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Measuring a gamer’s behaviour and perceived gaming experience in real-time

can be crucial not only to assess game usability, but to also adjust the game play

and content in real-time to maximize the experience per user. For this purpose,

affective and physiological monitoring tools (e.g., wearables) have been used to

monitor human influential factors (HIFs) related to quality of experience (QoE).

Representative factors may include the gamer’s level of engagement, stress, as

well as sense of presence and immersion, to name a few. However, one of the

major challenges the community faces today is being able to accurately transfer

the results obtained in controlled laboratory settings to uncontrolled everyday

settings, such as the gamer’s home. In this paper, we describe an instrumented

virtual reality (VR) headset, which directly embeds a number of dry ExG sensors

(electroencephalography, EEG; electrocardiography, ECG; and

electrooculography, EOG) to allow for gamer behaviour assessment in real-

time. A protocol was developed to deliver kits (including the instrumented

headset and controllers, laptop with the VR game Half-life Alyx, and a second

laptop for data acquisition) to participants’ homes during the COVID-19

lockdown. A brief videoconference session was made to provide the

participants with instructions, but otherwise the experiment proceeded with

minimal experimenter intervention. Eight participants consented to participate

and each played the game for roughly 1.5 h. After each gaming session,

participants reported their overall experience with an online questionnaire

covering aspects of emotions, engagement, immersion, sense of presence,

motion sickness, flow, skill, technology adoption, judgement and usability.

Here, we describe our obtained findings, as well as report correlations

between the subjective ratings and several QoE-related HIFs measured

directly from the instrumented headset. Promising results are reported.
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1 Introduction

Recent reports have shown that the virtual reality (VR) sector

grew nearly 30% since January 2021, suggesting that the sector

growth was not affected by the worldwide COVID-19 pandemic1.

The Meta (formerly Oculus) Quest 2 portable VR headset, for

example, now accounts for nearly half of the headsets used on the

SteamVR platform2. The total number of monthly connected VR

headsets has increased by 29.5% since January 2021. Gaming,

however, is just one of the possible domains in which VR is

expected to make an impact. Applications in rehabilitation,

education, training, and exercise are also emerging (Arndt

et al., 2018; Radianti et al., 2020). Ultimately, the success of

immersive applications are known to rely on the user experience

they provide and not necessarily on the technology they use

(Apostolopoulos et al., 2012). As virtual reality and the metaverse

are projected to burgeon in the coming years, being able to

objectively quantify user experience in immersive settings is

crucial. To this end, automated measurement of human

influential factors (HIFs), such as sense of presence/

immersion, attention, stress, engagement, and fun factors, has

become an extremely important factor (Perkis et al., 2020).

Traditionally, subjective methods have been utilized, which

rely on post-experience questionnaires, such as the Presence

Questionnaire to evaluate the sense of presence (Witmer and

Singer, 1998). Subjective tests, however, can be highly biased, lack

temporal resolution, and are performed after the immersive

application is finished, thus rely on gamer memory to recall

events. Monitoring HIFs in real-time, in turn, requires objective

methods and physiological signals have proven to be particularly

effective (Moinnereau et al., 2022a). For instance, stress and

engagement levels, emotions, sense of presence and immersion,

and overall experience have been monitored from

electroencephalograms (EEG), electrocardiograms (ECG), and

electrooculograms (EOG) (Dehais et al., 2018). As

psychophysiological signals are known to be sensitive to

movement artifacts, studies have been typically conducted in

controlled laboratory settings with significant experimenter

intervention to ensure high quality signal recordings. Findings

from these studies, however, may not transfer to everyday

settings, such as gamers’ homes, thus may have limited

practical use. Additionally, the recent COVID-19 pandemic

and its worldwide lockdowns along with social distancing

directives have made measuring gamer experience in

controlled settings extremely challenging. As such, alternative

solutions to enable “in the wild” experiments are still drastically

needed.

To overcome this issue, here we describe a system and

protocol to collect multimodal physiological signals from a

“plug-and-play” instrumented VR head-mounted display

(henceforth termed iHMD) (Cassani et al., 2020) that was

delivered to participants’ homes together with a gaming

laptop and a biosignal data streaming laptop. The headset was

equipped with 16 ExG biosensors, including EEG, ECG, and

EOG. A portable, wireless bioamplifier was used to collect,

stream, and store the signals in real-time. An in-house

developed signal quality and analysis software was integrated

into the iHMD to ensure high-quality signals were collected.

Proper device cleaning and sanitation, as well as hardware

quarantining were performed to minimize the spread of

COVID-19, following protocols in place at the authors’

institution. We build on the work of Moinnereau et al.

(2022b) and propose the extraction of several HIF-related

measures from the ExG signals and correlate them to

experience ratings reported by the gamers. Overall, with this

study we aim to answer two main research questions (RQs): 1)

Can the proposed iHMD be used in highly ecological settings

with minimal experimenter intervention? and 2) Can the

measured physiological signals be used as correlates of gamer

HIFs?

The remainder of this paper is organized as follows: Section 2

provides a background on subjective and objective HIFs and

gamer behaviour assessment. Section 3 covers the experimental

procedures and the biosignal feature extraction pipelines.

Sections 4, 5, in turn, present the experimental results and

then discusses them in light of existing works, respectively.

Finally, Section 6 presents the conclusions.

2 Background

As mentioned previously, the success or failure in the

development of new immersive applications lies in the user

experience it provides and not on the technology it relies on.

