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When analysing a user’s experience of virtual reality (VR), factors such as their level
of technical familiarity, proficiency with immersive technology and concomitant
degree of physiological arousal inside a VR experience can have a significant
impact on their performance, sense of presence and engagement. We have
designed a modular narrative system to manipulate a user’s levels of arousal in
order to keep them within an optimal range for performance, which we
hypothesise to be between not too stressed (high arousal) and not too bored
(low arousal). We do so by instantiating an increasing number of simultaneous
tests and environmental changes at different points during a VR experience.
Changes in autonomic signals - such as heart rate, heart rate variability, galvanic
skin response, and skin temperature - reveal changes in the levels of participant
arousal. The user is embodied in a gender-specific out-group (Muslim) avatar that
is subjected to an increasingly stressful event (a series of verbal Islamophobic
attacks from a non-player character). We measure performance in a series of
simultaneous multiple choice listening comprehension tasks (averaged to create
a “narrative task score”) undertaken as the scene unfolds, and a post-treatment
recall task. As a pilot experiment, our primary objective is to validate the
effectiveness of the system as a means of stress manipulation and thereby
assess the impact and correlation that different levels of arousal have on task
performance and biological signals. Results revealed a statistically significant
difference in narrative task performance between stress levels, confirmed by a
one-way ANOVA (F(2,45) � 5.06, p � 0.02, SE � 23.89). The low stress group
achieved the highest mean VR score (M � 73.12, SD � 15.96), followed by the high
(M � 63.25, SD � 18.23) and medium stress groups (M � 51.81, SD � 23.66). Our
hypothesis that the medium stress condition would produce the best
performance was therefore rejected. Comparing heart rate variability (HRV)
metrics, the Stress Index showed a statistically significant difference between
conditions (p � 0.043, with significant within-condition changes also observed in
the LF/HF ratio (p � 0.005 in low stress and p � 0.008 in high stress), further
demonstrating the physiological changes between stress levels.
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1 Introduction

The breadth of virtual reality (VR) experiences available to the
general public is growing rapidly, driven by the availability of cheap,
capable devices. However, given that VR is a relatively new medium,
there is a very wide range of levels of user familiarity and
competence. Thus, almost all consumer VR experiences need to
impart instructions to users, which have to assume very little
familiarity with the medium (Steed et al., 2023). Previous studies
have examined how the method of instruction determines a user’s
subsequent ability to operate effectively within a virtual space, but
might also prove under or over-stimulating in the process, leading to
poor performance or decreased retention of new information
(Archer and Steed, 2022; Luong et al., 2020).

A key assumption of our research is that biological signals
(including heart rate (HR), heart rate variability (HRV), galvanic
skin response (GSR) and skin temperature) provide a suitable
quantitative measure of arousal, and that each user has an
optimal range for these measures during a virtual reality
experience (VRE). This is based on the well-established
relationship between pressure and performance first proposed by
Yerkes-Dodson in 1908, the so-called “Law of Arousal” (Yerkes and
Dodson, 1908). The premise is that there is a curvilinear relationship
between motivation and performance, following an inverted
U-model, in which performance is optimized by a moderate
amount of arousal, but is reduced if that level of arousal becomes
too high or too low. For more details on how these models were
extended and the basis for our work, see Section 2. Optimal stress
and performance models have already been applied to VR. Claude
et al. (2015) studied stress-related effects of degrees of mental
workload within immersive training scenarios. Parsons and
Reinebold (2012) used biological signals to compare responsive
virtual environments in neuropsychological evaluations.

In this study, we will build on the research outlined above to
investigate whether significant correlations between arousal levels
and task performance persist in an embodied, story-driven VR
environment. Luong et al. (2020) adapted NASA’s Multi-
Attribute Task Battery (MATB-II) test (Comstock and Arnegard,
1992) into a VR cockpit to focus on real-time recognition of users’
mental workload. We wanted to redesign elements of those
performance tests while recontextualising the VRE from a
cockpit to an everyday setting in order to assess whether a
user’s arousal levels affected their sense of affinity for the out-
group avatar they embodied. In our case, we embodied the user in a
Muslim male or female avatar corresponding to their self-reported
gender and had them experience a stressful Islamophobic incident
from a first-person perspective. Sensitivity around the topic was
paramount given the confrontational nature of the stress event.
The experiment was granted approval for data collection by Hong
Kong Polytechnic University’s Ethics Committee, under approval
number HSEARS20221121002. A senior journalist from BBC’s
Asian Desk oversaw the script the treatment was based on, which
also included Muslim interviewees’ own experiences of
Islamophobia in the United Kingdom. Audio recordings used in
the treatment were taken directly from an Islamophobic incident
in London that was reported in 2018.

For an overview of the difference between stress and arousal, see
Section 2.1. We seek to manipulate arousal by controlling the

number of simultaneous mental workload tasks the user is given
at seven different story moments within the scene to be completed
during a fixed 10-s time period. The study follows a body of work
that involves the triggering and detection of stress responses in
virtual scenarios in participants’ biological signals (Martens et al.,
2019; Cleworth et al., 2012; Archer and Finger, 2018).

We begin by assigning the participant’s stress level. Specifically,
the high stress condition has three tasks to be completed
simultaneously, the medium stress condition has two, and the
low stress condition has one. This was based on the premise that
a high mental workload will result in higher arousal, producing
stress and fatigue reactions (Gaillard, 2000).

Optimal results such as a higher performance score, greater
post-treatment recall and raised variation in their biological signals
from the baseline (such as HRV variables) are hypothesized to occur
when a participant’s arousal levels are high enough to maintain
engagement and avoid boredom (eustress) without being so high
that they provoke mental overload or panic (distress). We used
eustress and distress as introduced by Selye (1974) to denote positive
and negative manifestations of the stress response.

