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This manuscript explores the development of a technique for detecting the

affective states of Virtual Reality (VR) users in real-time. The technique was

tested with data from an experiment where 18 participants observed 16 videos

with emotional content inside a VR home theater, while their

electroencephalography (EEG) signals were recorded. Participants evaluated

their affective response toward the videos in terms of a three-dimensional

model of affect. Two variants of the technique were analyzed. The difference

between both variants was the method used for feature selection. In the first

variant, features extracted from the EEG signals were selected using Linear

Mixed-Effects (LME) models. In the second variant, features were selected using

Recursive Feature Elimination with Cross Validation (RFECV). Random forest

was used in both variants to build the classificationmodels. Accuracy, precision,

recall and F1 scores were obtained by cross-validation. An ANOVA was

conducted to compare the accuracy of the models built in each variant. The

results indicate that the feature selection method does not have a significant

effect on the accuracy of the classification models. Therefore, both variations

(LME and RFECV) seem equally reliable for detecting affective states of VR users.

The mean accuracy of the classification models was between 87% and 93%.
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1 Introduction

Affective states play a central role in some of the most common mental disorders. For

example, negative affective states are prevalent in patients suffering from anxiety and

depression (Barlow et al., 1991). Likewise, impaired emotional empathy is one of the

symptoms of psychopathy (Brook and Kosson, 2013). At the same time, previous studies

suggest that video games can be used for the assessment and treatment of mental disorders
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(Shiban et al., 2015; Blandon et al., 2016; Tavares Vasconcelos

Oliveira et al., 2021). Those games can be developed using Virtual

Reality (VR) technologies (Bermudez i Badia et al., 2019; Baghaei

et al., 2021), leading to immersive (Perkis et al., 2020) and

emotionally engaging experiences (Visch et al., 2010).

Therefore, the development of games for mental healthcare

could be fostered by developing Virtual Reality (VR) systems

that automatically decode users’ affective states.

There are at least two requirements that should be fulfilled by

a technique for affect detection in VR. Firstly, affective states

should be analyzed automatically and in real-time. Secondly, the

technique should not interrupt the interaction of the user with

the virtual environment. Previous studies suggest that both

requirements can be satisfied using electrophysiological signals

(Picard et al., 2001; Antons et al., 2014).

Consequently, this manuscript explores the development of a

technique for inferring users’ affective states from their

electrophysiological responses. The technique was tested with

data collected during an experiment in Virtual Reality (VR). In

this experiment, participants evaluated their affective responses

towards 16 videos in terms of the three dimensions of the

Evaluative Space Model (ESM) (Cacioppo et al., 1997)

(negativity, positivity, and net predisposition), while their

brain activity was recorded using electroencephalography (EEG).

The ESM (Cacioppo et al., 1997) is a theoretical model that

allows representing affective responses that contain simultaneous

positive and negative activation. This is not possible in theoretical

models where positive and negative activation are mapped to a

single valence dimension, such as the Circumplex Model of

Affect (Russell, 1980). If negative and positive activation are

represented in a single dimension, an increase in positive

activation necessarily implies a decrease in negative activation,

and vice versa. There is evidence suggesting that positive and

negative activation might operate independently (Mattek, 2011).

Yet, it is not clear how to infer users’ affective states in terms of a

theoretical model that does not assume the existence of a bipolar

pleasure-displeasure continuum.

Additional studies indicate that it is possible to infer some

characteristics of users’ affective states by analyzing their

electroencephalography (EEG) signals (Ray and Cole, 1985;

Davidson, 1992; Pfurtscheller and Lopes da Silva, 1999; Huster

et al., 2009; Antons, 2015; Hofmann et al., 2018). The features

extracted from EEG signals can be used to buildMachine Learning

models for affect detection. Thosemodels can be implemented into

a Brain-Computer Interface (BCI), interpreting users’ affective

states as computer commands (Zander and Kothe, 2011).