User quality of experience (QoE) refers to the “degree of delight

or annoyance of applications or services resulting from the

fulfillment of his or her expectations with respect to the utility

and/or enjoyment of the application or service in the light of the

users personality and current state” (Perkis et al., 2020). In fact,

QoE is driven by three influential factors: technological,

contextual and human. With immersive content, human

influential factors (HIFs) play an important role as a user’s

level of engagement, flow, and sense of presence and

immersion can be driven by their affective states, preferences,

and behaviour (Perkis et al., 2020). Therefore, it has become

crucial to develop reliable models of immersive media QoE.

While technological and contextual factors have been explored

in the past (Wang et al., 2017; Metzger et al., 2018; Sousa et al.,

2020; Kougioumtzidis et al., 2022), HIFs have been less explored,

as highlighted by Moinnereau et al. (2022a).

1 https://store.steampowered.com/hwsurvey/Steam-Hardware-
Software-Survey-Welcome-to-Steam

2 https://www.statista.com/statistics/265018/proportion-of-directx-
versions-on-the-platform-steam/
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When it comes to immersive media and content, HIFs can

include factors such as sense of presence, immersion, attention,

stress, engagement, as well as cybersickness. In most cases,

subjective methods have been used for post-experience

assessment with questionnaires being presented either on

paper or directly into the virtual environment (Regal et al.,

2018). Subjective assessments based on standardized

questionnaires are important as they provide insights into

specific dimensions and characteristics of the immersive

experience with high validity. On the other hand, subjective

methods can be intrusive, especially if multiple queries are done

throughout a session to gather temporal insights about the

experience. These interruptions can increase cognitive load,

disrupt immersion, and negatively affect the experience

(Chung and Gardner, 2012).

In turn, the use of physiological monitoring methods provide

a real-time glimpse into the user’s mental, affective, and

behavioural states with minimal impact on the experience

itself. Neurophysiological indicators of user experience (in real

world settings) can comprise several neurobiological processes

typically associated with motor, sensory, cognitive and emotional

events. Their existence when immersed in virtual reality could be

indicators of sense of presence and immersion. Moreover,

physiological signals can also provide an objective measure of

the emotional state of the user during the interaction in the

virtual environment (Crowley et al., 2010), their stress levels

(Martinez Rodrigo et al., 2018), engagement (Dehais et al., 2018),

affective states (Clerico et al., 2018), sense of presence (Weech

et al., 2019), immersion (Burns and Fairclough, 2014), and

overall experience (Egan et al., 2016), to name a few factors.

Some of the physiological signals that have been shown useful in

QoE assessment include the ECG and measured heart rate (HR)

or heart rate variability (HRV) (Kim et al., 2018), electrodermal

activity (EDA) or galvanic skin response (GSR) (Patrão et al.,

2016), and cerebral blood flow measured via near-infrared

spectroscopy (NIRS) (Laghari et al., 2013). Automated quality

measurement of these signals is crucial for the development of

remote gamer monitoring systems (Falk et al., 2014; Gautam

et al., 2018).

Recent advances in dry/wireless electrodes (Wiederhold

et al., 2003; Kam et al., 2018; Lee et al., 2018) and motion

artifact suppression (Rosanne et al., 2019; dos Santos, 2020;

Arad et al., 2018) further increase the practicality of

integrating physiological signals, especially EEG and EOG,

directly into the VR headset. In fact, device design in terms of

portability, usability, and ergonomic aspects directly impact the

user experience, such as tethered versus fully mobile, or plug-

and-play versus systems requiring gel (Kharoub et al., 2019; Kim

et al., 2019). As immersive experiences require the user to be

ambulant, new signal enhancement and/or artifact-robust feature

extraction (Rosanne et al., 2019; Tiwari et al., 2019) methods are

needed. To enable gamer assessment outside controlled

conditions, a quick plug-and-play solution comprised of dry

ExG electrodes coupled with multimodal enhancement and

artifact-robust feature extraction algorithms is needed. This is

the aim of the present study and the developed instrumented

headset.

3 Materials and methods

In this section, we detail the experimental protocol followed,

including remote data collection, signal pre-processing, analysis

and the measurement of HIF metrics.

3.1 Instrumented VR headset

We have recently described how to build a portable and

wireless VR headset that integrates several high-quality

physiological sensors on any off-the-shelf head-mounted

display (HMD) (Cassani et al., 2020). Here, we integrated

sensors on an HTC VIVE Pro Eye VR headset, a PC-powered

VR headset, released in 2019, with 98° field-of-view, 1440 ×

1600 per eye resolution, 90 Hz refresh rate, and 6 degrees-of-

freedom tracking. The HMD offers increased visual resolution

and spatial sound to enhance the immersion and improve the

gameplay experience. An OpenBCI bioamplifier, including the

Cyton and Daisy boards (Open BCI, United States), was used to

record sixteen fully-differential input channels to record EEG,

EOG, and ECG signals. To power the OpenBCI boards, we used a

1000 mA @ 3.7 V Lithium polymer battery; the capacity of the

battery was calculated to last 12 h. We propose to acquire 11 EEG

signals located in three areas: frontal (Fp1, Fpz and Fp2), central

(F3, F4, FCz, C3 and C4), and occipital (O1, Oz and O2), as

shown in Figure 1. The EOG signals were derived from the EEG

electrodes on the frontal area, as well as two vertical and two

horizontal electrodes (H EOG right, H EOG left, V EOG right,

and V EOG left), all embedded directly into the foam of the VR

headset, as shown in Figure 1 (left).