This study aims to validate the manipulation of stress conditions
as an effective way to adjust the degree of arousal and an assessment
of the concomitant impact on participants’ physiological
measurements (Hypothesis 1, 7, 8). A further Hypothesis 9 is to
investigate whether the stress conditions will moderate the user’s
biological signals in a positive or negative way: the medium stress
level is hypothesized to produce the highest performance metrics
(narrative task score) while also not provoking discomfort or a
feeling of simulator sickness. Stress levels have been shown to be
independent of cybersickness in previous studies, such as the work
of Servotte et al. (2020). This should be of broad interest because
performance and engagement is an area that is relevant to a large
number of VR designers.

2 Related work

We are interested in the relationship between task performance
and arousal under stress in a virtual environment. The working
assumption is that during sustained periods within an optimal
arousal margin, the participant will feel more engaged and
present in the virtual environment, improving their performance
as a result. Broadhurst (1959) enhanced the original Yerkes and
Dodson (1908) experiment by including four additional motivation
levels and three difficulty levels. Nixon et al. (1979) work
incorporated the Stress Response Curve and Klein (1982) linked
improved cued recall to arousal or stress.

2.1 Stress vs. arousal

For the purposes of this paper, arousal shall be the term used to
refer to the immediate response to a challenging task, and stress for
when that response is insufficient to perform the task, resulting in
the participant feeling overloaded.

Stress is a psychophysiological response to environmental
stimuli when a situation is perceived as challenging or
threatening, activating the sympathetic and parasympathetic
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nervous systems, which together constitute the autonomic nervous
system. Its purpose is to re-establish equilibrium when homeostasis
is threatened through various physiological and behavioural
adaptive responses (Chrousos, 2009). Lazarus (2006) distilled
Hooke’s etymological analysis of stress into three basic concepts
using the metaphor of a load-bearing bridge: load, stress and strain.
Load referred to the external force applied, stress to the area affected,
and strain to the deformation of the structure as a result, analogous
to the physiological response.

Arousal, on the other hand, has been described as a
psychological trait that is considered a useful or appropriate
aspect of a response to perceived demand (King et al., 1983).
Cox’s Stress/Arousal Adjective Checklist (SACL) (Mackay et al.,
1978) was assessed by King et al. in a study involving
126 participants who were given a visual search/detection task
involving slides of concealed men. These slides were shown at
different speeds and responses were monitored among a group of
parachutists, army clerks and psychiatric patients on medication.
Twenty words (ten for stress and ten for arousal) were chosen for
participants to describe their experience. Arousal was elevated in
response to a high load cognitive demand. The demand of an
uncomfortably-paced task was also found to mitigate against
lowered arousal. Elevated arousal was associated with a coping
response, while elevated stress appears to indicate the presence of
fear or doubts about coping.

The resultant view is that mild stress tends to facilitate cognitive
function, particularly in implicit memory or simple declarative tasks
or when the cognitive load is not excessive (Sandi, 2013). An
important distinction here is our focus on acute stress, which can
be described as a recent, transient occurrence of a single stressor, as
opposed to chronic or persistent stress, which refers to an ongoing
difficulty facing an individual. A meta-analysis of acute stress effects
on executive functions showed that stress contributes to a state of
reactive and automatic cognitive processing while enhancing
executive motor control, which should facilitate engagement with
or escape from the current stressor (Shields et al., 2016).

While a moderate amount of stress is necessary for optimal
engagement and focus during performance of a task, stress that
exceeds an individual’s coping resources can have deleterious effects
on performance (Anton et al., 2021). Individual responses to
stressful situations vary considerably, which, according to the
Biopsychosocial Model (BPSM) of challenge and threat
(Blascovich, 2008), can be explained by the evaluations of
individuals of their personal coping resources and situational
demands (e.g., skills, uncertainty, psychological danger). BPSM
postulates that when people are engaged in a task, as evidenced
by an increase in HR (Seery et al., 2009), and motivated to perform
well, they enter into conscious, unconscious, and dynamic demand
and resource evaluation processes. When task demands are deemed
to outweigh personal coping resources, a threat state occurs
(equivalent to our high stress state in this experiment), whereas
when coping resources are judged to match or outweigh demands, a
challenge state occurs (equivalent to our high arousal/optimal
performance state). These states do not act as two dichotomous
entities, but are instead two ends of a bipolar spectrum
(Blascovich, 2008).

Mandrick et al. (2016) confirmed the psychophysiological cost
of mental effort and stress in a n = 34 study using a new mental

arithmetic n-back task (Toulouse N-back task) coupled with
aversive audio samples, to assess the impact on task performance,
pupil response, cardiovascular activity, and prefrontal cortex
oxygenation. Stress probably triggered increased motivation and
the recruitment of additional cognitive resources that minimize their
aversive effects on task performance (effectiveness), but these
compensatory efforts consumed resources that caused a loss of
cognitive efficiency (ratio between performance effectiveness and
mental effort).

2.2 Performance, arousal and stress in VR

Next, we consider external factors that affect arousal and
performance in VR.Wu et al. (2010) embedded a VR version of
the Stroop Task (VRST) inside an immersive military simulation,
using the reaction time of the participants under varying degrees of
stress as a measure of performance. They showed that when
performance is rated on reaction time, moderate (as opposed to
high or low) stress elicited the optimal level of arousal for the
majority (11 of 18) of subjects. Furthermore, their findings suggested
that high classification rates were achievable when
psychophysiological responses (galvanic skin response,
respiration, ECG, and EEG) of these three stimuli presentations
were categorized into three levels of arousal.

Palmas et al. (2019) compared the completion time and error
count during a VR training task - the assembly of a virtual drum set.
The task was either gamified (indicating progress, score, audiovisual
feedback) or not. Results showed that gamification produced
beneficial effects, particularly for the participants who were
VR noviced.

