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This study investigates the effects of immersion on spatial ability in virtual reality
(VR) and the influence of sense of presence, simulation sickness, and cognitive
load. Participants performed a spatial ability task using a head-mounted display in
an immersive or non-immersive VR condition. Contrary to expectations,
immersive VR did not enhance spatial performance compared to non-
immersive VR. Interestingly, cognitive load was positively associated with
spatial ability in immersive VR but negatively associated with it in non-
immersive VR. A higher sense of presence was associated with increased
spatial ability for both conditions. Predictably, simulation sickness negatively
impacted spatial ability in the more immersive condition. Sense of presence
and simulation sickness correlated in the immersive condition but not in the non-
immersive condition, indicating the importance of immersion as a covariate.
These findings highlight a complex interplay of factors in immersive
environments, challenging existing assumptions and providing insights for
designing spatial environments in immersive and non-immersive virtual
environments.

immersion, sense of presence, performance, simulation sickness, cognitive load,
cybersickness

Introduction

The field of spatial computing, and specifically Virtual Reality (VR), has been
extensively researched for its novel approach to learning and performance enhancement
(Huang et al., 2020). Traditionally, VR has been identified as computer-based environments
that can simulate real or imagined places presented on a screen (Freina and Ott, 2015).
However, modern head-mounted displays (HMDs) are capable of delivering immersive
virtual reality (IVR) that breaches the constraints of the two-dimensional perspective, giving
individuals an immersive and embodied perceptual experience (Garcia-Betances et al.,
2015). Researchers have suggested that the spatial ability of IVR technology, including
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visual, auditory, and haptic components, enables users to perceive
the virtual world as if it were real, allowing for improved
performance,

training, and understanding of the virtual

environment (VE, Bystrom, et al, 1999; Molina-Carmona
et al., 2018).

Several studies support the idea that IVR offers advantages
compared to traditional non-immersive VR (e.g., Kim et al,
2001; Kopciak et al, 2016; Webster, 2016). Researchers have
argued that providing an immersive VE allows participants to
better understand spatial relationships and distances, create clear
and detailed mental maps, and develop spatial skills (Bower et al.,
2014; Huang et al., 2019). IVR has become a popular tool for
researchers aiming to simulate the real world to understand
human spatial learning and processes, such as surgery, physics,
or engineering (Aggarwal et al., 2006; Taube et al., 2013; Merchant
et al., 2014).

However, recent studies by [Makransky et al. (2019), Makransky
and Petersen, 2021] challenge the notion that IVR provides better
learning experiences of spatial concepts. Comparing different levels
of immersion on learning efficacy, they demonstrated reduced
learning in the immersive HMD-mediated condition compared to
the non-immersive condition (Makransky et al., 2019). The authors
argue that the reduction in learning is attributed to immersive VR’s
added extraneous Cognitive Load (CL) (see Meyer et al., 2019). CL is
generally defined as the experienced task demand compared to the
individual’s mental capacity (Chandler and Sweller, 1991; Mayer,
2014). This definition suggests that auditory and visual working
memory aspects are limited, so only a few items can be stored at any
time (Makransky and Petersen, 2021). Overloading user’s mental
capacity has been found to detract from the learning experience, and
allocating mental resources towards non-primary tasks has been
linked to lesser performance (Navon and Gopher, 1979).

Another restriction of IVR is the prevalence of Simulation
Sickness (SS), a subset of motion sickness experienced during or
after IVR, that can lead to dizziness, vertigo, and nausea (Kennedy
et al,, 1993). Some scholars have used “cybersickness” to refer to
similar symptoms, but the terms are generally used interchangeably
(Grassini et al., 2021). SS is quite commonly experienced during IVR
training, with some studies finding that up to 80% of users
experience some discomfort (Knight and Arns, 2006). Previous
research has reported SS symptoms to be significantly lower or
even non-existent in non-immersive VR compared to using an
HMD (see Agi¢ and Mandi¢, 2021). Several studies have found
symptoms of SS to decrease learning, training transferability, and
general performance in a VE (Mittelstaedt et al., 2019; Thorp, 2021;
Agi¢ and Mandi¢, 2021; Thorp et al., 2023). Adverse SS symptoms
can even negatively impact users’ ability to complete VR training,
with Brooks (2010) reporting that 17% quit a driving simulation task
before completion.

Another aspect of IVR is the experience of a location-based and
multisensory experience, making immersive VR an embodied
experience (Matamala-Gomez et al, 2019). In this manner,
modern IVR provides a new paradigm compared to non-
immersive VR, in which individuals are not external observers
but actively a part of the VE (Riva et al, 2007). This unique
quality of the technology can provide a subjective sense of feeling
utterly involved in the VE, often described as the “sense of presence”
(SoP; Cummings and Bailenson, 2016). SoP is not to be confused
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with the device’s objective technical attributes, as the technology’s
quantifiable factors are called “immersion” (Slater, 2003). In contrast
to SS and CL, a high SoP has generally been found to enhance
performance in IVR (e.g., Stevens and Kincaid, 2015; Grassini et al.,
2020; Thorp et al., 2023). However, some conflicting evidence has
been found for the role of presence in promoting performance,
i.e., the aforementioned study Makransky et al. (2019) found that
increased immersion promotes presence but hinders trainees’
performance.

