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User experience and user acceptance of a product are essential for the product’s
success. Virtual reality (VR) technology has the potential to assess these
parameters early in the development process. However, research is scarce on
whether the evaluation of the user experience and user acceptance of prototypes
in VR, as well as the simulation of the usage environment, lead to comparable
results to reality. To investigate this, a digital twin of a blood pressure monitor
(BPM) was created using VR. In a 2 × 2 factorial between-subjects design,
48 participants tested the real or VR BPM. The tests were performed either in a
low-detail room at a desk or in a detailed operating room (OR) environment.
Participants executed three use scenarios with the BPM and rated their user
experience and acceptance with standardized questionnaires. A test leader
evaluated the performance of the participants’ actions using a three-point
scheme. The number of user interactions, task time, and perceived workload
were assessed. The participants rated the user experience of the BPM significantly
(p < .05) better in VR. User acceptance was significantly higher when the device
was tested in VR and in a detailed OR environment. Participant performance and
time on task did not significantly differ between VR and reality. However, there was
significantly less interaction with the VR device (p < .001). Participants who tested
the device in a detailed OR environment rated their performance significantly
worse. In reality, the participants were able to haptically experience the device and
thus better assess its quality. Overall, this study shows that user evaluations in VR
should focus on objective criteria, such as user errors. Subjective criteria, such as
user experience, are significantly biased by VR.
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1 Introduction

The user-centered design process is a product development method that focuses on user
requirements. Based on these requirements, prototypes are developed iteratively and are
evaluated by users in usability tests or by experts (Backhaus, 2010). Depending on the stage
of development and the product, the prototypes are paper models, click dummies, mockups,
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or interactive models. In early development phases, the functionality
of prototypes is severely limited. In addition, the level of detail is low,
and the test environment does not represent a later usage
environment, which reduces the external validity compared to
field studies with fully developed prototypes (Sarodnick and
Brau, 2011).

The production of fully developed prototypes is resource- and
cost-intensive (Zhou and Rau, 2019). One way to reduce these costs
and development times is to use virtual prototypes (Choi et al.,
2015). Virtual prototypes are highly detailed computer simulations
of a new product and can be presented, analyzed, and tested
depending on the programmed functionality (Wang, 2002).
However, user tests are still mainly performed using real, fully
developed prototypes. One reason is that the success of a product
in the market also depends on subjective criteria, such as user
acceptance and user experience (Hassenzahl and Tractinsky,
2006; Garrett, 2011; Salwasser et al., 2019). The user experience
describes the overall impression of a product on the user. It is closely
linked to the perception of the product and should therefore only be
evaluated with mature and detailed prototypes and not, for example,
with paper models or click dummies (Rudd et al., 1996;
Rauschenberger et al., 2013a; Salwasser et al., 2019).

Virtual reality (VR) technology offers a new way of visualizing
virtual prototypes in detail and making them experienceable. Using
head-mounted displays (HMDs), it is possible to simulate immersive
environments in which users can move freely. This makes it possible
to evaluate prototypes with a high level of detail during early
development phases (Salwasser et al., 2019).

Design reviews are often conducted in VR to evaluate
prototypes. In VR design reviews, the three-dimensional view of
the prototype is presented to the development team and
stakeholders, allowing potential improvements at an early stage
and increasing the efficiency of the development process
(Antonya and Talaba, 2007; Aromaa and Väänänen, 2016;
Aromaa, 2017; Berg and Vance, 2017; Brandt et al., 2017;
Sivanathan et al., 2017; Ahmed et al., 2019; Clerk et al., 2019;
Wolfartsberger, 2019; Adwernat et al., 2020; Wolfartsberger et al.,
2020; Chen et al., 2021; Franzreb et al., 2022; Freitas et al., 2022).

However, studies in which users operate and subsequently
evaluate prototypes in VR are scarce. Bruno and Muzzupappa
(2010) presented the first comparative study in which
participants used a product in reality and VR. The number and
type of user errors observed between the groups did not differ
significantly. The time required to perform concrete tasks was
approximately twice that of VR. Further studies revealed that
interactive user evaluation in VR can lead to valid results (Bruno
et al., 2010; Bordegoni and Ferrise, 2013; Holderied, 2017; Madathil
and Greenstein, 2017; Oberhauser and Dreyer, 2017; Bergroth et al.,
2018; Bolder et al., 2018; Ma and Han, 2019; Aromaa et al., 2020;
Grandi et al., 2020).