There are at least two types of BCI models: user-dependent

and user-independent models. The former are trained with data

recorded from the user, while the latter are trained with

prerecorded data from multiple users. The technique proposed

in this paper aims to build user-dependent models. Thus, the

models are tailored to the individual characteristics of each user

(Brouwer et al., 2015).

Deep learning methods have been used previously for

inferring affective states from EEG activity (Khosrowabadi

et al., 2014; Zheng and Lu, 2015; Tripathi et al., 2017; Song

et al., 2018). For example, Long Short-Term Memory (LSTM)

recurrent neural networks (RNN) can be used to decode affective

states from EEG signals (Hofmann et al., 2018; Hofmann et al.,

2021). Yet, this approach has been used for decoding emotional

arousal. It is still unclear whether it can be used to decode

valence, or any of the three affective dimensions of the ESM

(Cacioppo et al., 1997).

At the same time, neural networks tend to require more

computing power than some traditional machine learning

algorithms, such as Random Forest. Partly, because neural

networks usually require larger datasets during the training

phase to achieve similar accuracy. Additionally, real-time

analysis of EEG signals is particularly demanding in terms of

computing power because the data must be processed at the same

speed that it is recorded.

Computing power is not a limitation when a High-

Performance Computing (HPC) system is available. However,

most users do not have access to an HPC center. It is possible to

overcome this challenge by training a neural network at an HPC

center and deploying the trained model (e.g., Singh and Tao,

2020). However, this approach is not optimal for building

userdependent models in real-time, because it would require

1) capturing enough data from each user to train user-dependent

neural networks, 2) transferring the data from each user to an

HPC center, 3) training at least one neural network per user, 4)

transferring the trained models back to the device of each user,

and 5) completing the entire process at a speed that does not

disrupt the experience of the user.

In contrast, a Random Forest classification model usually can

be trained using consumer-grade hardware. Therefore, this

algorithm could be used to train affect detection models on

the user’s device. This approach is consistent with edge

computing (Cao et al., 2020), an emerging paradigm that

supports the benefits of processing the data on the user’s

device. Some of those benefits are 1)minimizing the amount

of data that is transferred over the network, reducing bandwidth

consumption and avoiding potential pitfalls caused by network

disruptions, 2) strengthening security and privacy, because most

of the user’s data remain on their device, and 3) reducing the

operational costs. Thus, Random Forest might be more suitable

than neural networks for building user-dependent affect

detection models in real-time.

One of the key steps when building a Random Forest

classification model is identifying the most relevant features

for the construct of interest. This process is known as feature

selection. A common method for feature selection is Recursive

Feature Elimination (RFE), which has been used previously in the

field of affect detection (Val-Calvo et al., 2019). This method

requires defining a fixed number of features to select. The

classification model is fit multiple times, and in each iteration,
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the less relevant features are removed until reaching the number

of features that have been previously defined.

Given that the proposed technique aims to build user-

dependent models, feature selection is conducted with the

data of each user. Hence the optimal number of features to

choose might change according to the individual

characteristics of each user. Therefore, RFE might not be

suitable for building user-dependent models. This challenge

can be solved using Recursive Feature Elimination with Cross

Validation (RFECV) (Yin et al., 2017; Akbar et al., 2021;

Zanetti et al., 2022), a method similar to RFE that

automatically detects the optimal number of features that

are required for training a model.

Previous studies point out that cross-validation schemes

for supervised learning problems, such as RFECV, are not

suitable for analyzing EEG signals (Val-Calvo et al., 2019).

This is because those schemes assume independence between

samples (Val-Calvo et al., 2019). Therefore, they cannot

capture the sequential nature of time series that is inherent

to EEG signals.

A possible solution for this challenge might be found in

Linear Mixed-Effects (LME) models, a non-parametric

statistical method that is particularly useful for analyzing

EEG signals (Riha et al., 2020). The flexible structure of

LME allows capturing variations across time and subject-

specific brain activity patterns. Yet, it is not common to

use LME in the context of supervised learning for selecting

features extracted from EEG signals.