Avatar observation of user performance is another potential
factor, as investigated by Hayes et al. (2010), and within the context
of social facilitation by Sterna et al. (2019). Blascovich’s research on
the biopsychosocial model of challenge and threat from external
observers is also of note. Novel task performance in the presence of
others was impacted by both increased cardiac response and greater
vascular resistance from baseline (Blascovich et al., 1999). Our study
builds on the above examples, but also aims to fill the gap in the
literature in relation to the combination of biological signals,
performance and arousal in relation to embodied
narrative-based VREs.

2.3 Body ownership and agency

Body ownership and the sense that your body has been replaced
by a virtual avatar (Won et al., 2015) have emerged as a key
component of user experience in immersive systems. Botvinick
and Cohen (1998) revealed the three-way interaction between
vision, touch, and proprioception (i.e., awareness of position and
movement of the body) through the Rubber Hand Illusion (RHI).
Yuan and Steed (2010), Zhang et al. (2015) and Sanchez-Vives and
Slater (2005) demonstrated that a form of the RHI illusion occurs for
a virtual hand experienced from a first-person point of view in a
HMD. Agency is also an essential component for preventing the VR
experience from feeling too passive: the actions of the virtual body
are attributed to our physical self (Haggard and Chambon, 2012).
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Extrapolating from these core tenets: how does perceived self-
representation as a virtual avatar moderate performance in VREs?
Embodiment in the first-person perspective of an avatar whose
movements correspond to the user’s may lighten a user’s cognitive
load, improving their memory performance after VR exposure
(Steed et al., 2016). In that experiment, participants whose virtual
avatar’s hands were synchronised with their own physical hands had
a significantly improved recall rate of pairs of memorised letters after
performing a spatial recognition task than those who did so without
a virtual avatar. Pan and Steed (2019) corroborated the same
findings when they replicated the experiment using virtual hands
alone. Peck and Tutar (2020) also deployed a VRST to compare user
performance with or without virtually collocated hands, finding that
proximal hands produced a significant increase in accuracy, despite
recognizing that Stroop interference was not mediated by self-avatar
or level of embodiment.

3 Materials and methods

In a between-subjects design, participants were randomly
assigned one of three conditions at run-time: low, medium, or
high stress. This condition dictated the number of simultaneous
tasks they had to complete in a 10-s interval at seven different story
moments during the immersive scenario shown in Figure 1. The
three tasks were called the narrative task, the movement task, and
the monitoring task. The narrative task was common to all three
conditions and featured a multiple choice question related to the
narrative voice-over played to the user prior to the quiz. The script
was based on interviews with Muslims who had experienced
discrimination in the United Kingdom. It was recorded in male
and female voices to match the sex of the Muslim avatar assigned to
the participant, thereby representing a form of internal monologue
for the participant. The movement task was a “whack-a-mole”-style
rapid response task for the user to tap one highlighted square within
a 3 × 3 grid of nine squares. Failure to tap the correct square or not
tap any square before the end of the countdown resulted in “failure”
being logged. The monitoring task was a multiple choice question
related to the number of times an audio sample of a bus bell had
played since the last quiz, or the name of the previous bus stop,
which was displayed in two locations in the scene (in a style identical
to the layout of a London bus, which is what the scene was modelled
on). Thus, the monitoring task was also tied to the embodied

narrative of being inside a virtual bus that the player was
experiencing. Low stress condition participants only had to
complete the narrative task, medium stress participants had to
complete the narrative and movement tasks, and high stress
participants were given all three tasks to complete before the
countdown of 10 seconds ended, as shown in Figure 1. A written
non-VR version of the narrative task with the same multiple choice
questions was repeated post-treatment to assess whether increased
arousal led to improved post-treatment recall.

The tasks were inspired by NASA’s Multi-Attribute Task Battery
test (Comstock and Arnegard, 1992). They were designed to provoke
increasing levels of arousal through assigning an increasing number
of simultaneous mental workload tasks to the user within the fixed
(10 s) time period. This is also based on the theory of cognitive load
known as the split-attention effect, in which procedural instructions
cause people to divide their attention between different types of
information presented (e.g., textual information and graphical
information), thus increasing cognitive load (Van Acker et al., 2018).

3.1 Demographics

Forty-eight participants completed the study (31 were female,
17 were male). The average age was 23.5 years. The ages ranged from
18 to 44 years, with a variance of 17.54 years 16 participants were
assigned to each condition, and the mean age per condition was 22,
23, and 25 for low stress, medium stress and high stress respectively,
with standard deviations of 2.52, 2.99, and 6.00. No inaccuracies
were recorded in the sensor readings, although eight participants
(3 in low stress, 1 in medium stress and 4 in high stress) ran into
technical issues with the interactables in the bus scene, which meant
they had to restart the experience. Recruitment was focused on the
student population who could prove their level of English reading
and listening comprehension was high enough. It was also open to
post-graduate students within the Humanities faculty, which might
account for the higher number of female participants.

In terms of VR experience, the mean score for prior VR usage
was based on two factors: the number of VR experiences played and
the type of VR headset ownership. The former was divided as follows
on a 1-5 scale: zero experiences 1); less than five 2); less than ten 3);
less than thirty 4); over fifty 5). The latter was divided by ascending
order by the price of VR headsets, based on the rationale that the
more expensive (and the greater the number - since users could also

FIGURE 1
Narrative, movement and monitoring tasks comprising the low, medium and high stress conditions.
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select multiple options) headsets owned, the more a participant had
invested in the medium. This was divided into: none 1); Google
Cardboard 2); Oculus Go/Gear VR 3); Quest/Pico 4); Vive/Index/
Rift 5). For example, a participant who has played a VR experience
4 times and owns a Google Cardboard headset would score 2 + 2/2 =
2/5 on the experience score. See Supplementary Section 7.1 for the
full formula.