Three different types of electrodes were used: flexible, flat,

and disposable, depending on their location in the iHMD. Ag/

AgCl dry electrodes (CGX Systems, United States) were used for

EEGmeasurement in locations with the presence of hair. Flat Ag/

AgCl dry electrodes (Thought Technology Ltd., Canada) were

used in places where contact with the bare skin is needed

(i.e., around the face-piece to record EOG, and frontal EEG).

Lastly, one disposable electrode (Thought Technology Ltd.,

Canada) was placed on the user’s collarbone for ECG

recording. The collarbone electrode has been shown to

acquire reliable ECG signals without adding discomfort to the

user, relative to chest-placed electrodes. All signals were acquired

at a sampling rate of 125 Hz. Lastly, two earclip electrodes were

used as references on each lobe. Data was streamed wirelessly

using the standalone OpenBCI graphical user interface (GUI) to

a nearby laptop.
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3.2 Experimental procedure

The entire experimental procedure is detailed in Figure 2,

where solid rectangles correspond to experimenter tasks and

dashed rectangles to participant tasks. Eight participants

consented to take part in this experiment (five male and three

female, 28.9 ± 2.9 years of age) that received Ethics approval by

the INRS Ethics Committee. Participants consisted of consenting

adults with normal hearing, normal or corrected-to-normal

vision, and without any known issues with virtual reality, such

as severe cybersickness. Participants had no previous experience

with playing the game Half-Life: Alyx. As can be seen, first a box

FIGURE 1
Locations of the 16-ExG electrodes placed directly onto a VR headset. Left figure shows sensors placed on the faceplate of the headset and right
figure those placed on the headset straps. Placement of electrodes follow the 10-10 international system (Sharbrough et al., 1991). EEG electrodes
notation: Fp, Frontopolar; Fpz, Midline Frontopolar; F, Frontal; FCz, Midline Frontocentral; C, Central; O, Occipital; OZ, Midline Occipital.

FIGURE 2
Flowchart of the experimental procedure. The solid rectangles correspond to the experimenter tasks and the dashed rectangles to participant
tasks.
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was placed in front of the participant’s home at a mutually-

agreed time including two laptops, two controllers, two base

stations, and the iHMD (see items displayed in Figure 3). The

MSI GT62VR 6RE Dominator Pro laptop was used to display the

VR content and an ASUS k550 was used to record the streamed

biosignal data. Next, gameplay and real-time signal quality

monitoring were achieved through the “Teamviewer” platform

and a dedicated videoconference session via in-house developed

quality monitoring tools. Moreover, instructions on how to set up

the gaming environment, how to wear the iHMD, as well as how

to play the game (Half-life: Alyx) were given via a

videoconference call.

For proper tracking of the iHMD and controllers,

participants had to mount the base stations diagonally at

opposite corners of their gaming room. Each base station has

a 150-degree horizontal field of view and a 110-degree vertical

field of view. Half-Life: Alyx is one of the most immersive VR

first-person shooter games developed by Valve where players are

immersed into deep environmental interactions, puzzle solving,

world exploration, and visceral combat. In the experiment,

participants went through two conditions, which we term 1)

baseline and 2) exploration/fight. The baseline corresponds to the

first two chapters of the game (about 30 min of gameplay) where

the player discovers the game storyline, learns how to navigate by

flicking the analog stick and how to manipulate physical objects

throughout the world using the “gravity gloves,” including

realistically reloading weapons.

After concluding the two chapters, participants filled an

online unified user experience questionnaire (more details in

the next Section). Next, participants would continue with

subsequent chapters of the game, which we term

“exploration/fight” as the player is confronted with puzzle

solving and fighting challenge phases to advance through the

game (about 1 h of gameplay). The top-right plot of Figure 4

shows a representative exploration/fight scene where the

player must confront soldiers and defeat them. The player

can hide behind surrounding structures, if possible, to avoid

getting shot at and attack once the soldiers reload. At the end

of this second session, participants filled again the unified

user experience questionnaire. Participants were free to play

the baseline and exploration/fight conditions at different

times of the day or even different days to minimize visual

fatigue and maintain spatial awareness of the room

around them.

Figure 4 shows a representative view of the experiment

conducted from the participant’s (left) and the experimenter’s

(right) perspectives. Lastly, once the two sessions were

completed, participants were asked to put all the hardware

back inside the box. Once the box was collected by the

experimenter, the cleaning and disinfecting phase would

start. Proper device cleaning and sanitation was performed

to minimize the spread of COVID-19, following protocols in

place at the authors’ institution. All VR equipment, the iHMD

electrodes, and the two laptops were thoroughly disinfected

with alcoholic wipes. The iHMD was disinfected using a

Cleanbox UV-C chamber built specially for VR headsets

(Cleanbox Technology, United States). Upon sanitation, the

iHMD stayed in quarantine in the chamber for 24 h and

FIGURE 3
On the left: entire equipment drop off at participant’s home including two laptops, base stations, controllers and the iHMD; on the right: 16 ExG
sensor-equipped VR headset.
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outside the chamber for another 24 h. After 48 h of

quarantine, all the material was ready to be boxed up again

and delivered to the next participant. No cases of COVID-19

were reported during this study.