The current study

The promise of IVR as a uniquely effective and embodied
experience for learning spatial concepts is contingent upon the
idea that exploring, moving, and learning spatial aspects in a
virtual setting will stand up to or surpass similar experiences in
non-immersive VR. However, contradictory findings have created a
notable gap in the literature concerning the efficacy of IVR over non-
immersive VR for several reasons.

First, though the subject of immersive versus non-immersive VR
performance is frequently studied, there is a noticeable absence of
universally agreed-upon definitions regarding “spatial ability.” The
term “spatial ability” encompasses a broad range of tasks, including
but not limited to spatial memory, spatial orientation, spatial
visualization, and spatial perception (Hegarty and Waller, 2005;
Uttal et al., 2013). The generalization of “spatial” means that it is not
well understood when or in which conditions IVR can enhance
spatial learning outcomes.

Second, complication arises from the disparate immersive
technologies researchers employ to present VEs, especially in
research on human spatial processing (Taube et al., 2013). Often,
findings are compared and presented without accounting for the
mediating impact of immersion levels on spatial performance. This
oversight is particularly concerning, given that highly immersive
devices provided by modern HMDs offer a quality fundamentally
distinct from less immersive VR (Grassini et al., 2021).

Third, the unique experiences induced by IVR in SS, CL, and
SoP present opportunities and challenges. A substantial body of
research has studied these factors and their relationship. However,
the existing findings typically conclude either a positive or a negative
association irresectable of the contents, design, or immersion of the
VE (see, e.g., Weech et al,, 2019). Little research has examined how
differences in immersive modularity influence the impact of these
factors on spatial ability, as well as how immersion affects the
interaction of these variables.

To address the variability of defining “spatial ability,” the current
study created a design that aims to measure spatial ability purely by
its definition, i.e., “the ability to comprehend and conceptualize
visual representations and spatial relationships” (Pellegrino et al.,
1984; APA Dictionary of Psychology, 2018). The task encompassed
participants exploring a VE in either non-immersive or immersive
VR and were subsequently instructed to replicate the arrangement of
objects from a top-down perspective. Spatial ability was calculated
based on the correctness of participants’ recall. Additionally, the
current study aims to explore how variables of SoP, SS, and CL
impact individuals’ spatial ability in non-immersive and immersive
VR and how these variables interplay in the different levels of
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immersion. Ultimately, we contend that this research holds
significant implications for both the application of immersive VR
in educational settings and the methodology employed by
researchers utilizing varying levels of immersive VEs.

Research questions
Specifically, the current study explores the following questions:

(1) How does immersion affect spatial ability performance?

(2) How does immersion influence the interplay between SS,
SoP, and CL?

(3) How do CL, SoP, and SS interplay in the IVR and non-
immersive conditions?

Supporting literature

The effect of immersion on spatial ability

Given the unique aspect of IVR of facilitating a spatial,
interactable, and immersive representation of the environment,
scholars have posited that individuals may acquire spatial
knowledge and skills more effectively when presented in IVR
conditions compared to non-immersive conditions (Rose et al.,
2000; Winn et al., 2002).

Several studies have found that immersive VR provides
comparatively better learning opportunities when learning about
spatial concepts such as surgery, physics, or engineering (Aggarwal
et al.,, 2006; Molina-Carmona et al., 2018; Merchant et al., 2014).
Studies have also found IVR to provide spatial orientation
acquisition comparable to training in the real world (Kuliga
et al,, 2015; Pastel et al., 2022) and that neural activation during
an immersive VE to more closely relate to real life compared to 2D
screens (Garcia-Betances et al., 2015).

However, despite decades of research finding immersion
effective for spatial ability learning (see Jerald, 2015), widespread
adoption of IVR technology for training practices has not been
achieved (Steffen et al., 2019; Ortega-Rodriguez, 2021). The limited
adoption of IVR might be ascribed to substantial side effects.
Makransky et al. (2019) argues that though VR has unique
spatial properties that can facilitate training, VR can also cause
extraneous cognitive load—detracting from the learning experience.
Moreover, SS has significant negative implications for training in
IVR, with findings suggesting SS to decrease performance
(Mittelstaedt et al., 2019), cognitive abilities (Yorik Agcikel et al.,
2018) and training effectiveness in IVR (Geyer and Biggs, 2018).