The mean participant experience score was 2/5 for each
condition. It is accepted that an increased sample size could
improve the aforementioned discrepancies in gender distribution
and experience across conditions. Sagnier et al. (2019) found that
gender had an effect on participant self-assessment and the ability to
act during an assembly task in VR, while prior experience had an
effect on pragmatic and hedonic quality stimulation as well as
performance.

3.2 Protocol

After arriving at the lab, participants were briefed and given the
information sheet. This gave sufficient time for their biological
signals to establish a normal resting level. They then began the
experience by putting an E4 Empatica wireless Bluetooth wearable
on the wrist of their non-dominant hand followed by theMeta Quest
2 HMD. Participants were screened for being non-Muslim, in order
to avoid triggering any negative experiences the participant might
have experienced and provoking memories of historical stress as
a result.

The baseline biological signals of the participant were then
recorded for 1 min inside a VR experience of a minimally-
decorated virtual room. They were then directed to complete an
interactive survey inside VR relating to their VR consumption habits
and whether they own a headset (survey scene), described in the
demographics section above. Combining these measurements
together constituted an ultra-short-term (UST, that is < 5
minute) experimental norm for HR measurement (Shaffer and
Ginsberg, 2017). This was to gauge their familiarity with
navigating similar scenarios and to obtain a pre-treatment
baseline. Then they were instructed to select a gender and colour
closest to their skin tone.

Next, they entered a scene containing a virtual London double-
decker bus, which we shall refer to henceforth as the bus scene. All
participants were given the same gender-selectable avatar
corresponding to their own gender with two interactable hands
synced to their hand movements via the Meta Quest 2 controllers,
the same colour as their selected skin tone. Their hands with
articulated fingers were visible within short range and their entire
bodies were visible in the bus windows surrounding them. An
interactive tutorial explained the core mechanic to the participant
by playing a sample piece of audio voiceover and prompting them to
answer a multiple choice question related to what they had just
heard. After successfully completing the trial, participants were
prompted to pick up a virtual bus card and tap it on the virtual
card reader to begin the main experience. They were then prompted
to grab various other virtual interactive objects in the scene, such as a
newspaper and different virtual handles, which were highlighted, a
common interactive trope used in many VR experiences. Once
grabbed, a different voiceover clip would play, and the story,

movement, or monitoring tasks would appear after the clip had
finished together with a 10-s countdown to complete them,
depending on the participant’s pre-assigned stress level condition,
as shown in Figure 2.

After picking up four of the interactive objects, the participant
made their way down the virtual bus and interacted with different
virtual non-player characters (NPCs), who responded in an
outwardly positive manner to the user’s presence, nodding and
smiling. Then, the main stress event occurred: an Islamophobic
passenger (the attacker) began insulting the participant, shouting
abuse at them in a clear confrontation (see Figure 3). The tasks
continued during intervals in the main stress event. The attacker
then stood up, continuing to shout and threaten the participant.
Another passenger came to the participant’s defence (the defender)
before the driver stops the bus and the attacker walks away,
signalling the end of the main stress event. The participant was
then told the VR experience had ended, given assistance in removing
the headset, and prompted to complete the post-treatment
questionnaire on a laptop post-treatment. This concluded the
experiment.

3.3 Measures

The VR study was comprised of two distinct phases in VR: the
survey scene and the bus scene, followed by the post-treatment
survey outside of VR. In terms of performance measures, a
comparison was made between the number of correct answers
per assigned task in the bus scene, as well as the number of
correct answers in the post-treatment survey. Each of the three
tasks (narrative, movement and monitoring) appeared seven times
during the treatment and was scored in the same way. All seven of
the story questions were repeated post-treatment to measure
participant recall. The participant scores were summed from the
total number of correct answers to derive a percentage score.

A post-treatment, non-VR survey was also given to participants
to qualitatively assess their level of embodiment, perceived level of
realism and qualitative stress levels, as well as five questions derived
from an abridged version of the NASA Task Load Index (NASA-
TLX) (Hart and Staveland, 1988) and the Simulator Sickness
Questionnaire (SSQ) developed by Kennedy et al. (1993) see
Tables 7, 8 for further details.

Stress measurements were obtained by calculating the absolute
difference between the mean HR for a baseline measurement (taken
during the survey scene, when the participant was instructed to
stand idle) and for the bus scene. HR is the number of heartbeats per
minute (bpm) and is derived from the raw Blood Volume Pulse
(BVP) signal via Photophlethysmography (PPG) Allen (2007). The
BVP signal is an optical detection of the pulsatile blood flow
resulting from heart beats, sampled at a rate of 300 Hz and then
averaged over a square window to create a 1 Hz HR reading. The
data was manually cleaned of anomalies such as improbably
clustered repeated values and unsustained (2 s or less) spikes or
drops of more than 30 bpm, which indicated a temporary
malfunction in the wearable, such as ambient light contamination
of the PPG sensor. The same processes were repeated for the GSR
(measured in microsiemens at 4 Hz) and skin temperature
(measured in degrees Celsius) recordings.
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In addition to real-time HR, we also analysed participant
HRV, comparing an ultra-short measurement of their HRV (in
both the time and frequency domains) during baseline (pre-
survey scene) with the average of all of their ultra-short HRV
readings during each of the seven stress events, using logged event
markers in Unity to synchronise the timing. While we will now
proceed to define each term in turn, they are summarised in
Table 1 for easy reference.

As discussed in the work of Pinheiro et al. (2016), HRV
assessment from PPG analysis via PRV (pulse rate variability) as
opposed to ECG (electrocardiogram) can be used in healthy subjects
across both time and frequency domains. HRV was calculated post-
treatment using a fast-fourier transform in Kubios HRV Scientific
(based on Matlab) on the inter-beat interval data gathered from the
E4 sensor, with a medium-strength filter. The threshold-based
artefact correction algorithm compares every Inter Beat Interval

FIGURE 2
Operational Flow chart of the study.