Therefore, two variants of the affect detection technique

proposed in the manuscript are tested. The difference

between both variants is the method used for feature

selection. Those methods are LME and RFECV. Given

that RFECV is a well-established feature selection

method, it is useful as a benchmark to evaluate the

performance of the LME approach proposed in this

manuscript. At the same time, given that LME models are

able to capture variations across time, they can be used as a

benchmark to evaluate the performance of RFECV when

applied to time series analysis.

2 Methods

2.1 Participants

Twenty-three students from the Technische Universität

Berlin participated in the study. One participant was excluded

because the file containing the electrophysiological data was

corrupted. Two participants were excluded because a flat line

was detected in more than 90% of their EEG recordings. Outliers

were detected in two participants, whose data was removed from

further analysis. Therefore, the analysis was conducted with the

data of 18 participants. Their age was between 19 and 58 years old

(M = 30.28; SD = 10.31). Eight were women, and ten were men.

All participants provided written informed consent before

participating in the experiment. They received €10 as

compensation.

2.2 Virtual environment

The experiment was programmed using the software

Psychopy 3.0 (Peirce et al., 2019). The computer screen was

streamed into a Head-Mounted Display (HMD) using the

software Virtual Desktop. The virtual environment was a

home theatre (see Figure 1). Participants remained seated in a

chair during the experiment and watched the stimuli on the

virtual home-theater screen.

2.3 Stimuli

The stimuli were music videos taken from the DEAP dataset

(Koelstra et al., 2012). This dataset contains 40 music videos. A

subset of 16 videos selected during a previous study (Kruger et al.,

2020) were used in the experiment. Two additional videos were

used for training trials. Thus, 18 videos were used in total. The

duration of each video was 60 s.

2.4 Apparatus

The virtual environment was shown using an HTC Vive. A

Brain Products amplifier was used for the ECG signals and a

g.Tec amplifier was used for the EMG and EEG signals.

Recordings from both systems were synchronized using Lab

Streaming Layer (LSL). An ECG electrode was placed in each

FIGURE 1
Screenshot of the virtual environment used during the
experiment. Participants were inside a virtual home theater. The
videoswere projected on the screen of this home theater using the
software Virtual Desktop (Guy, 2016).
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wrist and another in the left ankle. EMG electrodes were placed in

the Zygomaticus Major and Corrugator Supercilii muscles,

similar to Dimberg et al. (2000). EEG electrodes were placed

at F3, F4, P3, P4, T7, T8, and Cz, according to the 10–20 system.

The EEG electrode locations were selected based on a previous

study conducted by Huster et al. (2009) (see Figure 2). The

reference electrode for EEG was placed in the left mastoid. The

ground electrode for EMG and EEG was placed in the right

mastoid. The sampling frequency was 5,000 Hz for ECG, and

256 Hz for EMG and EEG. Impedance for the EEG signals was

below 10 kΩ.

2.5 Procedure

Participants signed informed consent and completed a

demographics questionnaire. Then the electrodes, HMD,

and headphones were placed. Electrophysiological signals

were visually inspected before starting the experimental task.

Two practice trials were presented to help participants gain

familiarity with the virtual environment and the rating system,

followed by a 2-min grey screen with a cross in the center,

similar to Koelstra et al. (2012). After the 2-min grey screen,

16 trials were presented. Each trial consisted of a 5-s grey screen

with a cross in the center, followed by a video. The order of

presentation of the videos was randomized. After each video,

five questions were presented. All questions were answered

using a slider. Participants used an optical mouse to select their

answers in the sliders.

The slider for all questions ranged from 1 to 10. In each

question, one word was shown in each extreme of the slider,

similar to Lombard et al. (2000).

The first three questions corresponded to the three

dimensions of the ESM (Cacioppo et al., 1997): negativity,

positivity, and net predisposition. The questions were taken

from a previous study (Pinilla et al., 2020). The statement of

the first three questions was, “how did this video make you feel.”