The effect of immersion on SoP, CL, and SS
Studies show immersive factors such as higher display frame
rates, less latency, and a higher field of view to increase SoP
(Prothero, 1995; Meehan et al., 2002; 2003). Indeed, except for a
few cases (e.g., Bafios et al., 2008), research indicates that IVR
technologies increase SoP compared to non-immersive VR (Rosa
et al., 2016; MacQuarrie and Steed, 2017; Servotte et al., 2020; Lonne
et al.,, 2023). However, the inducement of SoP does not need to
comprise IVR technology. In particular, video games, movies, and
even reading books have been found to elicit a high SoP (Nunez,
2004; Banos et al., 2005; Pallavicini et al.,, 2019). In fact, some
researchers argue that there is not a direct relationship between
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immersion and SoP, as other factors, such as media contents and
characteristics, influence the feeling of “being there” (Bafios
et al., 2005).

Simulation Sickness is most widely accepted to be caused by a
mismatch between the perceived sensory stimulation and the
vestibular system’s detection of motion and visual cues (Reason,
1978; Hancock et al., 2008). As such, in IVR, where users are
provided with lifelike sensory inputs that suggest movement (e.g.,
visual and sometimes auditory cues), the absence of corresponding
physical motion can cause the brain to receive conflicting signals,
leading to the symptoms of SS. Studies investigating the impact of
immersion generally find that higher levels of immersion lead to
more SS sympathology. E.g., Martirosov et al. (2022) compared low-
immersive (PC screen), semi-immersive (CAVE system), and high-
immersive (Oculus Rift HMD), finding a significant increase in
negative symptoms with increasing levels of immersion. Similar
tendencies have been found in studies using virtual tours (Polcar and
Horejsi, 2015) and navigation tasks (Kwok et al., 2018). Generally,
SS symptoms have been reported to lesser degrees in low-immersive
conditions such as watching movies or playing games on a computer
screen (Dillon and Emurian, 1996; Guna et al., 2020; Chandra
et al., 2022).

However, some evidence exists for a more nuanced relationship
between immersion and SS. Following the logic of the sensory
mismatch theory, immersive elements that decrease the sensory
mismatch between the real and virtual worlds should decrease SS
symptoms. Le., an HMD with perfect simulation of all senses,
including vision, motion, touch, and sound, would be perceivably
indistinguishable from the real world, removing the possibility for
sensory mismatch. Indeed, newer experiences and studies using the
latest HMD technology, like the Apple Vision Pro (Apple, 2024),
indicate that higher frame rates and lower motion-to-photon latency
decrease the prevalence of negative symptoms (Wang et al., 2023).

The relationship between immersion and CL is not universally
similar across studies. In the context of IVR, most studies find highly
immersive environments to increase CL (Rose et al., 2000; Han et al.,
2021). However, contradicting evidence exists, with a recent meta-
review finding that 7 out of 46 studies found that CL did not increase
in more immersive environments (Han et al., 2021). These studies
suggest that high-immersive environments can, under certain
conditions, facilitate learning by enhancing realism, interest, and
motivation, thereby potentially reducing cognitive load (Johnson-
Glenberg et al., 2014; Frederiksen et al., 2020).

Regarding the impact of CL on training outcomes, the study by
Weech et al. (2019) found a direct correlation between increased
levels of immersion, elevated CL, and worse training outcomes. The
authors argue that the increased CL can be attributed to the necessity
for learners to navigate and interpret sophisticated virtual spaces,
which, while engaging, may saturate their cognitive capacity, leading
to decreased efficiency in information processing and learning
outcomes. However, immersion has been an advantage in several
interventions, like healthcare (Rose et al., 2018), pain treatment
(Theingi et al., 2022), and in several educational settings (See Freina
and Ott, 2015). Seemingly, the directional impact between
immersion, CL, and training outcomes depends on the contents
of the simulation. E.g., Baceviciute et al., 2021 found that when the
text was displayed in an IVR, it was difficult to read and led to high
CL and worse training outcomes. Meanwhile, other studies finding
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the high CL provided by immersion to be beneficial argue that IVR
technology is beneficial because the environment increases users
sense of presence (Parong et al., 2020), was closer to real life (Lok
et al., 2003), and increased engagement (Huang et al.,, 2021).

The interplay between CL, SoP, and SS

The interplay between CL, SoP, and SS is intricate, and
immersive technologies have been shown to affect all three
extraneous variables significantly (Cummings and Bailenson,
2016; Breves and Stein, 2023). On one side, you have SoP, which
is generally found to enhance learning and performance in a VE
(Stevens and Kincaid, 2015; Grassini et al., 2020). Conversely, SS can
pull individuals out of the experience, hindering performance
(Kennedy et al., 1993). Then, CL, the mental effort required to
navigate the VE, impacts SS, SoP, and performance.

The relationship between SoP and SS has been a subject of
considerable debate in academic literature. Numerous studies have
attempted to quantify the relationship, yielding a spectrum of results
from positive to negative associations. For instance, Liou et al.
(2017), found a strong positive correlation (r = 0.67) in a virtual
navigation experiment. Conversely, a meta-review by Weech et al.
(2019) posits a negative correlation between the two constructs,
arguing that positive associations are explainable by the covariate of
immersion. Thorp et al. (2022) found that the development of SoP
and SS follow a similar temporal development, positively correlating
throughout the experiment. The authors propose that covariates
such as immersion, excitement, engagement, or CL similarly impact
SS and SoP, explaining the positive relationship.