Overall, only a few studies have examined subjective criteria
such as user experience or user acceptance of products in VR and
compared themwith real products. Metag et al. (2008) compared the
subjective product evaluation of a real prototype and a virtual
prototype using three-sided projection. In particular, the
evaluation of colors and surface structures led to difficulties in
VR. Kuliga et al. (2015) compared user experiences of visiting
buildings in VR and reality. Significant differences were identified

with regard to perceived user experience. Franzreb et al. (2022)
investigated the user experience of three furnishing products in VR
and in reality. For two of the three products, there were no
significant differences in the evaluated user experience. One
product was rated as significantly better in VR.

Initial studies in mixed reality (MR) vehicle environments,
where virtual and real controls are combined, showed that the
user experience and user acceptance in reality and MR were
evaluated comparably (Bolder et al., 2018; Pettersson et al., 2019).
However, studies investigating user experience and user acceptance
within a usability test with fully interactive virtual products in VR
have not yet been conducted.

Both the product and the usage environment influence subjective
criteria. In classic usability tests, the usage environment was often biased
owing to deviations from reality. The test participants knew that it was a
simulation and, therefore, acted differently (Unger, 2020). Currently,
there is limited understanding of the effect of VR environments on
users’ cognitive processes. It remains unclear whether the cognitive
requirements of a virtual task are equivalent to those of the real world
(Harris et al., 2020). Frederiksen et al. (2020) discovered that a highly
immersive and detailed VR environment during laparoscopy
simulation resulted in a higher perceived workload than a less
detailed VR simulation. If the interaction with a product leads to a
high perceivedworkload, this can have an impact on the user experience
(Winter et al., 2015).

Although VR offers the possibility to simulate the use of
prototypes in a later usage environment, which would reduce the
bias described by Unger (2020), simultaneously, detailed and
immersive usage environments can bias the evaluation of the
user experience because the participants unknowingly co-evaluate
the VR environment.

Several studies have examined presence, that is, the feeling of
being in the virtual world (Berkman and Akan, 2019), and compared
it to reality (Usoh et al., 2000; Mania, 2001; Mania and Chalmers,
2001; Schuemie et al., 2001). Busch et al. (2014) investigated the
suitability and user acceptance of virtual environments generated by
a cave automatic virtual environment (CAVE) to simulate the usage
environment. The results showed no differences between the virtual
and real environments in terms of user acceptance of the real
product. Brade et al. (2017) extended this study and investigated
the influence of the virtual environment on the usability and user
experience of a geocaching game. Users in the CAVE rated hedonic
quality significantly better.

However, the VR technologies used in these studies are now
obsolete. Current VR systems have high-resolution HMDs with
resolutions of up to 2880 × 2720 pixels per eye and a field of view of
up to 200° (Găină et al., 2022). VR controllers have evolved to offer
more intuitive interactions; they incorporate motion tracking, finger
tracking, force and haptic feedback, and buttons, allowing users to
interact with the virtual environment more naturally (Anthes et al.,
2016; Novacek and Jirina, 2022). Because of this technological
progress, high-resolution, modern HMDs can create higher
immersion than CAVE systems (Elor et al., 2020). Studies using
modern HMDs to investigate the influence of the virtual
environment on the user experience and acceptance of virtual
prototypes or products are scarce.

The aim of this study was to investigate whether VR influences
the evaluation of user experience and user acceptance of a product in

Frontiers in Virtual Reality frontiersin.org02

Hinricher et al. 10.3389/frvir.2023.1151190

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1151190


the context of a usability test. Additionally, the influence of the
design of the virtual environment on the user experience and user
acceptance of a product were investigated.

2 Methods

2.1 Experimental design and participants

To investigate whether VR or the design of the VR environment has
an impact on the user experience and user acceptance of a product,
usability tests were performed in reality and inVRwith a blood pressure
monitor (BPM) (Model B02R, JianZhiKang Technology Co., China) in
two different test environments (see Figure 1).

A total of 48 participants participated in this study. A 2 ×
2 factorial between-subjects design with randomization was used.
Half of the participants tested a real BPM. The other half tested a
virtual copy using VR. Half of each group performed the usability
test in a highly detailed environment (operating room (OR)). The

other half of each group performed the test in a low-detail
environment (an empty room with a table).