In the first question (negativity), the words at the sides of the

slider were “1—Not bad at all” and “10—Very bad”; In the second

(positivity), the words were “1—not good at all” and “10—very

good”; In the third (net predisposition) the words were “1—Very

relaxed” and “10—Very restless”.

Two additional questions were used to assess liking and

familiarity. These questions were taken from Koelstra et al.

(Koelstra et al., 2012). The statements of the fourth and fifth

questions were “howmuch do you like this video?” and “howwell

do you know the video ?“, respectively. In the fourth question

(familiarity), the words placed at the sides of the slider were “1 -

Never saw it before the experiment” and “10 - Knew it very well”.

In the fifth question (liking), the words were “1 - Not at all” and

“10—Very much”. Results obtained with the liking and

familiarity questions were analyzed but not included in this

manuscript. The data is available in the public repository of

the research project.

2.6 Video labels

Threve labels were assigned to each video based on

participants’ evaluations. Given that the evaluation of each

participant towards each video was different, the label

assigned to a video could vary across participants. Each label

corresponds to one of the three dimensions of the ESM

(Cacioppo et al., 1997): negativity, positivity, and net

predisposition. For each of these three labels, two categories

were defined: high and low. Given that the maximum value of the

rating scales was 10, evaluations below 5 were labeled as “low,”

and evaluations above 5 were labeled as “high.” Consequently,

the labels for the negativity dimension were “high negativity” or

“low negativity”; for the positivity dimension, “high positivity” or

“low positivity”; and for the net predisposition dimension “high

net predisposition” or “low net predisposition.”

2.7 Ethics

Ethical review and approval were not required for the study

following local legislation and institutional requirements. The

participants provided their written informed consent to

participate in the study.

FIGURE 2
Diagram of electrode montage used during the experiment.
Seven electrodes were placed, according to the
10–20 international system. Electrode sites were F3, F4, P3, P4, T7,
T8 and Cz, similar to Huster et al. (2009). Reference and
ground electrodes were placed in the left and right mastoids,
respectively.
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3 Signal processing

The signal processing steps consisted of four main steps:

(1) preprocessing, (2) feature extraction, (3) feature selection,

and (4) training and testing the classification models. Steps

(3) and (4) were conducted 10 times for each participant. In

each iteration, data were split into two sets: (a) feature

selection set and (b) training and testing set. The trials

allocated to each set were randomly selected in each

iteration. Out of the 16 trials available for each participant,

four were used for conducting feature selection. The

remaining 12 trials were used for training and testing the

classification models. This was intended to avoid double-

dipping (i.e., training the classification models with the

FIGURE 3
Flowchart describing the signal processing steps. Steps 3 and 4 were repeated 10 times for each participant. In each iteration, 4 trials were
randomly selected and used for conducting feature selection with LME and RFECV. The remaining 12 trials were used for training and testing the
classification models. A subset of features was selected for each affective dimension of the ESM (Cacioppo et al., 1997) (negativity, positivity, and net
predisposition). The features selected with LME were used to build one classification model for each affective dimension. Likewise, the features
selected with RFECV were used to build another three classification models (one per affective dimension). The models were trained using a Random
Forest Classifier and evaluated with a 12-fold cross-validation.
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same data used for feature selection) (Ball et al., 2020). A

flowchart describing the process is presented in Figure 3.

Anomalies were found in the ECG and EMG data.

Therefore, these signals were excluded from further analysis.

The EMG data recorded at the Corrugator Supercilii muscle

contained noise in all participants, possibly caused by the

pressure of the HMD on the electrodes. In the ECG data,

the LF/HF ratio (Thayer et al., 2009) was zero for all

participants. The ECG and EMG data are available in the

public repository of the research project.

3.1 Preprocessing

The following preprocessing steps were conducted on the

EEG signals using EEGLAB 2021.1 (Delorme and Makeig, 2004):

1) Notch filter: Remove powerline noise using a notch filter at

50 Hz.

2) Remove bad channels: Remove channels where a flatline

longer than 5 s is detected, or whose correlation with

nearby channels is lower than 80%.