The interplay between CL and SS in IVR has not been
conclusively explained. Some findings have suggested a negative
association, arguing that higher concentration and CL render
resources away from negative symptoms, leading to less SS (Bos,
2015; Venkatakrishnan et al., 2020). Relatedly, studies have reported
a negligible impact of CL on sickness (Milleville-Pennel and
Charron, 2015). More recently, studies have generally argued for
a positive association. Using a Structural Equation Modeling
approach, Venkatakrishnan et al. (2020) found that increased
control over self-motion stimuli in a driver simulation increased
cognitive load, increasing SS. Similar tendencies of a positive
association have been found by Ha (2020), Meusel (2014),
Venkatakrishnan et al. (2019), and Venkatakrishnan et al. (2023).
Evidence also exists for a more nuanced relationship between the
relevant variables. Breves and Stein (2023) examined CL in an
immersive media setting, focusing on the roles of spatial presence
and SS. They found that the IVR conditions led to higher CL, spatial
presence, and SS compared to the 2D conditions, arguing that the
relationship between CL and SS differs based on levels of immersion.
Further evidence for a non-linear relationship between SS and CL
mediated by immersion was found by Breves and Stein (2023),
finding CL to associate with higher SS (and SoP) in HMD-mediated
VR but not in the 2D condition. Relatedly, Venkatakrishnan (2023)
found CL from secondary distractions to be beneficial for reducing
SS, underscoring a more non-direct relationship between CL and SS.
Sepich et al. (2022) suggest that dependent on the VE and task, CL is
a significant, but not sole, contributor to SS.

The relation between SoP and CL is generally found to be
negative.
(Chandler

In accordance with the Cognitive Load Theory

and Sweller, 1991) and Cognitive Theory of
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FIGURE 1
Image of the virtual environment. Note. The image depicts the

VE. Object placement was unique for each of the ten conditions.

Multimedia Learning (Mayer, 2014), Parong et al. (2020) argue
that feeling present alleviates extraneous CL caused by the HMD,
allowing the learner to allocate attention towards learning and
processing the spatial environment. The authors further argue
that this effect is especially prevalent in spatial navigation tasks,
where navigating VE on a monitor may require more cognitive
resources to translate one’s position into the environment than in an
environment where the user feels they are in the environment
(feeling present). Makransky and Petersen (2021) found that
participants engaged in HMDs reported high levels of SoP but
demonstrated reduced learning efficacy. This limitation in
learning was attributed to the added extraneous CL, which arised
from the perceptual realism that was not directly relevant to the
instructional objectives. The authors argue that immersive elements
may serve as “seductive details” and that being engrossed in a VE
diverts cognitive resources from learning.

Materials and methods
Participants

Sixty-four participants took part in the study. Two participants
from the IVR group were excluded because of missing data during
the experiment. The remaining sample comprised 36 men and
26 women aged 20 to 29 (M = 23.17, SD = 1.94). The sample
size was established based on similar studies (Ha, 2020; Evensmoen
et al., 2021; Breves and Stein, 2023). Participants were mainly
recruited from the student population at the Norwegian
University of Science and Technology (Trondheim, Norway).
Before the experiment, participants received a description of the
study, gave written consent, and were screened for a history of
epileptic seizures and having normal or corrected to normal vision.

The virtual environment

The VE was created using the video game Minecraft (Mojang,
2011). The environment consisted of ten different 49 squares
arranged in a 7 x 7 pattern. Each square consisted of 9 light
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FIGURE 2
Depiction of the experiment design.
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FIGURE 3

Calculation of spatial ability. Note. The first figure represents the overlay of correct positions and participants’ positional remembrance. The

following three figures represent the three-step calculation of participants’

spatial ability of translation, rotation, and scaling. The last figure shows the

measurement of spatial ability for an experimental procedure, calculated as the average square mean error between objects relative to positional
remembrance and correct positions. The final spatial ability score per participant was calculated as the average from the ten experimental

procedures.

brown blocks arranged in a three-by-three pattern and were
separated by a 1-block line of darker brown blocks. In the south-
western corner of each VE, there was a door to act as a reference
point. Six objects were depicted: a car, a train, a storage unit, a
cabinet, a cloud, and a motorbike, were placed in the center of
randomly selected squares (see Figure 1). The objects’ positions and
rotations (in 90" intervals) were unique to each of the ten
environments. Each environment was completed in a fixed order
by the participants.

Procedure and experimental design

Participants were evenly assigned to two groups. One group
performed the tasks using an HMD (IVR condition), and the other
using a computer monitor (low-immersive VR). Before the
experiment started, participants in both the IVR condition and
the low-immersive condition were given instructions for the task.
They were familiarised with the VE and controllers by moving and
looking around in a training room with the guidance of the
experimenter.