Table 1 lists the participant data for each trial group.
All participants indicated that they had used a BPM before but were

not familiar with the BPM in this study. All participants were enrolled in
a bachelor’s or master’s degree program with a technical focus at the
time of the study and stated that they used computers on a daily basis.

2.2 Experimental setup and procedure

2.2.1 Experimental setup
In a previously conducted workshop with experts from the field

of nursing and usability, three different blood pressure measuring
devices from different manufacturers were examined in terms of
usability. The device used in this study showed the most usability
problems and was, therefore, selected.

Figure 2 shows the visualization of the BPM. The virtual BPM
matches the real device in terms of design and function. If the

FIGURE 1
Real and virtual test environments. Forty eight test participants were divided into the four scenarios.

TABLE 1 Participant data.

Trial group Gender, m/f [n] Visual aid [n] Age ±SD [a] VR experience none/little/much

Real low-detail 7/5 4 28 ± 4 —

Real high-detail 5/7 2 25 ± 3 —

VR low-detail 7/5 3 29 ± 7 6/4/2

VR high-detail 9/3 3 23 ± 2 3/7/2
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participant pressed a button, a click sound was generated in the VR
as acoustic feedback. The pump noise of the real BPM was recorded
and implemented in VR.

In the real-life test setup, a camera (GoPro Hero 5, GoPro Inc.,
United States) was positioned vertically above the real BPM to
record the participants’ interactions with the device. The tests were
monitored using a tablet computer (Galaxy Tab A6, Samsung Co.,
South Korea), which was connected to the camera via WiFi. The test
leader was in a separate monitoring room and observed the subject
through a mirrored window. Using an intercom system, the test
leader communicated with the participant and provided support in
the event of a problem.

Virtual environments and the virtual BPM were created in the
Unity 2020.2.3f1 development environment (Unity Technologies,
United States) and coded in C# (Microsoft Corporation,
United States). Visualization was performed using the Valve
Index HMD (Valve Corporation, United States) and a PC with
an i7 processor and a GeForce GTX 1070 graphics card (NVIDIA
Inc. United States). An infrared sensor (Leap Motion Controller,
Ultraleap Limited, United Kingdom) was mounted on the HMD.
Using this sensor, the hands of the participants were captured and
visualized in VR. Therefore, the participants did not need a
controller, which enabled natural interaction with the BPM
(Harms, 2019).

2.2.2 Experimental procedure
The experimental procedure was identical for all four test

conditions. The participants were instructed on the test
procedure in a standardized manner. The participants then
performed three usage scenarios: measuring blood pressure,
displaying measured values, and switching users. The usage
scenarios were divided into tasks (Table 2).

Usage scenario 1
The on/off button switched the device on and off. The blood

pressure measurements started automatically after the devices were
switched on. Because no real measurement of the blood pressure is
possible in VR, a random systolic value between 110 and 180 mmHg
was generated after a simulated measurement time. The diastolic value
and pulse were also generated randomly within the physiological range.

Usage scenario 2
After the measurement, the values were displayed and saved

automatically. The saved older values could be displayed by pressing
a memory key (M). When the memory key was pressed for the first
time, the average blood pressure calculated from the saved
measurements appeared. Navigation through the saved values
was performed using the memory (forward) and setting (back) keys.

FIGURE 2
Illustration of the examined BPM.

TABLE 2 Usage scenarios and the specific tasks.

Usage scenario Tasks No.

Measuring blood pressure measure first blood pressure value 1

measure second blood pressure value 2

measure third blood pressure value 3

Displaying measured
values

Find and read the second-last measured value 4

Find and read the highest measured value 5

Find and read the lowest measured value 6

Switching users Open the settings menu 7

Select another user 8

Confirm selection 9
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Usage scenario 3
The devices enabled the use of two different user profiles. To change

the user, the setting key (S) was pressed for 2 s. Then, the settings menu
opened, and an icon indicating the active user profile started blinking.
The other user profile was called by pressing the memory key (M). This
selection had to be confirmed using an on/off key.

After completing the usage scenarios, the participants evaluated
their user experience, user acceptance, and perceived workload using
standardized questionnaires.

2.3 Primary endpoints

2.3.1 User experience
User experience was measured using the user experience

questionnaire (UEQ) (Laugwitz et al., 2008). The UEQ comprises
26 bipolar items divided into the following six dimensions:

• Attractiveness: Describes the general impression of the
product.