3) Remove artifacts: Remove artifacts caused by eye movements,

eye blinks, and other noise sources using Artifact Subspace

Reconstruction (ASR), a method designed for real-time

artifact removal (Mullen et al., 2015).

4) Re-referencing: Perform common-average referencing.

5) Band-pass filter: Apply band-pass filter to remove frequencies

below 4 Hz and above 45 Hz.

6) Extract epochs: Each video (trial) is equivalent to one epoch.

Thus, the length of each epoch is 60 s.

7) Baseline removal: Remove the baseline of the 3 s prior to the

beginning of each epoch.

8) Down-sampling: Down-sample to 128 Hz to increase

processing speed.

3.2 Feature extraction

The features extracted from the EEG signals were defined

based on a literature review conducted by the authors of this

manuscript (Pinilla et al., 2021) and an affect detection technique

proposed by Val-Calvo et al. (2019). Consequently, the following

features were extracted using Python 3.10.4, AntroPy 0.1.4

(Vallat, 2022) and NumPy 1.22.3 (Harris et al., 2020):

1) Relative Power Spectral Density (RPSD) (Antons et al., 2014)

2) Frontal asymmetry (Huster et al., 2009)

3) Spectral envelope (Kraljevic et al., 2017)

4) Number of zero-crossings (Patil et al., 2016)

5) Katz fractal dimension (Akar et al., 2015)

6) Hjorth parameters (Mehmood and Lee, 2015)

7) Petrosian fractal dimension (Balan et al., 2020)

Each feature was extracted at each electrode site available

for each participant. Given that some electrodes were

automatically removed during the preprocessing step (see

bad channel removal in Section 3.1), not all electrodes were

available for all participants. Hence the number of features

extracted for each participant varied according to the number

of electrodes that were removed after preprocessing the

signals.

Power Spectral Density (PSD) was extracted at each electrode

site at the delta, theta, alpha, beta, and gamma power bands,

using Welch’s method. This method splits a signal into

overlapping segments and returns an average of the power

across those segments. The size of those overlapping segments

is defined with a sliding window. In this experiment, an 8 s

sliding Hann window was used. Welch’s method returns an

average of the power across contiguous segments of a signal.

Therefore, it returns a single value instead of a time series. To

extract the PSD as a time series, Welch’s method was applied

multiple times across contiguous segments of the signal, using a

32 s sliding Hann window. The result was a time series of the PSD

at each power band, at each electrode site available for each

participant.

The Relative Power Spectral Density (RPSD) was calculated

by dividing the PSD of each power band by the total power,

yielding a time series of the RPSD at each power band, at each

electrode site. Frontal asymmetry was obtained by subtracting the

RPSD at electrode site F3 from the RPSD at F4, yielding a time

series of the Frontal Asymmetry at each power band, similar to

Huster et al. (2009). The other features (spectral envelope,

number of zero-crossings, Katz fractal dimension, Hjorth

parameters, and Petrosian fractal dimension) were also

extracted using an 32 s sliding Hann window, yielding a time

series for each feature, at each electrode site available for each

participant.

3.3 Feature selection

Two methods were used for feature selection: (1) Linear

Mixed-Effects (LME) and (2) Recursive Feature Elimination

with Cross Validation (RFECV). Both methods were

conducted 10 times for each participant. In each iteration,

a group of features was selected for each of the three

dimensions of the ESM (Cacioppo et al., 1997) (negativity,

positivity, and net predisposition). Therefore, 60 groups of

features were obtained for each participant (2 feature selection

methods * 10 iterations * 3 affective dimensions).

As mentioned in Section 2.5, the data of each participant

contained 16 trials. The data used for feature selection contained

four trials that were randomly chosen for each affective

dimension. Out of those four trials, two were labeled by the

participant as “high” and the other two as “low” in the

corresponding affective dimension (see Section 2.6 for more
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information related to the video labels). This process was

repeated 10 times per participant.