Frontiers in Virtual Reality
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The experimental task was similar for both conditions: a spatial
ability processing task involving exploring the 7 x 7 checkerboard
environment (see Figure 3). Participants were given 1 min of free
exploration and the task of remembering the placement of the six
objects. Once the exploration ended, participants fixated on a cross,
followed by an odd-even judgment task. The fixation cross was used
to equalize the process of memory consolidation across participants.
In contrast, the odd-even judgment task was used to disrupt
participants’ working memory, making it challenging to employ
subvocal rehearsal methods of remembering objects (see Evensmoen
et al,, 2021). Lastly, participants’ recall was tested by replicating the
position and rotation of the objects in a physical top-down
representation of the VE. For this task, participants had to
remove the HMD temporarily. This procedure was then repeated
ten times with different object placements in the VE. Each round
lasted approximately 4 min for a total experimental length of about
40 min. The experiment design is depicted in Figure 2.

After the experiment ended, participants were asked to fill in the
Presence Questionnaire (Witmer & Singer, 1998), the Simulation
Sickness Questionnaire (Kennedy et al., 1993), and the NASA task
load index (Hart and Staveland, 1988).
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Equipment

Participants in the IVR condition viewed the VE through a Meta
Quest 2 headset with corresponding controllers. In the non-
the screen was a 24-inch 1080P
monitor with a 60 Hz refresh rate, and participants used an Xbox

immersive VR condition,

Elite Series vl controller. In both conditions, the right stick
controlled the player’s line of sight, while the left stick controlled
their movement. Participants in the IVR conditions could also look
around in the environment by moving their heads. The right stick’s
sensitivity was set similarly in both conditions, and the player moved
at the speed of 4.317 virtual m/s. Participants remained seated in
both conditions throughout the experiment.

The measurement of spatial ability

To assess spatial ability, a pattern of participants’ object
placement was first compared to the correct positional pattern
following the recommendations of Evensmoen et al. (2021). In
the first step, a calculation was done by translating participants’
recalled patterns such that the geometric center matches the
geometric center of the correct pattern. In the second step, the
recalled pattern was rotated into alignment with the correct
positional pattern by minimizing the root mean square deviation
discrepancy between the recalled and correct pattern (Kabsch, 1988;
Umeyama, 1993). This transformation aimed to separate the
positional pattern from its connection to the environment’s
boundaries, thereby emphasizing positional recall. In the third
step, a scaling algorithm was applied to account for humans’
tendency to compress or expand spatial representations (Tversky,
1992). Participants’ final recall accuracy score was calculated by
averaging the square mean error for each of the three steps
mentioned above (translation, rotation, and scaling) for each of
the ten VEs. Only the placement of objects, independent of object
identity and rotation, was used for this calculation.

Questionnaires

Before the experiment, participants were given a questionnaire
including measures of prior experience with IVR and video games,
as well as their vision, history of epileptic seizures, sex, and age.

After the experiment, the NASA task load index (NASA-TLX)
was used to assess the degree of CL experienced by the participants
(Hart and Staveland, 1988). The instrument consisted of six items:
mental demands, physical demands, temporal demands, task
complexity situational stress, and distractions, measured using
21-point scales ranging from “very low” to “very high.” The total
score of the NASA-TLX was calculated using the average of all items.

To measure participants’ SoP, the Presence Questionnaire,
developed by Witmer & Singer (1998) and revisited by the UQO
Cyberpsychology lab (2013), was used. The questionnaire was
chosen as it is the most used in IVR research (Hein et al., 2018).
As sound was absent in the VE, questions about sound were
removed. The Presence Questionnaire used a seven-point Likert
score of the

scale and was scored by averaging the

individual items.
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The Simulation Sickness Questionnaire was used to assess the
degree of SS experienced by the participants after the experiment
(Kennedy et al., 1993). The questionnaire is the most used measure
of SS in research on spatial computing (Bimberg et al., 2020). The
questionnaire consists of 16 symptoms, rated in the severity of each
symptom on a four-point scale (no SS, slight SS, moderate SS, and
severe SS). The final score is obtained using the calculation weights
of Kennedy et al. (1993).

Data analysis and statistics

IBM SPSS (version 29) and the PROCESS macro (v.4.2; Hayes
et al., 2017) were used for statistical analyses. Three items were
missing and imputed using the mean function in SPSS. This function
imputes an average score based on the remaining data points of the
variable. Two-tailed significance levels were used for all analyses.
Multiple linear regression with immersion as a dummy variable was
performed to examine how performance differs between levels of
immersion. Multiple regression analyses were conducted to examine
the association of CL, SoP, and SS on performance. Lastly,
Spearman’s rank-order correlations were performed to explore
the association of the extraneous variables in the different
conditions.

