) simple-

continuous, 3) complex-bandwidth, and 4) simple-bandwidth.

Since the motor learning benefits of augmented feedback have

been generally established (Sigrist et al., 2013a), we chose to

exclude a baseline training case with no visual feedback. As such,

we limited our scope of examination to discriminating

performance effects due to variations in features of augmented

feedback. Furthermore, we randomize the order of presentation

of visual feedback modes to ensure that any progressive learning

effects across the session are distributed across modes with post-

experiment analyses.

Experimental protocol

Each participant completed a single session that evaluated

the effects of all four visual feedback modes within 4 hours.

The participant donned the upper-arm brace and had all skin-

surface physiological (EMG, EEG, EDA) sensors placed upon

arrival. Immediately after, several accommodation procedures

occurred, including 1) brace adjustment for comfort and

neutrality, 2) participant selection of an avatar end-effector

speed (three speed choices presented), 3) between one and

2 minutes gaining experience commanding the virtual robot.

Before testing each visual feedback mode, a couple of practice

trials were conducted to determine baseline average

performance errors (optimal pathlength deviations) and

bandwidth thresholds. For each of the visual feedback

modes, each participant underwent a three-block trial

sequence: 1) Five testing trials (pre-training), 2) Ten

training trials (training with augmented visual guidance), 3)

Five testing trials (post-training). As mentioned, the order of

visual feedback modes was randomized for each participant.

Each trial was separated by 15 s, and a 15-min rest break

separated each three-block sequence for a visual feedback

mode to mitigate fatigue effects. Participants were further

queried intermittently throughout the session about their

feelings and if they required an additional break. During

the 15-min rest break, participants were relieved from

wearing the headset. Participants were informed that they

could undertake additional breaks, or exit the protocol, as

needed (e.g., dizziness). No adverse events were observed or

reported with the participants recruited for this study.

Data and statistical analysis

All statistical analyses were performed using the Statistics

Toolbox of MATLAB® (Mathworks Inc., Natick, MA,

FIGURE 3
Visual Feedback Modes for Augmented Guidance during Training. All visual feedback modes project variations of a semi-transparent guide
robot arm that follows the shortest (straight line) pathlengths between initial positions and active targets.
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United States). The mean values of all metrics for performance

(completion time and pathlength score), perception (agency

survey), and physiological engagement (alpha- and beta-band

EEG activity for cognitive loading; EDA for physical arousal)

were evaluated for each participant, visual feedback mode,

and block of testing or training trials. This study’s analysis

of central interest was the relative performance change

between post-training and pre-training trials for each visual

feedback mode. We further evaluated the change in

physiological measures from pre-training to either training

or post-training. We also observed participant sense of

agency for each visual feedback mode used for training. A

two-factor Friedman (two-way ANOVA by ranks) test

was performed for each metric to identify significant

differences across factors of complexity and intermittency,

followed by a post hoc test when significant differences or

interactions were observed. Additionally, we examined

whether significant positive or negative coupling existed

between performance (pathlength score) and either EEG or

agency depending on the visual feedback mode. Specifically,

we applied a simple linear regression to each scatter plot

(one per feedback mode) of participant mean values pairing

performance against either EEG or agency utilizing the

“regstats” function in Matlab. We then further identified if

the slope parameter was positive or negative and significantly

different (p < 0.05) from zero based on t-stat p-values, also

extracted from “regstats.”

Results

Pathlength score and completion time

Results for both performance variables (pathlength score,

completion time) are reported as the mean across participant-

level averages within each block of trials. For each participant,

the performance results during post-training blocks are

divided (normalized) from those for pre-training to suggest

the relative change in performance due to training with a

particular visual feedback mode. When performing a multi-

variate analysis (MANOVA) for both performance variables

(pathlength, completion time), a significant difference (p =

1.8 E-08) was observed across the independent variable of

visual feedback modes. Figure 4 presents the results for

pathlength score alone. For the factors of complexity and

intermittency, the two-way ANOVA indicated a significant

difference for pathlength score based on complexity but not

for intermittency (Table 1). No significant interactions were

observed between these factors for either performance metric.