• Perspicuity: Describes the user’s feeling that interaction with a
product is easy, predictable, and controllable.

• Efficiency: Describes how quickly and efficiently the user can
use the product.

• Dependability: Describes the feeling of being in control of the
system.

• Stimulation: Describes the user’s interest and enthusiasm for
the product.

• Novelty: Describes whether product design is perceived as
innovative or creative.

Participants rated the items using a seven-point Likert scale
(Rauschenberger et al., 2013b). Each box on the Likert scale was
assigned a score between −3 and +3, where +3 corresponds to an
adjective with a positive connotation. The UEQ score of a dimension
is the mean of its respective scores.

2.3.2 User acceptance
User acceptance was measured using the system usability scale

(SUS) (Brooke, 1995). The SUS is an effective and simple method for
evaluating user acceptance of a system and comprises 10 alternating
positive and negative statements. Between 1 and 5 points are
awarded for each statement. Depending on the formulation of
the item (positive/negative), a five-point rating represents either
the statement “I fully agree” or the statement “I fully disagree.” The
result is expressed as a score between 0 (negative) and 100 (positive).
This 100-point scale enables a relative comparison between different
products (Bangor et al., 2009). Figure 3 shows the evaluation scheme
for interpreting the SUS score.

2.4 Secondary endpoints

2.4.1 Task success rate
To control whether possible differences in user experience and

user acceptance could result from operational problems or errors,
the task success rate was determined for all four test scenarios. For
this purpose, a test leader evaluated the performance of the tasks

listed in Table 2 using a 3-point scheme (Table 3). The test leader
was not informed of the study aims.

For the analysis, the ratings are displayed as stacked bar charts.
Each task was individually evaluated. The bars indicate the relative
frequencies of the evaluation levels. The success rates were calculated
using the following formula:

success rate � ∑good +∑medium * 0, 5
participants * tasks

*100

The calculated success rates were averaged and evaluated
individually for each task as well as for each usage scenario.

2.4.2 Number of user interactions and time on
usage scenario

In this study, the hands of the participants were captured and
displayed in VR to allow natural interaction with the BPM.
However, haptic feedback could not be simulated. The number of
user interactions and the completion time for each usage scenario
were recorded to verify whether the participants interacted
comparably with the BPM in VR and in reality.

Every button touch by the participant was counted as an
interaction. Attempts to use the screen of the device as a
touchscreen were also counted as an interaction. Processing time
is defined as the time between reading the usage scenario and
completing the scenario.

In reality, the processing time of the usage scenario “measuring
blood pressure” is primarily dependent on the pumping and measuring
time of the device and differs physiologically between test participants.
Therefore, the processing time was only evaluated for the usage
scenarios “displaying measured values” and “switching users.”

2.4.3 Perceived workload
If the interaction with a product is mentally demanding, this may

have an impact on the user experience (Winter et al., 2015). Studies have
shown that performing tasks inVR can lead to a highermental stress than
in reality (Madathil and Greenstein, 2017; Siebers et al., 2020). To control
whether mental workload was comparable between the experimental
scenarios, participants filled out the NASA-RAW-TLX questionnaire
after the experiment. The NASA-RAW-TLX Hart and Staveland (1988)
comprises six items representing the dimensions of mental, physical, and
temporal demands, as well as performance, effort, and frustration on a 20-
point scale. AGerman translationwas used in this study (Seifert, 2002). In
addition to the total load, the individual subscales were evaluated.

2.5 Statistical analysis

Statistical analyses were performed using SPSS Statistics
software (v.27, IBM, United States). Through a two-factorial
analysis of variance (ANOVA) (α = .05), we investigated whether
the test environment (highly detailed OR/low-detail desk) or
simulation environment (VR/Real) had a significant influence
on the dimensions of the UEQ and the SUS score.

In addition, ANOVA was used to examine whether the test
environment or the simulation environment had a significant effect
on the task success rate, number of user interactions, time spent on
the usage scenario, and dimensions of the NASA-RAW-TLX.
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The Kruskal–Wallis test (α = .05) was used to examine whether
there were significant differences in the test leaders’ ratings of the
different tasks between the four experimental conditions.

3 Results

3.1 Primary endpoints

3.1.1 User experience
Figure 4 shows the mean values for attractiveness, perspicuity,

efficiency, dependability, stimulation, and novelty depending on the
investigated factors (high/low detail and VR/reality).