Descriptives

On average, participants in the non-immersive VR condition
(N =30, 18 males, 12 females) were 23.57 years old (SD = 2.30). The
SoP score (M = 4.99) was notably higher for the non-immersive
condition than in similar studies (Cummings and Bailenson, 2016;
Makransky et al., 2019; Breves and Stein, 2023). Reported SS scores
(M = 30.29) were also somewhat higher than other studies reporting
SS using computer monitors, even being comparable to the lower
ranges of studies using HMDs (e.g., Kim et al., 2018, which reported
scores of 28.67). CL scores (M = 8.31) were similar for both the IVR
and non-immersive VR conditions. Average scores were in line with
similar studies (e.g., Breves and Stein, 2023).

The participants in the IVR condition (N = 32, 18 males,
14 females) were 22.91 years on average (SD = 1.57). The SoP
score (5.23) for the IVR condition was generally in line with
similar studies (Weech et al., 2019; Thorp et al., 2023), and the
SS was generally in line with most VR studies (e.g., Somrak et al.,
2019, which reports scores ranging from 45.95 to 56.41 for different
HMD models). CL scores (M = 8.29) were similar to the 2D
condition (M = 8.31), contradicting previous studies finding CL
to be higher in IVR (Makransky et al., 2019; Breves and Stein, 2023).
Descriptives of the study variables are presented in Table 1.

Results
The effect of immersion on spatial ability

A multiple linear regression analysis was performed to examine
whether individuals in the non-immersive condition (M =2.63, SD =
1.74) performed better on the spatial ability task than those in the

immersive condition (M = 2.06, SD = 1.33). Prior to conducting the
analyses, assumptions were checked. Tolerance and VIF values did
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TABLE 1 Descriptive statistics for the variables of the current study.

Non-immersive VR

Variable
Spatial ability 2.62 1.74 2.06 1.33
CL 8.31 ‘ 2.62 8.29 2.80
SoP 4.99 ‘ 0.71 523 0.96
sS 3029 4.99 55.04 6.22

Note. M, average; SD, standard deviation; CL, cognitive load; SoP, sense of presence; SS,
simulation sickness.

not indicate a violation of multicollinearity. A Durbin-Wattson
statistic (1.72) was between the suggested threshold of 1-3,
indicating that the values of the residuals are independent. The
assumption of homoscedasticity was met by checking the variance of
residuals in a scatterplot, and the assumption of normally
distributed residuals was met by examining a P-P Plot. Cook’s
Distance values were calculated to ensure no influential cases
biasing the model. All values were below 1, suggesting no cases
were biasing the model.

For the multiple regression, the results showed a non-significant
equation F (1.60) = 2.06, p = .157, and accounted for a small
proportion of the variance in spatial ability (R* = .033). The
results indicated that the performance of individuals in the non-
immersive condition (B = .57, SE = .40) was, on average, 0.56 units
higher compared to the immersive condition, but this effect was not
significant. To explore the likelihood of a difference in spatial ability
between the conditions, as recommended by Gonen et al. (2005), a
Bayesian independent sample f-test was conducted. The analyses
show some evidence favoring a difference (BF = 2.07), indicating
that the difference between the conditions was 2.07 times more likely
than the null hypothesis of no difference between the conditions.

The effect of the extraneous variables on
spatial ability

To examine how CL, SoP, and SS impact spatial ability in
different levels of immersion, we first performed separate
multiple linear regressions for the two conditions.

The regression model for the non-immersive VR condition was
statistically significant, F (3.26) = 7.35, p < .001, with R* = .459,
suggesting that the extraneous variables predict 45.9% of the
variance in spatial ability. The coefficients reveal that SoP (f =
.55, p < .001) had a large and significant impact on spatial ability.
Contrastingly, CL (B = -.37, p = .025) significantly negatively
impacted spatial ability. SS (B = .28, p = .084) showed a positive
relationship to spatial ability but was insignificant.

The regression model for the IVR condition was also statistically
significant, F (3.26) = 12.49, p = .002, with R* = .40, suggesting that
the extraneous variables predict 40% of the variance in spatial ability.
The coefficients for the independent variables show that SoP,
similarly to the non-immersive condition, positively impacts
spatial ability (B = .35, p < .048). In contrast to the non-
immersive condition, CL (f = .47, p = .013) positively impacted
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spatial ability. As predicted, SS (B = -.52, p = .011) negatively
impacted spatial ability.

Moderation analyses were conducted to investigate the role of
immersion (IVR vs. non-immersive VR) as a moderator on the
relationship between the extraneous variables and spatial ability to
examine further how the extraneous variables impact spatial ability
differently between conditions. Moderation analysis was conducted
using SPSS’s PROCESS macro (Hayes, 2012). The independent
variables were centered and standardized to avoid potentially
high multicollinearity with the interaction term. An interaction
term between the independent variable and spatial ability was
created (Aiken et al.,, 1991).

The results indicate a significant interaction term between CL
and spatial ability [ = .36, SE = .17 ¢ (58) = 2.32, p = .031] with an
AR’ = .07, showing that higher CL significantly negatively affected
spatial ability in the non-immersive condition, but positively in the
IVR condition.