The normalized pathlength score was significantly higher (p =

0.0461) for simple feedback modes compared to complex

modes. When examining individual feedback modes

(Table 2), simple-continuous feedback generated better

pathlength performance compared to both complex-

continuous (p = 0.0293) and complex-bandwidth (p =

0.0449). Furthermore, all individual visual feedback modes

FIGURE 4
Pathlength score results indicate relative change in performance of pathlength minimization after training as score in post-training is divided
(normalized) by pre-training for each participant.
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demonstrated an improvement in pathlength score during

post-training compared to pre-training (i.e., normalized value

greater than 1). Figure 5 presents the mean completion times

during post-training when normalized by pre-training

averages. Significant differences in completion time were

not observed between pairs of individual visual feedback

modes.

Electroencephalography

Figure 6 presents EEG data for alpha and beta powers

measured across all channels, observed as relative changes

from pre-training to training (Train/Pre ratio) or pre-training

to post-training (Post/Pre ratio). Significant differences in EEG

were observed based on intermittency (Table 3) and across

individual feedback modes (Table 4). Significant differences

were observed only for Post/Pre for the alpha band.

Continuous feedback resulted in significantly higher (p =

0.0116) EEG activity than bandwidth (intermittent) feedback.

No significant interactions were observed between factors of

complexity and intermittency. Additionally, complex-

continuous (p = 0.0318) and simple-continuous (p = 0.0014)

resulted in significantly higher EEG activity compared to simple-

bandwidth. For the beta band, complex-bandwidth generated

significantly higher (p = 0.0384) EEG activity during training

than simple-bandwidth. Figure 7 presents a brain map of EEG

alpha band activity averaged over all participants for simple-

continuous and simple-bandwidth (Post/Pre). The simple modes

are further examined since they produce better performance than

complex modes. The higher alpha band activity preserved in

post-training was generally distributed across the entire brain,

including motor and sensory areas, suggesting a shift to

continuous feedback produced a uniform effect on brain activity.

TABLE 1 Performance results as the relative change from pre-training to post-training (post/pre ratio per participant).

Table 1A: Mean performance across visual feedback modes

Visual feedback modes

Metric CC CB SC SB

Pathlength score 1.01 ± 0.05 1.02 ± 0.05 1.06 ± 0.06 1.05 ± 0.05

Completion time 0.92 ± 0.05 0.91 ± 0.09 0.90 ± 0.07 0.89 ± 0.06

Table 1B: Two-way ANOVA results based on factors of complexity and intermittency

Complexity Intermittency Complexity-intermittency interaction

Metric Chi-square p-val Chi-square p-val p-val

Pathlength score 3.98 0.046 0.02 0.885 0.803

Completion time 0.82 0.365 0.43 0.514 0.982

Note: Visual feedback modes—CC, complex-continuous; CB, complex-bandwidth; SC, simple-continuous; SB, simple-bandwidth. Note 2: Significant p-values (p < 0.05) bolded. Note 3: No

significant interactions were observed between factors of complexity and intermittency for either metric.

TABLE 2 Post hoc results comparing performance between pairs of visual feedback modes.

Table 2A: p-values for pathlength score

CC CB SC SB

CC x 0.726 0.029 0.171

CB x x 0.045 0.097

SC x x x 0.480

Table 2B: p-values for completion time (N/A, no significant differences observed w/ANOVA)

Note: Visual feedback modes—CC, complex-continuous; CB, complex-bandwidth; SC, simple-continuous; SB, simple-bandwidth. Note 2: Significant p-values (p < 0.05) bolded.
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FIGURE 5
Results indicate relative change in trial completion time performance after training as mean time in post-training is divided (normalized) by time
in pre-training for each participant.

FIGURE 6
Electroencephalography results indicate change in alpha or beta band power during either training or post-training from pre-training.
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TABLE 3 Electroencephalography alpha band (8–12 Hz) and beta band (13–30 Hz) power as the relative change from pre-training to training (train/
pre) and pre-training to post-training (post/pre).