3.3.1 Linear Mixed-Effects
Linear mixed-effects models were conducted to analyze

the relationship between the features extracted from the EEG

signals and the participant’s evaluation of the videos. The

analysis was conducted using R and the lme4 package (Bates

et al., 2015). For each feature extracted from each participant,

three LME models were built. That is one LME model per

affective dimension (negativity, positivity, and net

predisposition). The fixed effects in all the models were the

participant’s rating towards the videos in the dimension of

interest and time stamp. The random effects were the

intercepts for trial, as well as by-trial random slopes for

the feature of interest. Each model was compared against a

reduced model that had the same parameters as the full

model, but did not contain the feature of interest. P-values

were obtained by likelihood ratio tests of the full model

against the reduced model. In this analysis, a statistically

significant effect indicates that the feature included in the full

model contains relevant information about the affective

dimension of interest. Therefore, the features that led to

likelihood ratio tests with a significant statistical effect (p <
0.5) were selected.

3.3.2 Recursive Feature Elimination with Cross
Validation

RFECV was conducted individually for each participant, in

each affective dimension of the ESM (Cacioppo et al., 1997). The

estimator was a Random Forest Classifier with 100 trees. The data

were labeled based on the ratings of each participant (see Section

2.6). The process was conducted with a 4-fold cross-validation.

All folds contained an equal amount of samples.

3.4 Classification models

A Random Forest Classifier with 100 trees was used to build

the classification models, similar to previous studies in affect

detection (Liu et al., 2016; Gupta et al., 2018). Given that the

feature selection was conducted 10 times per participant, the

models were built 10 times per participant as well. In each

iteration, the data used for training and testing the

classification models contained the 12 trials that were not

used for conducting the feature selection.

As previously mentioned, there were 60 groups of features

per participant (10 iterations * 2 feature selection methods *

3 affective dimensions). One classification model was built with

each of those groups of features. Each classification model was

evaluated using 12-fold cross-validation. All folds contained an

equal amount of samples.

Accuracy, precision, recall, and F1-score were obtained for

each fold. The values obtained for each of those metrics were

averaged in two steps. First, means were calculated across the

12 folds. Then, values were averaged across trials, yielding the

mean performance metrics for each participant. In the context of

this study, accuracy is the portion of videos that were correctly

classified; Precision is the portion of videos classified as “high

negativity”, “high positivity” or “high net predisposition” that

were correctly classified; Recall is the portion of videos previously

labeled as “high negativity”, “high positivity” or “high net

predisposition” that were correctly classified; And F1-score is

the harmonic mean of precision and recall.

TABLE 1Mean accuracy, precision, recall and F1-score obtained for each affective dimension of the ESM (Cacioppo et al., 1997). Values were obtained
with a 12-fold cross-validation (see Section 3.4). Means were obtained in three steps. First, values were averaged across folds. Then, values were
averaged across iterations (10 iterations per participant). Finally, means and standard deviation were calculated across participants.

Feature selection method Affective dimension

Metric Negativity Positivity Net predisposition

Mean Std Mean Std Mean Std

LME Accuracy 92.05 4.48 92.84 4.74 92.2 2.88

Precision 93.16 3.48 95.03 4.45 93.52 2.98

Recall 88.28 4.53 93.52 4.84 91.62 4.16

F1-Score 88.21 4.78 93.24 5.31 91.09 3.95

RFE Accuracy 91.45 4.41 91.63 4.25 90.86 5.01

Precision 91.55 3.66 93.92 3.82 91.92 5.82

Recall 87.77 4.42 92.86 4.21 90.22 7.05

F1-Score 87.51 4.44 92.38 4.7 89.66 7.08
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4 Results

A two-way repeated measures ANOVA was conducted to

analyze whether the feature selection method (LME vs. RFE)

had an effect on the accuracy of the classification models

for each affective dimension (negativity, positivity, net

predisposition). A Shapiro-Wilk test suggested that the

assumption of normal distribution was met, W = 0.984, p >
0.05. The assumption of sphericity was met as well, as assessed

by Mauchly’s test, X2 (2) = 0.533, p > 0.05. There was no

significant two-way interaction, F(2, 34) = .09, p > 0.05,

ηp2 = .001.