FIGURE 3
Bus scene layout and the first and second parts of the main confrontation: the attacker is in black, defender in green.
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(IBI) value against a local average interval. Using a “Medium”

correction level identifies all IBIs that are larger/smaller than
0.25 s compared to the local average. The correction is made by
replacing the identified artifacts with interpolated values using a
cubic spline interpolation (Standard and Premium, 2018). When the
resulting HRV data produced a NaN error message, due to
insufficient data caused by the limited time threshold, we
extended the ultra-short window (starting from 10 s prior to the
stress event, then including the 10 s stress event and 20 s
immediately after) from 40 s up to a maximum of 60 s, by
further extending the window either side of the stress event by
15 s (25 s prior to the test, 10 s of the test, 25 s post-test).

HRV analysis was conducted on both time and frequency-based
domain measures. For the former, these included Standard
Deviation of Normal-to-Normal interbeat intervals (SDNN), Root
Mean Square of Successive Differences (RMSSD), and
parasympathetic and sympathetic nerve system activity (PNS and
SNS). Both PNS and SNS are multi-factor indexed measures
comprised of multiple parameters. In the case of PNS, mean RR
interval, root mean square of successive differences (RMSSD) and
Poincare plot index SD1 (in turn linked to the RMSSD and the SD2/
SD1 ratio and correlating with the Low-Frequency/High-Frequency
(LF/HF) ratio) in normalized units. In the case of SNS, the
parameters are mean HR, Baevsky’s Stress Index (described
below) and Poincare plot index SD2, which correlates with
SDNN as well as the LF/HF ratio. In the case of both PNS and
SNS, each parameter’s values is standardized against normal
population values, then scaled by standard deviations of the
normal population and a proprietary weighting applied. Both
PNS or SNS index values of zero indicate activity that is on
average, equivalent to that of the normal population. Positive
values reflect activity above the norm, and negative values below.
During stress, activity in the autonomic nervous system is typically
characterised by decreased parasympathetic (PNS) and increased
sympathetic (SNS) modulation (Tarvainen et al., 2014). Sympathetic
activity is commonly assessed using the relative power of LF
components and the LF/HF ratio, which serve as indicators of
sympathovagal balance (Usui and Nishida, 2017).

The Baevsky stress index, an index of regulatory tension based
on Cardiac Autonomic Modulation (CAM) originally designed to

assess astronauts during space flights (Baevsky and Chernikova,
2017), was also included since it also reflects the activity of the
sympathetic part of the autonomic nervous system (Baevsky and
Berseneva, 2008).

We also examined the effect of the main stress event (the
Islamophobic confrontation) on the user’s biological signals. This
was calculated by taking the HR data 20 s before the start of the stress
event, 10 s during the task, and then 20 s immediately after the stress
event. The timing was calculated by the log files saved to the headset,
which displayed the time code for when the player chose their quiz
response. This data was compared to an ultra-short (1 min) baseline
reading that was taken during the pre-survey scene.

The post-treatment survey presented the participant with the
same narrative task, this time in a non-VRmultiple choice format, as
well as a self-reported SSQ and a truncated version of the NASA-
TLX. Participants were also asked to rate their sense of embodiment,
stress, realism and presence on a Likert scale of 1–5 as well as report
any technical problems they encountered.

3.4 Stress assessment limitations

The research team was aware of the documented shortcomings
of wrist-based heart rate HR measurements, particularly HRV, but
decided to use the Empatica E4 wristband due to the considerable
number of studies validating its usage McCarthy et al. (2016), its
practicality and ease, and its reliability to record time-stamped data
locally during a study with a high participant count (n = 48).
Furthermore, the VR experience involved the use of hand
controllers, which would have complicated the use of any wired
sensors connected to the user’s fingertips. Although a new
generation of HMDs with integrated PPG sensors are being
developed (Bernal et al., 2022; Gjoreski et al., 2021), they remain
costly, not widely available, and have some limitations, including the
longer preparation time for subjects, data synchronization, and
levels of discomfort due to the additional device weight on the
user’s head during long VR experiences.

Motion artefacts are known to be a limiting factor in the use of
PPG to estimate HR, with potential data loss occurring when the
sensors fall out of contact with the skin. Several methods have been

TABLE 1 Heart Rate Variability (HRV) Variables and their response to stress.

Measure Definition Effect of stress

Time Domain

IBI Inter-beat Interval Decreases

BVP Blood Volume Pulse Decreases

PNS Parasympathetic Nervous System Decreases

SNS Sympathetic Nervous System Increases

NN Normal-Normal intervals between R-R peaks of a heartbeat waveform Decreases

SDNN Standard Deviation of Normal-to-Normal intervals Decreases

RMSSD Root Mean Square of Successive Differences Decreases

pNN50 Percentage of NN Intervals >50 ms Decreases

Frequency Domain

LF Low Frequency (mainly sympathetic (S) activity) 0.04–0.15 Hz Increases

HF High Frequency (mainly parasympathetic (P) activity), 0.15–0.4 Hz Decreases

LF/HF Ratio of Low to High Frequency - shows balance between S and PS Increases
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implemented to address this problem, as demonstrated by Temko
(2017). The use of electroencephalography (EEG) is also highly
reputed as a non-invasive, accurate method to evaluate stress levels
in real time, as shown by Vanitha and Krishnan (2016), but its use
within a VR study was considered impractical given the room-scale
nature of the experience.

Similarly, issues related to the low temporal resolution of PPG
signals to detect HR were taken into account, but were outweighed
by studies conducted by Stuyck et al. (2022), who concluded that
HR, RMSSD, SDNN, and LF were validly estimated by the
E4 wristband, with valid PR estimates from recording lengths as
short as 10 s. Numerous other studies have used PPG to estimate HR
in similar mobile VR experiences, such as Quintero et al. (2019);
Chauhan et al. (2018).