Table 3A: Mean EEG results for across visual feedback modes

Visual feedback modes

Metric CC CB SC SB

Alpha band—train/pre 1.08 ± 0.12 1.07 ± 0.26 1.11 ± 0.21 1.06 ± 0.24

Beta band—train/pre 1.04 ± 0.06 1.15 ± 0.13 1.09 ± 0.13 0.96 ± 0.17

Alpha band—post/pre 1.14 ± 0.14 0.96 ± 0.20 1.08 ± 0.19 0.91 ± 0.20

Beta band—post/pre 1.06 ± 0.17 1.09 ± 0.32 0.94 ± 0.20 0.98 ± 0.30

Table 3B: Two-way ANOVA results based on factors of complexity and intermittency

Complexity Intermittency Complexity-intermittency interaction

Metric Chi-square p-val Chi-square p-val p-val

Alpha band—train/pre 0.05 0.824 1.08 0.299 0.357

Beta band—train/pre 0.93 0.334 0.09 0.766 0.041

Alpha band—post/pre 0.45 0.504 6.38 0.012 0.356

Beta band—post/pre 1.24 0.265 0.09 0.766 0.426

Note: Visual feedback modes—CC, complex-continuous; CB, complex-bandwidth; SC, simple-continuous; SB, simple-bandwidth. Note 2: Significant p-values (p < 0.05) bolded. Note 3:

Significant complexity-intermittency interaction (p < 0.05) observed for beta band train/pre.

TABLE 4 Post hoc results comparing EEG band powers between pairs of visual feedback modes.

Table 4A: p-values for alpha band—training/pre (N/A, no significant differences observed w/ANOVA)

Table 4B: p-values for beta band—training/pre (post hoc results shown given significant interaction)

CC CB SC SB

CC x 0.072 0.322 0.212

CB x x 0.474 0.038

SC x x x 0.092

Table 4C: p-values for alpha band—post/pre

CC CB SC SB

CC x 0.104 0.552 0.032

CB x x 0.248 0.600

SC x x x 0.001

Table 4D: p-values for beta band—post/pre (N/A, no significant differences observed w/ANOVA)

Note: Visual feedback modes—CC, complex-continuous; CB, complex-bandwidth; SC, simple-continuous; SB, simple-bandwidth. Note 2: Significant p-values (p < 0.05) bolded.
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Electrodermal activity

Figure 8 presents the relative changes in electrodermal

activity for each visual feedback mode, from pre-training to

training. Significant differences were observed for the factor of

complexity and across individual feedback modes (Table 5).

No significant interactions were observed between factors of

complexity and intermittency. Simple feedback resulted in

significantly higher (p = 0.0239) skin conductance during

training than complex feedback. Furthermore, complex-

bandwidth feedback resulted in significantly lower

conductance that either simple-continuous (p = 0.0377) or

simple-bandwidth (p = 0.0218).

Agency (survey) results

The mean survey score (80.65) for the perception of

control (agency) was normalized for each participant by

subtracting the mean across visual feedback modes to

highlight better the model-level differences in survey

scores (Figure 9A). The mean values for each feedback

mode were: complex-continuous = 83.5/100, complex-

bandwidth = 81.6/100, simple-continuous = 81.5/100,

simple-bandwidth = 76/100. A significant difference (p =

0.0249) was observed between complex-continuous

and simple-bandwidth. No significant differences

were observed based on factors of complexity or

intermittency. Figure 9B plots agency against pathlength

performance (relative change in score from pre-training to

post-training).

Electroencephalography and agency
versus pathlength score per visual
feedback mode

EEG and agency results were both evaluated against

Pathlength Score across participants for each feedback

mode (Figure 10). Participant mean values for EEG alpha

band power and agency data were scatter-plotted against

respective Pathlength Score values for post-training/pre-

training for each visual feedback mode. A simple linear

regression model was fitted to these data for each mode.

We sought to verify whether the slope parameter was

significantly different from zero to indicate apparent

performance dependencies, either positive or negative, on

cognitive loading (EEG) or action-driven perception

(agency). The linear regression model parameters for the

y-intercept and slope were extracted for each feedback

mode. For three feedback modes, slopes were positive for

EEG versus performance results. For three feedback modes,

slopes were negative for agency versus performance results.

The p-values, based on the t-stat to indicate significant

difference from zero, for regression parameters are

provided for each feedback mode in Figure 10. Ultimately,

a significant correlation, as indicated by a significantly non-

zero slope parameter, was not observed here for any feedback

FIGURE 7
Brain map of EEG activity averaged for all participants. Electroencephalography (EEG) results to indicate changes in average alpha band activity
during post-training from pre-training for simple-continuous (LEFT) and simple-bandwidth (RIGHT).
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mode. These results suggest either a lack of correlation

between these variables across feedback modes or an

insufficient number of participant data points.