The mean accuracy of the models trained with the features

selected using LME was slightly higher than the accuracy of the

models trained with the features selected using RFECV. The

accuracy of the negativity classification models was 1.25%

higher for LME (M = 92.03%, SD = 4.58) than for RFECV

(M = 90.78%, SD = 5.07). Likewise, the accuracy of positivity

classification models was 0.84% higher for LME (M = 92.86%,

SD = 4.67) than for RFECV (M = 92.02%, SD = 4.18). In the net

predisposition dimension, the accuracy of the LME models

(M = 92.18%, SD = 2.87) was 1.18% higher than the RFECV

models (M = 91%, SD = 4.08). Yet, no significant effect was

found for the main effect of feature selection method, F

(1,106) = 1.787. p > 0.05, ŋp
2 = 0.017, indicating that the

differences between LME and RFECV were not statistically

significant.

Precision, recall, and F1-score performance metrics were

obtained for each model. Those metrics were not analyzed in

the ANOVA. Instead, they have been included in Table 1.

5 Discussion

A technique for real-time affect detection is proposed in this

manuscript. The technique was tested with data from an

experiment conducted in VR, where participants’ affective

responses were analyzed in terms of the three dimensions of

the ESM (Cacioppo et al., 1997): negativity, positivity, and net

predisposition.

The data was analyzed by emulating the steps that would be

conducted in a real-time analysis. The process consists of four

steps: (1) preprocess the EEG data to increase the signal-to-noise

ratio (2) extract features using a sliding window; (3) for each

affective dimension of the ESM (Cacioppo et al., 1997), select

features using two methods: Linear Mixed-Effects (LME) and

Recursive Feature Elimination with Cross Validation (RFECV);

(4) build the classification models with the selected features.

A two-way repeated measures ANOVA was conducted to

compare the mean accuracy of the classification models obtained

with each feature selectionmethod (LME vs. RFECV). No statistically

significant differences were found. Yet, LME led to classification

models slightly more accurate than their RFECV counterparts. The

mean accuracy obtained with both feature selection methods was

FIGURE 4
Mean accuracy of the classification models for each affective dimension of the ESM (Cacioppo et al., 1997). The accuracy of the classification
models trained with features selected using LME was not statistically significantly different than the accuracy of the models trained with features
selected using RFECV. The accuracy of the classification models was similar across affective dimensions. Error bars depict CI, 95%.
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between 87% and 93%, suggesting that the proposed technique leads

to reliable results, regardless of the feature selectionmethod used (see

Figure 4). These results are consistent with previous studies in affect

recognition using EEG signals, where classification models with an

accuracy of 90.77% (Xu and Plataniotis, 2012) and 90.4% (Song et al.,

2018) were reported. However, those studies used neural networks,

while the technique proposed in this manuscript used Random

Forest.

The high accuracy of the technique is attributed to at least three

factors: (1) themodels were trained with the data of each participant,

reducing potential biases caused by individual differences between

participants; (2) the classification models were built separately for

each affective dimension, including in each model only the most

relevant features for each affective dimension; and (3) the features

were extracted from the EEG signals using a sliding window,

capturing variations across time for each feature.

Previous studies point out that cross-validation schemes, such as

RFECV, assume independence between samples. Therefore, they are

not able to capture the sequential nature of time series (Val-Calvo

et al., 2019). In contrast, LME models are able to capture variations

across time (see Section 3.3.1). Given that all features extracted in

this study were time series, it was expected that the classification

models trained with features selected using LME would outperform

the classificationmodels trainedwith features selected using RFECV.

Yet, no statistically significant difference was found between the

feature selectionmethods. This finding suggests that cross-validation

schemes are suitable for time series feature selection.