3.3 Subjective user experience assessment

In order to measure the impact of immersive media

related HIFs on gamer’s user experience, we utilized the

unified questionnaire proposed by Tcha-Tokey et al.

(2016). The questionnaire combines 87 different items,

compiled from 10 different scales measuring the gamer’s

sense of presence, engagement, immersion, flow, usability,

skill, emotion, cybersickness, judgement, and technology

adoption, as well as three open-ended questions aimed at

gathering candid gamer feedback about their experiences.

Scale construction was based on nine other existing

questionnaires. The 87 items used a 10-point Likert scale

with the lower value indicating a “strongly disagree”

response.

3.4 Pre-processing and biosignal feature
extraction

3.4.1 Signal pre-processing
Signal pre-processing was performed using MATLAB; the

EEGLab toolbox (Delorme and Makeig, 2004) was used for EEG

analysis. In particular, EEG signals were first band-pass filtered

between 0.5 and 45 Hz and then zero-mean normalized. To remove

motion artifacts the artifact subspace reconstruction (ASR) method

was applied. ASR is an online, component-based method to

effectively remove transient or large-amplitude artifacts. The

technique is capable of running in real-time and uses statistical

anomaly detection to separate artifacts from EEG signals in

multichannel data sets. It assumes that non-brain signals

introduce a large amount of variance to the data set and can be

detected via statistics. ASR decomposes short segments of EEG data

and contrasts them to calibration data. Figure 5 depicts a 140 s signal

excerpt recorded from Fp1 with different types of artifacts, including

horizontal and vertical head motions, eye blinks and the eye

movements. As can be seen, the ASR algorithm is able to

remove such artifacts for posterior EEG feature extraction.

FIGURE 4
Representative view of one session of the experiment from the perspective of the participant (left) and the experimenter (right).
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3.4.2 EEG features
As we are interested in measuring user experience, several

EEG metrics described and widely used in the literature were

tested, namely: the engagement score (ES), arousal and

valence indixes (AI and VI), and frontal alpha asymmetry

(FAA). Moreover, different EEG sub band frequency powers

were measured per EEG electrode and their ratios computed:

delta (δ; 0.5–4 Hz), theta (θ; 4–8 Hz), alpha (α; 8–12 Hz), beta

(β; 12–30 Hz), and gamma (γ; 30–44 Hz). In the past, several

studies have linked spectral powers to HIFs; for example, a

link between VR video quality and alpha power was shown in

the occipital and parietal regions (Zheleva et al., 2020),

between immersion and θ/α and concentration and β/θ

(Lim et al., 2019), stress regulation and δ/β (Poppelaars

et al., 2021), as well as sense of presence and θ/β (Zhang

et al., 2021).

3.4.2.1 Engagement score

The EEG signals were segmented into 2-s windows with 50%

overlap using a Hamming window and transformed to the

frequency domain via a fast Fourier transform, then

magnitude squared, and averaged in order to obtain the

power spectral density from which the absolute spectral power

was estimated in theta, alpha, and beta bands. Relative powers

were calculated by summing absolute power across the three

bands to compute the total power, and then dividing the absolute

power for each individual band by the total power, expressed as a

percentage. Finally, the engagement score (ES) was computed as

per Pope et al. (1995):

ES � βFp1
αFp1 + θFp1

, (1)

3.4.2.2 Arousal and valence indexes

To measure the emotional state of the gamer, we use the

arousal (AI) and valence indexes (VI) proposed by McMahan

et al. (2015):

AI � βF3 + βF4
αF3 + αF4

, (2)

VI � αF4
βF4

− αF3
βF3

. (3)

Valence corresponds to the level of pleasantness, whereas arousal

measures how calming/exciting the stimulus is. Moreover,

engagement and arousal indexes have been shown to also

correlate with perceived immersion levels (McMahan et al.,

2015), thus could provide useful cues for user experience

measurement.

3.4.2.3 Frontal alpha asymmetry (FAA) index

FAA can be used as an additional measure of pleasantness.

FAA is expressed as the alpha band power difference between

right and left frontal regions, and can be computed by:

FAA � ln
αF4
αF3

, (4)

where ln corresponds to the natural log. A positive FAA index

reflects greater left-sided frontal activity (alpha power has an

inverse relationship with cortical activity) and may serve as an

index of approach motivation or related emotion (e.g., anger and

joy), whereas negative values indicate greater right-sided activity

and may serve as an index of withdrawal motivation or related

emotion, such as disgust, fear, and sadness (Fischer et al., 2018).

3.4.3 EOG features

The frequency range of EOG signal is 0.1–50 Hz and the

amplitude lies between 100 and 3500 μV (López et al., 2017).

From the EOG signals, we extracted eye blink and saccade rate

measures using the EOG event recognizer toolbox (Toivanen

et al., 2015). Eye blinks have been used to predict cybersickness

(Dennison et al., 2016) and saccades could be indicative of user

frustration (Bitkina et al., 2021) and sense of presence in

immersive virtual environment (Ju et al., 2019). Saccades

FIGURE 5
ASR applied on signal from Fp1 channel. Raw signal (grey) and enhanced signal (black). Artifacts (A) horizontal head motions; (B) vertical head
motions; (C) Eye blinks; (D) Eye gaze.
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correspond to rapid and simultaneous movements of both eyes

while fixing in the same direction. EOG signals (Fp1, Fp2, Fpz, H

EOG right, H EOG left, V EOG right, and V EOG left) were

therefore band-pass filtered in this frequency range and then

zero-mean normalized. The ASR algorithm was also applied to

remove head motion-related artifacts while keeping the eye

blinks and eye movements intact. The blinks and saccades

measurement algorithm relies on a probabilistic method that

requires a short period of unsupervised training before the actual

measurements. For this, the first 60 s of each session for each

participant were used. The parameters of the Gaussian

likelihoods were learned using an expectation maximization

algorithm following the work of Toivanen et al. (2015).