3.5 Hypotheses

We hypothesise that a participant’s autonomic responses
provide a good indication of their level of arousal and
engagement in the experience. Hypothesis 1 is that the level
of stress experienced by a user can be moderated by our
conditions and will be reflected in a statistically significant
difference in the mean normalised interval time between
heart beats at baseline and during stress events. Similar
differences will be observed in other HRV and biological
signal metrics in Hypothesis 3, 7.

Hypothesis 8 assess whether the participant’s stress level will
impact their performance on the narrative task both during and after
the VR experience. Improved task performance will mean higher
scores in the narrative task and post-treatment cued recall task. By
contrast, if the participant is not sufficiently stressed, their task
performance is hypothesised to be sub-optimal, resulting in lower
scores and significantly reduced absolute difference in biological
signals between baseline and stress events.

We hypothesise that the difference in a participant’s stress levels
will correspond to the respective low, medium or high conditions,
due to the number of simultaneous tasks they are given per
condition. Thus manipulating the stress level conditions will
heighten or lessen the degree of stress, while also serving as a
test of the physiological measurements.

Following on from the above, Hypothesis 9 is that the medium
stress level will produce an optimal performance (the highest
narrative task scores), since it encourages increased engagement
without imposing too great a cognitive burden on the user. The
narrative task score is a dependent variable as it was assigned to all
participants, whereas the monitoring and movement task
performance scores only served to add additional cognitive load
to participants.

Hypothesis 1: That measurements of the HR and HRV will be
affected by the stress condition, specifically.

Hypothesis 2: The mean NN (intervals between normal R-R
peaks of a heartbeat waveform) measurement (in microseconds)
taken at baseline and during the stress events will show a
statistically significant increase from the low to high
stress condition.

Hypothesis 3: The mean SDNN measurement taken at baseline
and during the stress events will show a statistically significant
decrease, reflecting greater stress, from the low to high
stress condition.

Hypothesis 4: The mean RMSSD measurement taken at baseline
and during the stress events will show a statistically significant
decrease, reflecting greater stress, from the low to high
stress condition.

Hypothesis 5: The mean Low Frequency/High Frequency (LF/HF)
measurement taken at baseline and during the stress events will
show a statistically significant increase, reflecting greater stress, from
the low to high stress condition.

Hypothesis 6: There will be a statistically significant correlation
between the HRV-derived stress index (SI) scores and the stress
condition (low stress = lowest stress index, high stress = highest
stress index).

Hypothesis 7: The mean GSR measurement taken at baseline and
during stress events will show a statistically significant decrease,
reflecting greater stress, from the low to high stress condition.

Hypothesis 8: There will be a statistically significant correlation
between higher narrative task scores (both during and after the
treatment) and participants’ stress response, measured in PNS
(H3.1) and SNS (H3.2) activity.

Hypothesis 9: Based on the Yerkes-Dodson theory of optimal
performance margins, we hypothesise that participants given the
medium condition will attain the highest VR narrative task scores.

4 Results

Unless otherwise indicated, all of the data fitted the
preconditions for the ANOVA, following Shapiro-Wilk4 tests for
normal distribution and Levene’s test for homogeneity of variances,
as shown in Tables 10, 11. The complete results are shown in Table 9.

4.1 Biological signals

Comparisons of mean HRV differences between baseline and
stress event scenes (see Section 3.3 for methods) highlighted some
key differences in the participant pools by condition, as shown in
Table 3. See Table 4 for statistically significant results and their effect
sizes across the low and high stress conditions. Only the Stress Index
showed significant between-condition variation (Low: 5.22 ± 3.3;
High: 1.45 ± 5.48; p = 0.04, r = −0.11), confirming Hypothesis 1.5,
with a strong effect size of −0.81.

While no statistically significant differences between conditions
were found for SDNN (H1.2) or RMSSD (H1.3), both measures
showed evidence of increased stress. SDNN values declined from
low to high stress conditions (LS = 5.88, HS = 2.66), although the
difference was not significant (p = 0.48). Similarly, RMSSD
decreased under medium stress (MS = 0.48) but unexpectedly
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increased under high stress (HS = 5.81), suggesting either variability
due to individual participant differences or technical difficulties that
affected the medium stress group. Frequency-domain variables such
as the LF/HF ratio (Hypothesis 5) and multi-factor variables such as

the Stress Index (Hypothesis 6) and were the most reliable
physiological indicators of a stress response, while time-domain
HRV variables (SDNN, RMSSD) were less sensitive to the stress
manipulation between groups.

Within conditions, statistically significant differences were
found between the baseline and stress events in the low stress
condition of the NN intervals (Hypothesis 2), the low and high
stress of the Low Frequency and High Frequency levels (Hypothesis
5), the low stress of the Stress Index (Hypothesis 6), the low and high
stress conditions of the GSR levels (Hypothesis 7), as well as the
PNS/SNS activity (Hypothesis 8, 9).

A significant difference in GSR levels between baseline and stress
events was found within low and high stress conditions (p =
0.035 and p = 0.003 respectively), but the difference was greater
in the LS condition versus the HS condition, invalidating Hypothesis
7 (see Table 5). The average temperature increase was highest during

TABLE 2 Pre-condition results by condition.

Condition P-value Test statistic (W) Effect size Standard deviation

Low Stress (LS) VR Score 0.2498 0.9307 0.177 16.4879

Mid Stress (MS) VR Score 0.2394 0.9295 0.2033 24.4328

High Stress (HS) VR Score 0.03803 0.8794 0.2222 18.8237

LS Post VR 0.04723 0.8855 0.2754 16.504

MS Post VR 0.03077 0.8735 0.1602 28.8557

HS Post VR 0.1299 0.913 0.2285 20.3466

LF/HF LS, Baseline 0.1749 0.921 0.1537 1.2532

LF/HF LS, Stress Events 0.3877 0.9404 0.1327 1.9148

LF/HF HS, Baseline 0.01869 0.8592 0.2299 1.5867

LF/HF HS, Stress Events 0.06079 0.8814 0.2169 1.9931

LS SI 0.5143 0.9494 0.1609 6.2865

MS SI 0.3348 0.936 0.1843 3.7207

HS SI 0.9789 0.9807 0.1317 4.0768

LS SI BL to SE 0.08146 0.8956 0.1609 3.3041

HS SI BL to SE 0.5249 0.9522 0.1218 5.2939

TABLE 3 HRV baseline to stress event comparison by condition.