Both the test environment (high-detail OR/low-detail desk) and
the simulation environment (VR/Real) had a significant effect on the

UEQ dimension stimulation and novelty. Table 4 lists the calculated
significance values for the different UEQ dimensions.

Figure 4 shows that the participants rated the dimensions
novelty (MVR = 0.44 ± 1.22; MReal = −0.79 ± 0.87) and
stimulation (MVR = 1.24 ± 0.92; MReal = 0.38 ± 0.94)
significantly better in the VR simulation environment.
Participants who tested the devices in the detailed OR
environment also rated the novelty (MOR = 0.47 ± 0.87;
MDesk = −0.81 ± 1.21) and stimulation (MOR = 1.17 ± 0.97;
MDesk = 0.45 ± 0.89) dimensions significantly higher.

3.1.2 User acceptance
Figure 5 shows SUS scores as a function of the four trials.
Neither the test environment (p = .67) nor the simulation

environment (p = .20) had a significant effect on SUS scores.
However, there was a significant interaction effect between the
test and simulation environments on the SUS score (p = .02).
The virtual device in the highly detailed OR environment scored
the highest SUS score of 74 ± 11 and had “good” perceived
usability according to Bangor et al. (2009) (see Figure 3). The
real device in the OR environment, in contrast, only achieved a
score of 53 ± 24, which corresponds to “poor” to “acceptable”
usability.

In the low-detail test environment, the real device achieved a
slightly higher value than the virtual device (62 ± 23), with an SUS
score of 69 ± 17.

FIGURE 3
Classification of the SUS score. Adapted with permission from Bangor et al. (2009).

TABLE 3 Criteria for assessing task success rate.

Evaluation Description

Good Fast operation without assistance
Error-free execution

Medium Prolonged hesitation before operation
Errors are corrected without indications by the test leader

Poor Execution of the task after assistance of the test leader

FIGURE 4
Results of UEQ: dimension means with 95% confidence interval.
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3.2 Secondary endpoints

3.2.1 Task success rate
Figure 6 shows the calculated success rates of the tasks, as well as

the overall ratings of the usage scenarios.
The Kruskal–Wallis test showed no significant differences with

regard to the test leader’s evaluation of the individual tasks
according to the three-point scheme (p > .05). The ANOVA
results demonstrate that there are no significant differences
between the four different user tests regarding success rates (p > .05).

Regardless of the test and simulation environments, the results
demonstrate that the BPM has significant usability problems for use
case 3 “switching users.” In particular, Task 7 (“Open the settingsmenu”)
could not be performed by several participants without assistance.

3.2.2 Number of user interactions and time on
usage scenario

Overall, the participants required less time to complete the
scenarios in VR than in reality (MVR = 226 ± 84 s, MReal = 269 ±
81 s). A comparison of task completion times for the test environments
showed that participants required less time to complete the tasks in the
low-detail environment than in the detailed OR environment (MDesk =
224 ± 82 s, MOR = 271 ± 81 s). However, the differences were not
statistically significant. (pVR-Real = .08, pDesk-OR > .05).

The participants in VR interacted with the BPM significantly less
(p < .001, M = 61 ± 27) than the participants who operated the real
device (M = 108 ± 32). Figure 7 shows the mean number of
interactions of the participants. The test environment had no
significant effect on the number of interactions (p = .73).

3.2.3 Perceived workload
Figure 8 compares the dimensions of the perceived workload

assessed by the NASA-RAW-TLX. Both the test and simulation
environments had no significant influence on the dimensions of
mental demand, physical demand, temporal demand, effort, and
frustration. However, the test environment had a significant
influence on the performance dimension (p = .008). Participants
in the detailed OR environment rated their performance worse
(MOR = 10.06 ± 4.72) than participants in the low-detail
environment (MDesk = 6.40 ± 4.37).

Table 5 lists the calculated significance values for each
dimension of the NASA-RAW-TLX.

4 Discussion

4.1 Experimental setup and procedure

In this study, we investigated whether a survey of user
experience and user acceptance of a product in VR leads to the
same results as a survey of a real product. By varying the test
environment, we investigated whether this has an additional
influence on the user experience and user acceptance.