3.4.4 ECG features

For ECG signal processing, an open-source MATLAB

toolbox was used to extract 15 features related to HR and

HRV3. HRV analysis methods can be divided into time-

domain, frequency-domain, as well as nonlinear methods.

Time-domain parameters quantify the degree of variability in

measurements of the time period between two successive

heartbeats (interbeat interval, IBI, where ECG peaks are

denoted by R’s or N’s if the beats are normal). We extracted

from the time-domain the average IBI, the standard deviation of

NN intervals (SDNN), the root mean square of successive RR

interval differences (RMSSD), the number of pairs of successive

RR intervals that differ by more than 50 ms and its percentage

(NN50, and pNN50 respectively). Next, frequency-domain

analysis relies on the power spectral density of the RR time

series. We extracted the relative power of the low-frequency (LF)

band (0.04–0.15 Hz), and high-frequency (HF) band

(0.15–0.4 Hz), their percentages, the ratio of LF to HF, as well

as the total power that corresponds to the sum of the four spectral

bands, LF, HF, the absolute power of the ultra-low-frequency

(ULF) band (≤0.0003 Hz) and the absolute power of the very-

low-frequency (VLF) band (0.0033–0.04 Hz). Finally, nonlinear

measurements quantify the unpredictability of a time series.

Pointcare plot standard deviation perpendicular the line of

identity (SD1), and along the line of identity (SD2) were

extracted. These traditional HRV based measures have been

used to assess user experience, specially when experiencing

emotional or physical stress, where an increase in HR can be

observed (Murphy and Higgins, 2019; Pallavicini et al., 2019).

Moreover, changes in HR and HRV have been reported with

varying game difficulty levels (Muñoz et al., 2020).

3.5 Statistical tests

First, to validate the experimental protocol, we compare the

baseline and exploration/fight conditions using a t-test on each

question of the 10 scales of the subjective questionnaire with a

significance level of 95%. Next, to help answer RQ1, a t-test is

conducted on each physiological metric (significance level of 95%)

over the two conditions. The degree of freedom of the test, the

estimated population standard deviation, and confidence intervals

are reported. Lastly, to help answer RQ2, we use Pearson correlation

between the measured physiological signals and the subjective

ratings to explore which metrics best correlate with each HIF.

4 Experimental results

Table 1 reports the 21 subjective questions, out of the

87 available, that showed a significant difference between the

baseline and exploration conditions across all subjects. As can be

seen, eight of the 10 different scales showed a significant

difference, with only “usability” and “technology adoption”

scales not showing any significant difference. In general, the

exploration/fight scenes showed increased sense of presence,

flow, immersion, and emotions, but somewhat higher

cybersickness symptoms. These results help answer RQ1.

Next, we explore the changes seen in themeasured physiological

signals between the two conditions. Table 2 shows the difference

between the average metric in the exploration/fight condition to the

average metric over baseline condition, represented by a Δ symbol,

for each of the eight subjects, as well as the average across subjects.

As can be seen, there is an increase in HR of approximately 12 beats

per minute in the fighting condition, as well as an increase of

23 saccades per minute. To test the significance of these changes,

Table 3 further presents the results of the statistical test. As can be

seen, heart rate showed a significant difference whereas the changes

in saccades were mildly significant.

In order to study the temporal evolution of each

physiological metric, Figure 6 depicts the averages of the

metrics presented as a function of time across all participants

during baseline and exploration/fight conditions (black and grey

curves, respectively). As can be seen, heart rate remained

consistently higher in the fight condition, as expected, as this

is a more stressful condition. The saccades per minute metric was

also consistently higher in the exploration condition. This is also

expected as the gamer is trying to escape from being shot, thus

needs to survey the scene more intensely. The “humps” seen in

the SAC plots are likely indicative of the brief period when the

gamers moved to subsequent chapters. The engagement index, in

turn, decreased with time in the baseline condition, likely

indicating that gamers became bored after roughly 15 min. In

the fighting condition, on the other hand, engagement levels

remained consistent throughout the experience. The arousal

index suggests that towards the end of each session arousal
3 https://www.mathworks.com/matlabcentral/fileexchange/84692-

ecg-class-for-heart-rate-variability-analysis
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levels decreased in both conditions. With such temporal

information available, thresholds could be set such that

adaptive games could be developed (e.g., if ES drops below a

certain value, increase the number of attacks or puzzles that need

to be solved).

Lastly, Figure 7 shows the Pearson correlations achieved

between all physiological measures and the 21 subjective

scales from Table 1 with values concatenated for both

conditions. The correlations are colour-coded based on the

strength of the correlations, ranging from strong (e.g., greater

TABLE 1 Summary of the 21 scales that showed significant differences between baseline and exploration/fight conditions across all subjects.