HRV measure Baseline Stress
events

Abs
difference

Mean RR

Low Stress 724.14 629.98 94.15

Medium Stress 697.53 666.7 30.83

High Stress 732.35 684.64 47.71

SDNN

Low Stress 36.52 29.2 7.32

Medium Stress 31.78 34.19 −2.41

High Stress 38.34 36.45 1.89

RMSSD

Low Stress 40.42 31.97 8.45

Medium Stress 32.99 33.44 −0.45

High Stress 43.94 38.11 5.83

Stress Index

Low Stress 15.2 20.66 5.46

Medium Stress 17.57 17.82 0.25

High Stress 15.38 17.03 1.65

LF/HF Index

Low Stress 1.67 3.39 1.72

Medium Stress 2.61 3.62 1.01

High Stress 1.87 3.56 1.69

TABLE 4 Heart Rate Variability Results within conditions between Baseline
and Stress Events.

Condition HRV metric Significance Effect

High Stress LF/HF Ratio 0.02 0.2

High Stress HF 0.03 0.49

Low Stress Mean RR 0.06 0.3

Low Stress RMSSD 0.09 0.83

Low Stress SNS 0.03 0.93

Low Stress Stress Index 0.02 0.86

Low Stress LF/HF Ratio 0.01 0.41

Low Stress LF 0.07 0.24
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the high stress condition - almost double the other two conditions
(0.51 compared to 0.32 and 0.33 respectively), but this was also not
statistically significant.

4.2 Performance

As shown by the data in Table 6, a one-way ANOVA was
conducted on narrative task scores across stress levels. Significant
differences emerged (p = 0.02, F = 5.06, SE = 23.89), with
performance declining as stress increased Low (73.12 ± 15.96)>
High (63.25 ± 18.23)> Medium (51.81 ± 23.66). Using Tukey’s
post hoc method for comparing group pairings, none of
the q-scores (0.89, 0.48, 0.41 - low to medium, medium to
high, low to high) were above the critical level of 3.42, meaning
there was an effect (0.4) from low to high, but no pairwise
difference.

4.3 Biological signals and task performance

Significant correlations were observed between Stress Index
values and VR narrative task scores (Low p = < 0.001; High p =
< 0.001, t = −0.2) validating hypothesis 1.5.

Another statistically significant relationship was found (p< 0.05)
between the VR story scores and the difference in mean HR in a one-
way ANOVA. This was true across all conditions with a weak
correlation of r = 0.19, −0.57 and −0.08 for low, mid and high
stress conditions. In a one-way ANCOVA, when comparing the
change in HR (pre and post-stress event) to the VR score per
condition, there was a statistically significant difference
(p � < 0.05), although only in the naive/low-experience users
(who scored less than 2/5 on the VR experience score described at
the beginning of this section). This was true across all conditions with
a correlation of r = −0.3, −0.02 and 0.23 for no, mid and high stress
conditions, which is considered to be weak.

TABLE 5 Baseline (BL) to stress event (SE) comparisons across conditions.

H Baseline (BL) to stress event
(SE) comparison of low

stress (LS) to high stress (HS)

Result P Value between
conditions

P value within
conditions

Effect
size

Conclusion H0 = null
HA = Alternate

1.1 NN intervals (ms) will decrease LS = 105.39
MS = 40.54
HS = 48.61

0.26 LS = 0.04
MS = 0.21
HS = 0.29

0.61 H0 between
HA: LS

1.2 SDNN will decrease LS = 5.88
HS = 2.66

0.48 LS = 0.23
MS = 0.8
HS = 0.53

H0

1.3 RMSSD will decrease LS = 4.74
MS = 0.48
HS = 5.81

0.4 LS = 0.08
MS = 0.8
HS = 0.25

H0

1.4 LF/HF will increase LS = 1.56
MS = 0.87
HS = 1.69

0.56 LS = 0.005
MS = 0.06
HS = 0.008

0.86

−0.67

HA: LS, HS
close for MS

1.5 SI will increase LS = 5.42
MS = 0.62
HS = 1.45

0.043
d = −0.81

LS = 0.01
MS = 0.52
HS = 0.35

−0.81 HA: all
3 HA for LS

2 GSR will decrease LS = 1.15
MS = 1.32
HS = 0.87

0.83 LS = 0.035
MS = 0.15
HS = 0.003

−0.57

−0.49

HA within
LS, HS

3.1 >Stress Condition=>Stress level = effect on
VR score (PNS)

LS = −0.39
HS = −0.42

0.163 LS = 0.03
HS = 0.05

0.42
0.4

HA: LS, HS

3.2 >Stress Condition > Stress level = effect on
VR score (SNS)

LS = 1.42
HS = 0.71

0.113 LS = 0.02
HS = 0.06

−1.84
−0.52

HA: LS
H0 between

4 VR Score linked to Stress, with Medium
stress highest

LS = 73.12
MS = 51.81
HS = 63.25

0.02 0.4 H0

TABLE 6 Performance scores by condition.