Discussion

This study primarily investigated changes in force-driven

motor performance with variations in features of augmented

visual feedback, namely, complexity and intermittency. We

leveraged a novel rehabilitative platform utilizing a

computerized interface (i.e., immersive virtual reality) and a

position-adjustable arm brace that provides gravity support

during isometric strength training at varied arm postures. Our

results demonstrated that variations in visual feedback features

could generate significant differences in post-training

performance. Our results do not reflect true motor learning

(Ronsse et al., 2011), which requires demonstration of long-

term retention and skill acquisition; however, immediate (short-

term) performance effects can be indicative of learning potential

(Guadagnoli and Lee, 2004) and promise for neuromotor

rehabilitation (Nieuwboer et al., 2009). Direct performance

effects were characterized according to a relative change from

pre-training to post-training for each participant and the

feedback mode used for augmented guidance. For the point-

to-point motor task in VR, simpler feedback (i.e., end-effector

guide only) appeared to be more effective in improving

performance. This more simple guide produced the best

pathlength performance overall.

In this study, we presented more complex feedback for this

force-driven task (i.e., participant held isometrically) with the

inclusion of the links preceding the end-effector of the guide arm.

In our previous work investigating visual feedback features for a

motion-driven task (i.e., participants’ own motions drive

computer display) (Sanford et al., 2020), we evaluated

relatively simple and complex forms of feedback. More

complex feedback entailed presentation of additional

segmental motions to track concurrently. That study suggested

that complex feedback representing the intrinsic coupling of all

body segments for a high constrained movement (i.e., two-legged

squat forming closed-chain with ground) facilitated better

tracking of the primary target segment (i.e., thigh). In the

current study, the target segment to track is the end-effector,

and the motions of the links are constrained to the end-effector

through inverse kinematics. While the presentation of these link

positions is, in fact, extraneous to the primary target of the end-

effector, its inclusion as additional real-time feedback tests

whether presenting a kinematic synergy facilitates better

motor learning. A significant distinction with this study from

our previous work with the squat task is that the participant is

held isometrically and cannot dynamically embody (Kilteni et al.,

2012) the motion feedback being presented in real time. Thus,

complex feedback might only be effectively leveraged towards

improved motor performance for rehabilitation paradigms

utilizing motion-driven inputs that allow the user to embody

the avatar fully. It may be necessary and more challenging for a

force-driven task to effectively display kinetic synergies as

complex feedback for rehabilitating motor coordination

(Berger and d’Avella, 2014). In this study, the additional

information presented may have been perceived as distracting

(Smith, 2019) or irrelevant to the primary objective (Proteau

et al., 1992). Thus, our hypothesis regarding complexity was

refuted for the presented motor task.

Our hypothesis regarding intermittency is also refuted as

continuous feedback outperformed bandwidth feedback.

However, this result is consistent with our previous work

investigating intermittency effects with the squat task (Sanford

et al., 2021). In both studies, the guidance hypothesis (Park et al.,

2000) was not confirmed, suggesting these computerized

rehabilitation protocols may not be able to facilitate the

FIGURE 8
Relative change in electrodermal activity results during
training compared to pre-training with each feedback mode.
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development of intrinsic mechanisms within a single session.

Thus, follow-up sessions may be necessary to confirm the

relevance of the guidance hypothesis to these specific motor

paradigms. Furthermore, the guidance hypothesis with

intermittent feedback is often predicated on knowledge of

results with terminal feedback (Schmidt et al., 1989). Thus, a

TABLE 5 Electrodermal activity during training with each feedbackmode. Results presented as the mean skin conductance during training divided by
pre-training (train/pre).

Table 5A: Mean EDA results (microsiemens)

Visual feedback modes

Metric CC CB SC SB

Training/pre 1.39 ± 0.18 1.43 ± 0.07 1.56 ± 0.03 1.56 ± 0.12

Table 5B: Two-way ANOVA results based on factors of complexity and intermittency

Complexity Intermittency Complexity-intermittency interaction

Metric Chi-square p-val Chi-square p-val p-val

Training/pre 5.10 0.024 0.17 0.681 0.601

Table 5C: Post hoc comparisons, p-value, between visual feedback modes for EDA activity—training/pre

CC CB SC SB

CC x 0.733 0.197 0.304

CB x x 0.038 0.022

SC x x x 0.973

Note: Visual feedback modes—CC, complex-continuous; CB, complex-bandwidth; SC, simple-continuous; SB, simple-bandwidth. Note 2: Significant p-values (p < 0.05) bolded. Note 3: No

significant interactions were observed between factors of complexity and intermittency.