In principle, the use of an infrared sensor for interaction with
a virtual BPM proved to be suitable. The participants were able to
operate the BPM using their hands. However, in some cases, the
covering of the fingers by the back of the hand during the tests led
to difficulties in capturing the interactions. Consequently, the VR
participants used different hand postures than those who tested
the real device. In reality, the participants sometimes held the
device in both hands and operated the buttons with their thumbs.
In VR, the participants operated the device exclusively using their
index fingers. Figure 9 shows the different VR and real
operations.

VR gloves with direct capture of finger and hand positions and
haptic feedback through vibration motors can increase the
comparability of interaction. The influence of different input
devices or the use of wireless VR systems on the user experience
needs to be further investigated.

One limitation of this study is the participant sample. The
participants were students who were in a bachelor’s or master’s
degree program with a technical focus at the time of the study.
However, the main user group of home-care blood pressure
monitors is the elderly, for whom a different perception of VR
and technology in general can be assumed. The extent to which the

TABLE 4 UEQ dimensions that are significantly influenced (bold) by the factors “test environment” and “simulation environment” (ANOVA).

Test environment Simulation environment Interaction

Attractiveness .424 .211 .166

Perspicuity .318 .148 .106

Efficiency .882 .767 .164

Dependability .769 .347 .115

Stimulation .013 .003 .223

Novelty <.001 <.001 .869

FIGURE 5
Results of the SUS: mean values with 95% confidence interval.
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results of this study can be transferred to an older group of
participants must be investigated in a further study.

4.2 Primary endpoints

4.2.1 User experience
Participants rated the BPM “more novel” and “more stimulating” in

VR than in reality. This is assumed to be owing to the novelty effect
(Karapanos et al., 2009). Most participants had little or no experience
with VR (Table 1). Owing to the novelty of the technology, the
participants also perceived the product in VR as more novel and
stimulating. The novelty effect may also have led to the BPM being
rated as significantly more “original” and “stimulating” in the OR
environment. Several users from the university environment were in the
OR for the first time. This new experience may have influenced the

FIGURE 6
Comparison of success rates between the four different user tests. Usage scenario 1: measuring blood pressure; usage scenario 2: displaying
measured values; usage scenario 3: switching users.

FIGURE 7
Number of operator interactions summed over the entire
experiment as a function of the factors investigated.

FIGURE 8
Comparison of perceived workload: dimension means and 95% confidence intervals.
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evaluation of the blood pressure monitoring. In a study by Brade et al.
(2017) in which participants performed a geocaching game in real and
virtual environments, the participants also rated the UEQ dimensions
“stimulation” and “novelty” significantly higher. In this study, most
participants had little or no VR experience. Further studies are needed
to investigate whether theUEQdimensions are rated significantly better
by users with significant VR experience.

Pettersson et al. (2019) did not identify any significant
differences in terms of user experience between operating a real
car and a car in an MR environment. The participants in this study
also mostly had no or little VR experience. Unlike our study, the MR
environment allowed the participants to experience the product
haptically. All user interfaces, such as the steering wheel and
infotainment system, were present in reality. In a comparative
study in which, for instance, a real product is compared with a
product in an MR environment and a completely virtual product in
VR, it should be investigated whether the lack of haptic feedback is a
reason for the different evaluations of the user experience.

A study by Vergara et al. (2011) showed that multisensory
(visual-haptic) interaction influences the perceived ergonomics
compared to purely visual interaction. Test subjects who
interacted with a product purely visually noted fewer problems
with the product regarding ergonomics and interaction. The
influence of VR gloves with force and vibration feedback on the
user experience needs to be investigated in further studies.

4.2.2 User acceptance
In contrast to the UEQ, it could not be shown for user

acceptance that the test environment or the simulation
environment independently had a significant influence on the
SUS score. Comparable studies could also not find a difference
between VR and real environments with regard to the SUS score
(Busch et al., 2014; Bolder et al., 2018).

However, a significant interaction effect was observed in the
present study. Participants who operated the BPM in the VR and
detailed OR environment rated the perceived usability higher. This
contradicts the study by Brade et al. (2017), in which participants
rated the usability of a mobile device application in VR (CAVE)
significantly worse than in reality. We suspect that, in our study, the
novelty effect also influenced user acceptance.

In general, the comparison of the achieved SUS scores in this
study shows that the evaluation of the user acceptance of products in
VR can result in misleading conclusions. The product design of the
VR BPM is rated as “good,” whereas the real device in the OR
environment is rated in the range of “poor” to “acceptable.”