The interaction term between SoP and spatial ability showed a
marginally non-significant relationship [p = -27, SE = .15, ¢
(58) = -1.85, p = .068] with AR’ = .04. The interaction plot
showed that individuals with a higher SoP perform better in the
spatial ability task in both the 2D and VR condition.

The interaction term between SS and spatial ability was also
marginally non-significant [p = —.40, SE = .20, t (58) = -1.95, p =
.056] with an AR? = .04. The interaction plot showed that individuals
in the VR condition with lower SS scores perform better in the
spatial ability task. Additionally, the marginally non-significant p-
value and interaction plot might indicate that SS negatively impacted
performance in IVR but not in non-immersive VR.

Correlation analyses between CL, SoP,
and SS

Before conducting the correlation analyses, assumptions were
checked. Shapiro-Wilk test suggested that SoP, W (62) = .95, p = .01,
and SS, W (62) = .92, p < .01, were not normally distributed.
Consequently, Spearman’s rank-order correlation analysis was
run to examine the associations between the extraneous variables
for IVR and non-immersive VR conditions (see Table 2). For the
non-immersive condition, no significant correlations were found.
For the IVR condition, a significant negative association was found
between CL and SS (r;, = —.51, p < .01), and between SoP and SS
(rg = —43, p < .05).

Discussion

The present investigation aimed to explore how immersion
impacts individuals’ spatial ability, how immersion influences the
interplay between SoP, SS, and CL, and spatial ability, and how these
factors interplay in different levels of immersion. The current study
design aimed to assess spatial ability in a standardized manner. The
spatial task involved a memory task of object placements in a virtual
environment consisting of a 7 x 7 grid. The current study’s findings
pose critical questions for the experience and performance of spatial
ability in HMD-moderated IVR.
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TABLE 2 Correlation table for the extraneous variables in the non-
immersive and immersive VR conditions.

Condition Variables CL SoP SS
Non-immersive CL 1 -.25 .35
SoP — 1 -17
SS — — 1
IVR cL 1 -26 510
SoP — 1 —43*
SS — — 1

Note. Significant values are marked as bold. *p > .05, **p > .001.

Immersion and spatial ability

We found no significant difference in immersion on spatial
ability between the IVR condition (M = 2.06, SD = 1.33) and the
2.63, SD = 1.74). Given
from prior research that IVR’s

non-immersive condition (M =
assumptions immersive
spatial representations will lead to better spatial performance,
it was somewhat surprising to find no significant difference.
This finding somewhat contradicts prior research postulating
that the increased immersive elements enable users to perceive
the virtual world as if it were real, in turn increasing
understanding of spatial concepts, spatial maps, navigation,
and development of spatial skills (Taube et al., 2013; Bower
et al., 2014; Molina-Carmona et al., 2018; Huang et al., 2019;
Hill et al., 2023).

A few potential reasons exist why individuals did not perform
better in the IVR condition. For one, it is possible that the
individual characteristics of CL and SS had a negative impact,
which may have canceled out any spatial advantages of the
immersive IVR. Moreover, participants may not have been as
led to
comparatively worse outcomes than with the more familiar
Another
explanation could be that the specific experimental task, which

familiar with using HMDs, which could have

gaming controller and screen configuration.
involved placing objects in the environment and in relation to
each other, is easier to complete in a non-immersive
better

environment and object relations. Indeed, some studies have

environment, allowing for a overview of the
found that navigational remembrance tasks are performed
better in non-immersive environments compared to IVRs

(Santos et al., 2008; Srivastava et al., 2019).

SoP, CL, and SS on spatial ability

A positive relationship was observed between SoP and spatial
ability for both the low-immersive condition (B = .55, M = 4.99) and
the IVR condition (p = .35, M = 5.23), indicating that better spatial
ability is associated with higher reported SoP for both conditions.
This finding challenges the belief that higher SoP positive
association with performance is unique to immersive VEs (see
Servotte et al., 2020).

Notably, the reported SoP score was only marginally higher in
the IVR condition, contrasting previous studies arguing that IVR
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inherently and uniquely allows for a high SoP (Rosa et al., 2016;
MacQuarrie and Steed, 2017). Perhaps the high concentration
required for the experimental task explains the markedly high
SoP scores in the non-immersive VR condition compared to
other studies (Cummings and Bailenson, 2016; Makransky et al.,
2019; Pallavicini et al., 2019; Paes et al., 2021; Breves and
Stein, 2023).

The analyses showed SS to impact spatial ability significantly
negatively in the IVR condition group (p = -.52, p=.011) but not
a significant effect in the non-immersive setting (p = .084). This
aligns with previous studies finding that SS hinders individuals’
ability to interact, perform, and learn in a VE (see Thorp et al,,
2023). Additionally, the result is following several studies that
found higher levels of immersion to be associated with higher SS
(Polcar and Horejsi, 2015; Kwok et al, 2018; Martirosov
et al., 2022).