FIGURE 9
Survey results. (A) Survey score results for agency for each visual feedback mode. (B) Agency results versus relative change (pre to post) in
pathlength score performance.
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FIGURE 10
EEG and Agency versus Pathlength Score per Visual FeedbackMode. TOP) EEG alpha band power and pathlength score both presented as post-
training/pre-training. BOTTOM) Agency (survey) results and pathlength score (post/pre). Linear regression parameters (y-int, slope) and respective
p-values (based on t-test) to indicate significant difference from zero shown with each mode.
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novel element of the current study is the inclusion of

intermittency with concurrent feedback. However, given the

proven effectiveness of concurrent feedback to generate

immediate improvement in performance (Park et al., 2000), it

is crucial to examine ways to leverage concurrent feedback in

creating VR rehabilitation protocols that can further accelerate

gains in motor function. As in our previous motion-driven squat

protocol, we did examine “potential learning” in relative

retention in performance in post-training with no feedback

after receiving augmented guidance during training. In the

squat protocol, this potential learning was greater with

bandwidth protocols. In the force-driven task, due to only

testing four visual feedback modes instead of six as in the

motion task, additional trials were added to create a new pre-

training (baseline) phase. Therefore, potential learning was

evaluated as the relative difference between the new pre-

training (baseline) and the post-training phases (retention).

During the VR reaching task, training with concurrent

bandwidth feedback induced significantly lower cognitive

activity than continuous feedback, regardless of complexity.

Amongst simple feedback, determined superior for

performance, higher performance was related to lower

cognitive stress (alpha band power), lower sense of agency

(survey score), and higher physical stress. Relative decreases in

alpha band activity can indicate greater focus on external objects

during VR interactions (Magosso et al., 2019). This focus shift to

external cueing can produce greater performance and retention

than a greater internal focus (Wulf, 2013). Furthermore, other

studies have shown that lower alpha band activity (Kiefer et al.,

2014) and lower cognitive activity identified via fMRI (Weaver,

2015) can suggest greater potential in motor learning. This lower

alpha band activity may reflect participant experiences of

completed movements that feel more automatic and require

less conscious effort (Fitts and Posner, 1967). While long-term

retention is only demonstrable with multiple sessions, relatively

lower alpha band activity coupled with greater performance gains

suggests the promise of simple-bandwidth feedback in learning

motor tasks that are more complex, i.e., predicated on muscle-

level synergies.

In this study, we observed two sets of user-centered

metrics as potential explanatory variables for the

performance with various modes of training feedback. First,

we observed explicit agency from the survey responses,

indicating that participants perceived complex-continuous

augmented guidance provided better control of the virtual

arm than simple-bandwidth. Complex-continuous

theoretically provided the most guidance, i.e., the guide

robot arm is displayed fully (end-effector and arm links)

and constantly during training. It is plausible that

participants assumed the guide arm generated greater

control or projected their intended actions on the guide

arm versus the actual arm. Our laboratory’s previous

findings measured and leveraged agency implicitly for

simple computerized reach (Nataraj et al., 2020a; Nataraj

et al., 2020b; Nataraj et al., 2022) and grasp (Liu et al.,

2021; Nataraj et al., 2021) and demonstrated significant

positive correlation with improved performance. Results to

that end were inconclusive in this study; however, these

preliminary results suggest that a constrained myoelectric

task may generate a perceptional inversion whereby

participants felt lower agency with feedback conditions that

improved performance. Participants are not always aware of

what is most beneficial to them for motor learning (Wulf,

2013). Participants may make selections based on comfort and

neglect the possibility that challenging scenarios, which may

be uncomfortable, will be more advantageous for motor

learning.