4.3 Secondary endpoints

4.3.1 Task success rate
Overall, no significant differences were identified in the task success

rates as assessed by the test leader. In all four test scenarios, problems
occurred in task 7, “Open the settings menu.” The participants did not
identify that the settings button had to be pressed for 2 seconds to open
the settingsmenu. This result indicates that the same usability problems
can be identified in VR as in a real usability test. Furthermore, no new
usability problems were generated owing to the different interaction
modalities used in the VR. Therefore, biases in the assessment of user
experience and user acceptance due to errors or uncertainties in the
operation of the prototype in VR are excluded.

4.3.2 Number of user interactions and time on
usage scenario

The participants interacted significantly less with the virtual device
than with the real device (Figure 7). One reason for this could be the VR
experience, which was novel to several participants, as well as the
described problem of the fingers being covered by the back of the hand.
In addition, haptic feedback was missing in VR. Subsequent studies
should investigate whether the number of operator interactions changes

TABLE 5 Significance values of the NASA-RAW-TLX dimensions depending on the factors investigated.

Test environment Simulation environment Interaction

Mental demand .387 .750 .274

Physical demand .563 .658 .865

Temporal demand .395 .887 .569

Effort .096 .974 .258

Performance .008 .171 .144

Frustration .412 .289 .051

Total .107 .576 .121

FIGURE 9
Example of operation of the BPM in reality (left) and in VR (right).
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when other interaction devices such as VR gloves with haptic feedback
or an MR environment are used. Additionally, it should be investigated
whether the number of user interactions increases when users have
significantly more VR experience.

We assume that the intensive haptic perception of a real device
influences the evaluation of the user experience. In reality, the
participants perceived the device using both hands. This experience
was included in the evaluation of the dimension “stimulation” with
adjective pairs such as “valuable” vs. “inferior.” In VR, the participants
were required to evaluate the device using only visual sensations. As
described in the study by Metag et al. (2008), it is difficult for
participants in VR to evaluate the quality of surface textures.

As in the study by Madathil and Greenstein (2017), no
significant differences were detected between VR and reality in
terms of the time to complete the tasks; however, in the study by
Siebers et al. (2020), there was a highly significant difference. In this
study, participants had to solve a puzzle in both VR and reality. As
expected, the test participants required significantly more time for
this fine-motor task in VR. The interaction with the BPM had low
complexity owing to the button-only operation. It is expected that
there may be differences in completion times for products with
complex controls. The influence of this complexity difference, if any,
on user experience and user acceptance must be evaluated in further
studies with more complex user interfaces.

4.3.3 Perceived workload
Participants in the highly detailed OR environment rated their

performance significantly worse than those in the low-detail desk
environment. The results of this study demonstrate that both real
and virtual OR environments increase the pressure on the participants
to perform. It follows that, particularly in the early stages of
development, when user testing in a real product usage environment
cannot be performed because of cost or effort, testing in a virtual usage
environment may be useful. Although the pressure required to perform
in a real OR environment was even higher, the use of photorealistic
environments could further improve the results in VR.

If participants rate their performance as poor or if the operation
of the product is mentally demanding, this can negatively influence
user experience (Winter et al., 2015). However, because the BPM
was not rated significantly worse in the OR environment than in the
low-detail tabletop environment, it is assumed that the significant
difference in the performance dimension had no influence on the
assessment of the user experience or user acceptance.

5 Conclusion

The results of this study demonstrate that both the simulation
environment (VR/real) and design of the test environment have a
significant effect on measuring user experience and user
acceptance. The participants had comparable difficulties with
the product in both VR and reality, resulting in problems with the
same task. Nevertheless, the participants rated the user

experience of the product as significantly better in VR than in
reality. In addition, user acceptance of the BPM was significantly
higher when the device was tested in VR and in a detailed OR
environment. We suggest that these differences are caused by the
novelty effect and lack of haptic feedback in VR. In reality, the
participants were able to experience the device haptically and
consequently assess its quality better.

From these results, it follows that the evaluation of user
experience and user acceptance of products in VR with currently
established questionnaires, such as the SUS or the UEQ, is not useful.
The focus of usability testing in VR should be on objective criteria,
such as user errors. However, the participants in this study had little
or no experience with VR technology. Further studies should
investigate whether participants with a lot of VR experience
evaluate products in VR in a similar way as in reality.
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