Scales Items Questions Ratings: Mean
± std

Baseline Fight

Emotion Q2 “I did not get tense in the virtual environment” 5.75 ± 2.6 4.13 ± 1.0

Q13 “I enjoyed the challenge of learning the virtual reality interaction devices” 6.63 ± 2.5 8.38 ± 1.3

Q14 “The virtual environment did not scare me since I fully understand it” 8.13 ± 1.1 6.38 ± 2.0

Cybersickness Q21 “I did not suffer from fullness of the head during my interaction with the virtual environment” 3.13 ± 2.8 1.75 ± 0.7

Q23 “I did not suffer from vertigo during my interaction with the virtual environment” 2.38 ± 1.8 1.63 ± 0.5

Engagement Q27 “I was involved in the virtual environment experience” 9.25 ± 0.7 9.63 ± 0.7

Presence Q28 “The virtual environment was responsive to actions that I initiated” 9.13 ± 0.8 9.88 ± 0.4

Q29 “My interactions with the virtual environment seemed natural” 7.38 ± 2.3 8.50 ± 1.2

Q33 “I could examine objects from multiple viewpoints” 8.00 ± 1.5 9.13 ± 0.8

Flow Q43 “Time seemed to flow differently than usual” 4.75 ± 3.0 7.50 ± 2.3

Q48 “I felt I was experiencing an exciting moment” 8.50 ± 0.9 8.75 ± 1.2

Q50 “When I mention the experience in the virtual environment, I feel emotions I would like to share” 7.38 ± 0.5 8.88 ± 1.1

Immersion Q52 “I become so involved in the virtual environment that I was not aware of things happening around me” 8.38 ± 1.6 9.25 ± 1.2

Q53 “I identified to the character I played in the virtual environment” 7.38 ± 1.5 8.25 ± 0.9

Q54 “I become so involved in the virtual environment that it is if I was inside the game rather than manipulating a controller
and watching a screen”

7.13 ± 1.6 8.25 ± 1.7

Q56 “I did not get scared by something happening in the virtual environment” 4.50 ± 3.3 1.75 ± 2.1

Q57 “I become so involved in the virtual environment that I lose all track of time” 7.38 ± 2.3 8.13 ± 0.9

Skill Q61 “I felt confident selecting objects in the virtual environment” 7.13 ± 1.6 8.38 ± 1.5

Q62 “I felt confident moving the cross hair around the virtual environment” 7.13 ± 1.2 8.13 ± 1.1

Technology Q71 “The interaction devices would make work more interesting” 7.13 ± 1.4 8.25 ± 0.9

Adoption Q72 “I would like working with the interaction devices” 6.38 ± 3.0 8.38 ± 1.3

TABLE 2 Difference between the average metrics in the exploration/fight condition to the average metrics over the baseline condition for each
subject and averaged over all subjects.

ΔMetrics Subjects Mean

S1 S2 S3 S4 S5 S6 S7 S8

ΔHR 14.5 16.9 10.6 5.1 14.0 12.1 5.4 6.3 11.9

ΔBL −1.5 2.9 −0.6 10.7 5.0 −0.2 3.6 2.2 2.8

ΔSAC 33.9 19.6 25.9 5.5 23.0 23.1 20.9 29.2 22.6

ΔES −2.6 1.4 2.2 3.6 0.3 0.9 −2.7 0.8 1.1

ΔAI −1.6 3.8 0.1 1.9 5.6 −5.6 0.7 1.2 1.2

ΔVI −4.8 6.9 −5.0 −0.6 −13.1 −4.7 −5.0 −1.4 −3.5

ΔFAA −2.4 −1.9 0.2 0.5 0.2 −0.4 −0.7 5.5 0.1

HR, beats per min; BL, blinks per minute; SAC, saccades per minute.
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than 0.7), to moderate (between 0.3 and 0.7) to low (below 0.3).

As can be seen, several HR and HRV measures showed strong

correlations with several scales, in particular for flow and

immersion. EEG alpha and beta band features showed strong

correlation with emotional states and moderate correlatuions

with several other scales; same was true for the delta band

features. The engagement score showed moderate correlation

with engagement ratings and EOG based measures showed

moderate correlations with emotion and cybersickness ratings.

Overall, almost all HIFs showed moderate to strong correlations

with at least one physiological signal, thus helping answer RQ2.

5 Discussion

5.1 Answering RQ#1: Can the proposed
iHMD be used in highly ecological settings
with minimal experimenter intervention?

Results reported herein suggest that, yes, the iHMD can be

used reliably in gamer homes with minimal experimenter

intervention. The changes seen not only in the subjective

ratings reported across experimental conditions, but also with

the physiological signal measures (in both time-averaged and

real-time changes) suggest that the headset can be correctly

deployed and interfaced with commercial games and used by

the average gamer at the comfort of their own homes. The

subsections to follow discuss the reported subjective measures

and computed physiological metrics in more detail.

5.1.1 Capturing (expected) subjective insights
As can be seen in Table 1, the scales emotion, cybersickness,

engagement, presence, immersion, skill, and technology adoption

showed significant differences between the two conditions. For each

question, except Q2 (emotion), Q21 and Q23 (cybersickness), and

Q56 (immersion), the average scores were higher in the exploration/

fight condition relative to the baseline. Note, however, that these four

questions were asked in a negative manner; for example,

Q56 mentioned “I did not get scared by something happening in

the virtual environment.” As such, a lower value indicates that the

gamers were more scared in the exploration/fight condition.