The correlation between the selected features was not analyzed

in this manuscript. Usually, training a classification model with

features that are highly correlated (i.e., presence of multicollinearity)

does not increase or decrease its predictive power. However, it can

compromise the performance of the technique, because including

additional features implies consuming additional computational

resources. It is likely that there was multicollinearity in the

features selected with LME. It is less likely that this occurred in

the features selected with RFECV because this method eliminates

recursively the features that do not add predictive power to the

classification model. In this regard, RFECV has a key advantage as

compared to LME, because it might require fewer computational

resources to achieve a similar result.

Similar to most statistical tests, LME models must meet a

series of assumptions. One of the challenges in using LME for

feature selection for real-time analysis lies in the difficulty of

assessing those assumptions automatically. Usually, the

assumption of normal distribution in LME models is

assessed by visual inspection of Q-Q plots, while the

assumptions of linearity and homoscedasticity are assessed

by visual inspection of residual plots. However, it is not

feasible to visually assess each of those plots in a real-time

analysis. A possible solution for this challenge would require

building an image recognition model for automatically

analyzing Q-Q plots and residual plots, with the aim of

estimating whether a given LME model fulfills the

assumptions of normal distribution, linearity, and

homoscedasticity.

Additional research is required to analyze whether the results

reported in this study can be replicated with other datasets. At the

same time, it might be useful to conduct additional studies to

analyze whether the proposed technique can be extrapolated to

other theoretical models. In this manuscript, affective states were

analyzed in terms of the Evaluative Space Model (ESM)

(Cacioppo et al., 1997). However, there are other theoretical

models, such as the Circumplex Model of Affect (Russell, 1980),

or Plutchnik’s structural model of emotions (Plutchik, 1982),

which might be preferable depending on the intended use case.

In this manuscript, the data was processed emulating the

steps that would be conducted in a real-time setting. The next

step is to implement the proposed technique into a prototype of a

Brain-Computer Interface that is integrated into a VR system.

There is a software framework that could ease this process, called

the Excite-O-Meter (Quintero et al., 2021). This framework

provides the core software components required for recording,

analyzing, and visualizing bodily signals in VR. Likewise,

Semertzidis et al. (2020) built a BCI for affect communication

between dyads in Augmented Reality (AR) systems, called Neo-

Noumena. This system could be used as a framework for

implementing the technique proposed in the manuscript into

an AR system.

Yet, the proposed technique is not ready for use in VR/AR

experiences that require motor movements from the user. The

experiment presented in this manuscript was conducted in a

virtual reality environment where participants were not moving.

This was intended to reduce the presence of artifacts caused by body

movements. Additional research is required to analyze the

performance of the proposed technique in non-stationary settings

(Gramann et al., 2011). This could be achieved using a spatial

navigation task that involves emotional stimuli, similar to Palmiero

and Piccardi (2017). The analysis of the mobile EEG data could be

conducted using existing toolboxes for this purpose, such as

MoBILAB (Ojeda et al., 2014) and BeMoBil (Klug et al., 2018).

However, those toolboxes are not suitable for real-time analysis.

Additional research is required to understand how to remove

artifacts from EEG signals, in an online fashion, during non-

stationary experiments.

6 Conclusion

This manuscript explores the development of a technique

for inferring affective states from electroencephalography

(EEG) signals. The technique was tested in an experiment

conducted in Virtual Reality. The data was analyzed emulating

the steps that would be conducted for real-time affect

detection. The feature selection was conducted using two

methods: Linear Mixed-Effects (LME) analysis and

Recursive Feature Elimination with Cross Validation
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(RFECV). An ANOVA was conducted to analyze whether the

accuracy of the classification models was influenced by the feature

selection method. A statistically significant interaction was not

found. Both feature selection methods lead to classificationmodels

with similar accuracy. The classification models were trained one

at a time for each affective dimension of the ESM (Cacioppo et al.,

1997): negativity, positivity, and net predisposition. The accuracy

of the models was between 87% and 93% across these three

affective dimensions. Further work is required to (1) analyze

the performance of the proposed technique with a larger

population, in non-stationary settings, and (2) implement the

proposed technique into a Brain-Computer Interface (BCI) that

is integrated into a VR/AR system.
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