Physiological measures such as EEG and EDA provide a

more objective basis to discern fundamental user-centered

responses. As inferred through cognitive loading, increased

engagement can produce better performance in a VR

environment (Cho et al., 2015). When significant differences

were discernible, this study confirmed, as expected, that simpler

and intermittent feedback resulted in lower cognitive loading,

indicated by reduced EEG power. Since simpler feedback

generally produced better performance, it may be inferred

that complex feedback, as presented here, may have resulted

in overloading that diminished performance (Bannert, 2002).

Alternatively, simpler feedback generally produced greater

physical arousal, as indicated by higher electrodermal

activity (Critchley, 2002). For this study, the simpler

feedback may have supported the user to be more physically

engaged, without mental distraction, towards improved motor

performance.

The major limitations of our study to demonstrate how

variations in augmented visual guidance for training affect

motor learning include constraints on the task, motor

transference, and long-term retention. The task control space

was limited to 2D due to challenges in attaining robust multi-

dimensional control through the enacted pattern classifiers.

More advanced machine learning methods may be enacted for

3D myoelectric control (Liarokapis et al., 2013; Rabin et al.,

2020). However, the deployment of such approaches must be

balanced against the feasibility considerations of time to train

within single sessions (Walsh et al., 2021) and classification

accuracy (Gu et al., 2018). Feasibility is crucial for clinical

populations with reduced and compromised muscle sets to

identify myoelectric commands (Huang et al., 2016; Walsh

et al., 2021). Ultimately, improved motor skill acquisition

(Soderstrom and Bjork, 2015; Utley, 2018) must be

demonstrated by testing functional abilities in generalizable

contexts that differ from training. Functional gains with

isometric testing must be exhibited through improved abilities

to perform dynamic tasks that better represent activities of daily

living (Akima et al., 1999; Garcia-Hernandez et al., 2019).

Additional modifications could be pursued to facilitate better
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motor control, even within the training paradigm (Bank et al.,

2017). We did employ a measure of strategy to support motor

control objectives by allowing users to self-select the order or

target pursuits during testing blocks. However, more complex

tasks (e.g., 3D control, additional tasks beyond point-to-point

contact) are more versatile for synergistic control. Synergistic

control involves manipulating the end-effector through forward

dynamics (Ferris and Schlink, 2017), whereby the user enacts

control upon a robot arm’s elbow and shoulder joints.

This study’s findings with neurotypical participants

demonstrate the feasibility of the platform utilizing

myoelectric control of virtual avatars and show how

performance and physiological responses are sensitive to

augmented visual guidance features during motor training.

The implications of this work include the development of VR

applications that systematically vary feedback features and better

ensure desired performance and physiological responses that

support improved functional outcomes. Future research

directions should further consider how augmented guidance

can be altered to optimize outcomes for clinical populations.

A key question is whether persons with losses in either motor or

cognitive capacity can similarly absorb and leverage augmented

feedback in this platform for improved motor performance. For

rehabilitation and authentic motor learning, repeated measures

(i.e., follow-up sessions) with the same group of affected

participants would be needed for validation. In any case, this

line of research promotes approaches for advanced rehabilitation

platforms that are more user-personalized and holistic

(i.e., consideration of performance, perceptional, and

physiological responses).

Conclusion

In optimizing VR training for a force-driven motor task, the

complexity and intermittency of augmented visual guidance can

significantly influence the resultant motor performance. When

training upper-extremity function, additional visual feedback

about the forearm and upper arm may be unnecessary when

the primary objective is end-effector accuracy. For a virtual

reaching task, training with simpler feedback (i.e., about end-

effector only) resulted in significantly greater motor performance

(e.g., minimal pathlengths, shorter completion times) and higher

arousal (electrodermal activity). Furthermore, training with

feedback presented more intermittently (i.e., bandwidth)

resulted in improved muscle-level control in conjunction with

lower cognitive (alpha band) activity. These post-training results

with simple-bandwidth feedback indicated that participants were

more positively allocating resources to physical engagement and

performance. Future studies should investigate longitudinal

comparisons of VR-based therapies that systematically leverage

augmented visual guidance to conventional treatments and non-

optimized VR protocols to determine if these performance

advantages exist for similar therapeutic dosages. Furthermore,

advanced feedback control systems to adapt VR rehabilitation

systems for greater personalization for individual users may

consider varying training features according to online measures

of physiological variables (e.g., EEG, EDA).
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