In fact, since this condition includes fight and puzzle solving

challenges, the exploration/fight condition is likely to induce higher

stress and concentration levels for the gamer, thus increasing such

states. Increases in their perception of skill, for example, could also

be due to the fact that the exploration/fight condition came second,

thus the gamers had obtained some experience in navigating and

interacting with the objects. Moreover, as the fight conditions were

more challenging, participants also reported becoming more

involved, excited, and engaged during this phase, hence

explaining the increases in emotion, engagement, presence, flow,

and immersion subscales. However, in most cases, participants

complained of visual fatigue after 15–20 min of playing. Only

one participant reported cybersickness with a little nausea when

using VR for a while. After 50 min of play, some participants

experienced physical and mental fatigue, thus explaining the

lower ratings in the exploration/fight in cybersickness. The

changes observed were expected (e.g., higher stress levels in the

fight conditions) and indicate that the commercial game and iHMD

were correctly deployed and gamers, who had no previous

experience with Half-Life: Alyx, were able to successfully perform

the experiment from the comfort of their own homes with minimal

experimenter intervention.

5.1.2 Measuring aggregate physiological
changes and insights

While the subjective changes reported above suggest that the

gamers were able to correctly deploy the game from home, changes

in the measured physiological signals will indicate if the iHMD was

correctly placed and that the signal processing pipelines were

accurate and ensured high-quality signals were collected with

minimal experimenter intervention. To obtain an overall

TABLE 3 Statistics of the difference between conditions for each computed metric averaged across all subjects.

Mean ± Std

Metrics B E/F p-value t-statistic df sd 95% CI

HR 85.1 ± 6.5 97 ± 8.0 0.0308 2.4006 14 11.25 [−25.5900; −1.4400]

BL 13.8 ± 5.8 16.6 ± 7.2 0.2267 1.2645 14 4.03 [−6.8680; 1.7732]

SAC 113.7 ± 24.3 136.3 ± 34.3 0.0818 1.8748 14 37.47 [−75.3157; 5.0585]

ES 56.6 ± 9.8 57.7 ± 10.1 0.4345 0.8046 14 2.65 [−1.7736; 3.9031]

AI 20.7 ± 15.5 21.9 ± 15.8 0.1527 1.5122 14 5.70 [−1.8054; 10.4371]

VI 52.4 ± 10.6 48.9 ± 15.7 0.6699 0.4354 14 11.82 [−10.1039; 15.2509]

FAA −0.5 ± 2.1 −0.4 ± 1.6 0.8744 0.1610 14 1.62 [−1.8777; 1.6155]

HR, beats per min; BL, blinks per minute; SAC, saccades per minute.
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FIGURE 6
Instrumental measures over time in baseline (black) and exploration/fight (grey) conditions for all participants.

FIGURE 7
List of metrics that showed correlation with each subjective rating.

Frontiers in Virtual Reality frontiersin.org11

Moinnereau et al. 10.3389/frvir.2022.971054

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.971054


snapshot of the changes seen in the physiological measures, Table 2

shows that for ECG theΔHR (in bpm) is positive for all participants,

as well as an average values across all participants of 85.1 bpm and

97 bpm in baseline and exploration/fight conditions (according to

Table 3), respectively. This is expected, as in the first condition, the

gamers explore the virtual environment and are not facing any

stressful scenes, while in the second condition, they are confronted

to period of stress while fighting sequences.

Moroever, as can be seen from the metrics extracted from the

EOG signals, the number of eye blinks/min (ΔBL), for six of the
eight participants, as well as the number of saccades/min ΔSAC,
for all participants, increased by 2.8 and 22.6, respectively, for the

exploration/fight condition. Indeed, during the combat

sequences, participants have to react very quickly and look in

several directions, which explains the increase in the number of

saccades/min. In addition, visual fatigue is known to increase the

number of blinks/min (Kuwahara et al., 2022). Several

participants reported visual fatigue. Since the exploration/fight

condition lasted twice as long as the baseline condition, this could

explain the increased number of blinks for many participants.

Next, we examine the EEG signals and note that for six of the

eight participants a slightly higher positive ΔES during the

exploration/combat condition could be seen, suggesting greater

engagement. According to the valence and arousal results, all

participants showed low values for the arousal index (with average

of 20.7 and 21.9 on a 0–100 scale for the baseline and exploration/

fight condition, respectively), and moderate values for the valence

index (with average of 52.4 and 21.9 on a 0–100 scale for the baseline

and exploration/fight condition, respectively), suggesting an overall

positive emotion eliciting joy and happiness with a greater interest in

the second condition. However, we observed similar effects as

McMahan et al. (2015), where the valence index decreased during

death events, except for participant S2. In fact, participants face death

situations several times during the exploration/fight condition, hence

explaining the decrease in valence index for several of the participants,

aswell as on average. Lastly, from the FAAmetric, we can observe that

most of the participants exhibited a negative ΔFAA, hence

corroborating the increased levels of fear.

Lastly, from Table 3, HR showed to be significantly different

between the two conditions across all subjects. Moreover, the

t-statistic value indicates that the observed difference is more

than twice the variability of the data, thus suggesting a potentially

useful metric to objectively characterize gamer experience.

Overall, these findings show that the collected physiological

metrics followed expected behaviours, thus indicating that

high-quality signals were indeed measured from the gamers

homes and did not require lengthy preparation sessions in

controlled laboratory settings.