Interestingly, the study found diverging behavior between CL
and spatial ability in the non-immersive and immersive VR
conditions. The moderation analyses showed a reverse
relationship in that CL negatively predicted spatial ability in the
non-immersive condition (f = —.37, p = .025) but positively in the
IVR condition (B = .47, p = .013). The follow-up analyses [p = .36,
SE = .17t (58) = 2.32, p = .031] confirmed a strong negative
relationship with immersion as moderator (r = —.42).

This result indicates that individuals who performed better at
the spatial ability task reported lower CL scores in the non-
immersive condition but reported higher scores in the IVR
condition. Mean CL scores for the IVR group (M = 8.29) and
the non-immersive group (M = 8.31) were similar. This finding is
surprising, as the increased immersion and novelty from the IVR
are generally found to increase reported CL. Perhaps individuals
in the non-immersive condition mainly reported CL based on
task difficulty, as the interface of a computer monitor was
familiar and not viewed as cognitively challenging. In contrast,
perhaps participants in the IVR group reported CL based on the
sensory immersion provided by the IVR. If this interpretation is
correct, this finding sheds light on the importance of immersion
in perceived CL. Additionally, it would highlight the challenge of
evaluating subjective measures across different modalities and
VEs. However, more research is necessary to elucidate this
phenomenon’s underlying mechanisms and reasons.

Association of CL, SoP, and SS at different
levels of immersion

We explored the interplay of CL, SoP, and SS at the different
levels of immersion. The results show significant correlations
between all the constructs for the IVR condition but no
significant relations in the non-immersive condition, suggesting
that the immersive nature of IVR creates a unique dynamic
among these factors and acts as a covariate. Interestingly, though
not significant, all correlations of the IVR condition showed similar
positive/negative tendencies.

The correlation between SS and SoP (r, = —.43) was negative in
the IVR condition. This follows the meta-review of Weech et al.
(2019), which found that most studies report a negative relation,
indicating that individuals with higher presence report lower levels
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of SS. The correlation between SS and CL (r; = .51) was positively
significant in the IVR condition, suggesting that the experience of
SS increases as CL increases. This finding is generally in line with
prior studies that argue that CL is a primary cause of SS and that
levels of  immersion moderate their  relationship
(Venkatakrishnan et al., 2020; Sepich et al., 2022; Breves and
Stein, 2023). The finding could also imply that tasks requiring
higher cognitive resources might exacerbate SS in IVR, thereby
negatively impacting performance. However, the lack of
significant association in the non-immersive VR setting might
support research arguing a more nuanced relation dependent on
immersive characteristics (e.g., Breves and Stein, 2023; Sepich
et al., 2022; Venkatakrishnan, 2023). Understanding the
relationship between SS and CL is a crucial consideration for
the design of complex tasks or training simulations in immersive
and non-immersive VR environments. No significant correlation
was between CL and SoP in either of the conditions. This
somewhat contradicts previous studies arguing that the
relationship between CL and SoP is stronger in IVR compared
to non-immersive VR (Parong et al,, 2020; Makransky and

Petersen, 2021).

Limitations

There are some limitations to the current study that should be
considered. First, while the current investigation employed
contemporary head-mounted display (HMD) technology,
research has indicated significant performance disparities
when using different HMD equipment (Makransky et al,
2019). Additionally, the

environments across different studies further complicates the

heterogeneity in  simulation
direct comparison of outcomes. Thus, the current comparison of
immersive conditions might not be generalizable to different
simulations or equipment.

Secondly, we may have lacked sufficient statistical power to
discover some effects. Several of the analyses were close to
reaching significance, and a relatively small sample size of
30 participants per group could have caused this. Additionally,
our sample mainly consisted of psychology students in a
Norwegian university, reducing our results’ generalizability
across samples.

The between-subject design could also have limited the study by
not allowing participants to compare their experiences across
modalities. Perhaps the participants did not have a sufficient
point of reference when answering instruments such as the
Presence Questionnaire, and this problem might have been
resolved by utilizing a within-subject design. This could be an
interesting option for future research. Another consequence of
the study design might be that as participants were not as
familiar with using HMDs, the unfamiliarity with the technology
could lead to worse training outcomes, especially in the first rounds
of the experiment.

Additionally, participants may not have been as familiar with
using HMDs, which could have led to comparatively worse
outcomes than with the more familiar gaming controller and
screen configuration.
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Conclusion

This study advances our understanding of how immersion
impacts spatial ability. Contrary to common assumptions, we
found that the immersive qualities of IVR do not inherently
enhance spatial ability compared to non-immersive VR. Our
findings on the varied influence of CL, SS, and SoP in different
immersive settings suggest a complex relationship between these
factors and spatial ability. Particularly intriguing is the negative
association of CL with spatial ability in IVR, a positive trend in the
non-immersive condition. Overall, our study questions assumptions
about the influence of CL, SS, and SoP and adds valuable complexity
to the discourse on the spatial efficacy of immersive virtual
environments.
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