5.1.3 Measuring real-time physiological changes
and insights

While measuring aggregate measures of physiological signals

can be useful and suggest the measurement of high-quality data,

aggregate measures may not be as useful for real-time tracking of

gamer behavior, which would ultimately be needed for adaptive

gaming at home. To this end, real-time measurement and

monitoring of physiological measures is needed, as enabled by

the iHMD. As shown in Figure 6, HR increased over time,

especially for the fight condition. In fact, movements related to

interaction in the game, increased temperature and sweating, as well

as higher stress levels in the fighting scenes are all factors that can

lead to increases in heart rate over time. For the blinks, it can be

observed that it increases with time for both conditions, but more

substantially for the longer exploration condition. This corroborates

the use of blink rate as a potential indicator of visual fatigue, which

could be useful for QoE assessment.

For the engagement score, as mentioned above, the decrease

over time for the baseline condition could be indicative of

boredom, whereas in the fighting condition it remains fairly

consistent. Indeed, in the exploration/fight condition, the player

is constantly solicited, whether to fight or to solve puzzles. On the

other hand, in the baseline condition not much happens and

players could potentially become bored. We observe the same

trends in the arousal index where in the baseline condition, the

drops towards the end could be indicative of boredom. In the

exploration/fight condition, on the other hand, this dropped

happened only after after 45 min of gameplay. This drop in

arousal could be indicative of fatigue, as this coincided with an

increase in blink rate as well around the same time.

Combined, the temporal information available frommultiple

physiological signal modalities could be used to infer the gamer’s

QoE levels in real-time. With simple thresholding or more

complex machine learning models, real-time game adaptation

could eventually be performed, thus maximizing QoE on a per-

gamer basis. This capability was enabled with the proposed

iHMD with minimal experimenter intervention. Overall, these

combined insights help validate RQ#1 and show that an

biosensor-instrumented headset, coupled with a signal

processing pipeline, could be used in highly ecological settings

with minimal experimenter intervention.

5.2 Answering RQ#2: Can the measured
physiological signals be used as correlates
of gamer HIFs?

Ultimately, we are interested in using physiological signals to

extract measures that correlate with gamer experience HIFs in an

objective manner. Here, Pearson correlation was used to help

pin-point which of the explored objective metrics could be used

as correlates of immersive gaming HIFs. From Figure 7, it can be

seen that ECG and EEG signals generated features that showed

the most moderate to strong correlations with the majority of the

subjective ratings, thus indicating their importance for gamer

experience assessment. More specifically, from the ECG signal,

HR (in bpm) and several HRV measures, including SDNN,

Frontiers in Virtual Reality frontiersin.org12

Moinnereau et al. 10.3389/frvir.2022.971054

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.971054


rmsRR, IBImean, LF, HF and total powers, pNN50, SD1 and

SD2, showed a strong correlation with most of the subjective flow

and immersion ratings. The ratios α/δ and β/δ also showed a

strong correlation with the emotion rating. Similar to the studies

presented in section 3.4.2 that linked spectral powers to HIFs, we

observe a moderate correlation between immersion and θ/α,

stress regulation and δ/β, as well as presence and θ/β.

Moreover, ES showed moderate correlation with engagement,

emotion, flow, immersion, skill and technology adoption ratings.

Finally, eye blinks showed correlation with the cybersickness

rating, further confirming its usefulness for visual fatigue

monitoring. Overall, several metrics showed strong

correlations across all tested human influential factors, thus

corroborating the usefulness of the iHMD to extract correlates

of gaming HIFs.

Taken together, the results obtained herein are promising as

they 1) were achieved in highly uncontrolled “in-the-wild”

scenarios, with minimal experimenter intervention, and 2)

resulted in measured physiological measures that could be

used for real-time gamer QoE assessment. None of the

participants reported any difficulty in setting up the VR room

and the instrumented headset. The fact that the system is

wireless, portable, and that setup times, including automated

data quality analysis, can take less than a minute, makes it ideal

for at-home deployment. Ultimately, it is hoped that the work

presented here will inspire researchers in various fields to

replicate and use this technology to develop next-generation

immersive applications.

5.3 Study limitations

Although the experimental results reported herein are

promising, some study limitations exist. First, the results

presented in this study were performed in the middle of the

COVID-19 pandemic lockdown. As such, despite all the

necessary sanitary measures put in place, recruitment of a

large sample size was difficult. This was further exacerbated

by the fact that hardware needed to remain in quarantine for

several days between participants and that devices were left for

1–2 weeks at the participant’s homes. In the future, increasing the

number of participants to ensure greater statistical power will be

needed. Moreover, given the limited number of participants,

developing instrumental QoE measures based on the obtained

metrics also became challenging, thus future work should explore

overall QoE prediction, thus ultimately leading to user experience

optimization on a per-gamer basis.

6 Conclusions and future work

In this study, we presented a new protocol for collecting

physiological data remotely for home-based VR studies with

minimal experimenter intervention. By equipping a plug-and-

play VR headset with a number of ExG sensors, combined with

a strict sanitization protocol, we were able to collect data from eight

participants remotely from their homes during periods of COVID-

19 lockdowns. From the collected biosignals data, we extracted

several metrics that were found to correlate with several HIFs,

including emotional states, engagement, presence, immersion,

skills, flow, and technology adoption. Future work will explore

the extraction of other HIFs from facial gestures and other EOG

measures (e.g., gaze speed/acceleration). Ultimately, the goal will be

to use the measured HIF metrics to adjust the game in real time to

maximize the user experience for each player.
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