Performance Low stress Mid stress High stress Significance

Average VR story Score 73.13 51.81 63.25 p = 0.01

Average Post-Treatment story Score 63.38 44 58.63 p = 0.03

Combined story Scores 136.5 95.44 121.88

Difference Pre-Post Scores 9.75 8.19 4.63
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The fact that only the medium stress condition produced a
slightly positive correlation between the stress index and the VR
score warrants further research. Trend lines across all three
conditions are plotted in the Supplementary Material. Medium
stress participants displayed a higher baseline stress measurement
in comparison to the two other conditions, which impacted the
detection of a change in level during the stress events, see
Supplementary Figure S7. HRV analysis confirmed the anomalies
detected in the Medium Stress condition, which resulted in no
statistically significant results across any of the time or frequency
domains, disproving the fourth hypothesis, which we attribute to
technical error. See Section 5 for further details. Despite the high
stress condition provoking the largest change in mean HR from
baseline to the bus scene (5.09 beats per minute), the mean
difference was not statistically significant in a one-way ANOVA.
The same was true for the absolute difference frommean HR during
the bus scene (3.98 bpm).

4.4 Predictors of VR performance across
different conditions

To investigate the nature of what variables affect narrative task
performance outcomes, the intercept of an Ordinary Least Squares
(OLS) regression model was calculated. It represents the expected
value of the dependent variables when the value of all independent
variables is zero. The regression model is represented by
the following:

Y � β0 + β1X1 + β2X2 +/ + βnXn + ϵ

where β0 is the intercept - this is the baseline VR score when all
predictors are excluded. The OLS method estimates β0 by
minimizing the sum of squared residuals (i.e., the sum of
squared differences between observed outcomes: Ŷi and predicted
outcomes Yi:

∑ Yi − Ŷi( )
2

Specifically, the intercept is derived from the equation:

β0 � �Y −∑
n

i�1
βi �Xi

where �Y and �Xi are the means of the dependent and independent
variables, respectively. This formula ensures that the regression line
passes through themean of the recorded data, making the intercept a
critical baseline for interpreting the regression results. The
intercept’s statistical significance is evaluated using the null
hypothesis test, with a significant p-value indicating that the
baseline value is reliably different from zero.

The intercept coefficients for the VR and post-VR scores
(i.e., the mean scores independent of any predictors, such as
changes in SNS or PNS) were 62.99 and 65.65, respectively,
with p values of < 0.001. The t-statistic (which measures the
size of the difference relative to the variation in the data) score
change from VR to Post-VR was t = 0.98, but no statistical
significance was found (p = 0.335), indicating no significant
difference in score improvement between the low and high

stress groups in the two separate tests. For all statistical analysis
equations used in this study, see the appendix.

However, when comparing the PNS and SNS interactions with
the score change from VR to post-VR across low and high stress
conditions using a multiple linear regression, the p-value was 0.036,
indicating a statistically significant relationship between changes
detected in the autonomic system and performance gains. This
method was chosen to assess the relationship between the VR
score change (the dependent variable) and multiple independent
variables (changes in SNS and PNS, as well as their interaction):

Score Change � β0 + β1 SNSChange( ) + β2 PNSChange( )
+ β3 SNSChange × PNSChange( ) + ϵ

Where:

• β0: Intercept (baseline level of Score Change when all
predictors are zero).

• β1, β2: Main effects of SNS Change and PNS Change,
respectively.

• β3: Coefficient for the interaction term
(SNSChange × PNSChange).

• ϵ: Error term, representing unexplained variance.

By including β3 we can use the model to test whether the
combined effect of SNS and PNS changes is different from the
sum of their individual effects. The statistically significant
interaction result suggests that the effect of a change in SNS on a
change in the VR Score does indeed depend on a change in PNS.
While SNS or PNS might not independently affect VR Score Change
(as shown by the null hypothesis for H3.1 and H3.2), there is a
combined effect that is meaningful.

The coefficient for the interaction between SNS and PNS in the
multiple linear regression model predicting VR score change was
11.14, including a statistically signification moderation effect (p =
0.036). The positive interaction effect can be seen in Supplementary
Figure S8: as SNS increases, the score change trends upwards,
especially when considered in the context of changes in PNS.
The effect isn’t completely linear, and a degree of balance
between SNS and PNS responses is key for this improvement,
but it does highlight the interplay between SNS (stress response)
and PNS modulation (recovery response).

As Supplementary Figure S8 demonstrates, a negative
relationship between SNS change and VR score change suggests
that SNS hyperactivation leads to a decreased VR score when PNS
remains constant. This negative effect appears to be moderated, the
higher the PNS change, whereas low PNS change only amplifies the
negative relationship. This hints at the fact that excessive SNS
activity may hinder cognitive performance and cued recall,
leading to poorer sustained performance (VR to post-VR score).

4.5 Post-treatment survey

In the post-treatment story scores, there was a statistically
significant result between conditions of p = 0.03 and the same
pattern of the low stress condition producing the highest recall
(63.38 ±16.5), followed by high stress (58.63 ±20.35) and lastly
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medium stress (44±28.86). While all cued recall scores decreased
post-VR, the difference between pre and post VR scores was greatest
in the Low Stress (9.75), followed by Medium Stress (8.19) and High
Stress (4.63). This could be partly due to the fact that the post-
treatment scores assessed participants’ recall of their original story
responses: if these were originally incorrect, they would naturally be
incorrect post-treatment too. However, it could suggest a better
sense of recall in the higher stress group. Further research is required
with a larger participant pool to verify.

In the Abridged NASA-TLX Survey, see Table 7, the responses
for “how hurried or rushed was the pace of the task” showed a close
to statistically significant (p = 0.066) increase by stress condition
(3.81, 4.31, and 4.81 for low, medium and high stress), which can be
attributed to the increasing number of tasks that the participants
were required to complete. The difference in reported workload was
greater between conditions among naive users (3.75, 4 and 4.42 for
no, medium and high stress respectively) with a lower yet still not
statistically significant difference (p = 0.372), but this can be
explained by the uneven and smaller sample sizes. The simulator
sickness (SS) questionnaire results show in Table 8 showed that
although there was a slight increase in SS by condition, this
difference was not found to be statistically significant. The
internal consistency of the SSQ analysis was good, demonstrated
by the high value of Cronbach’s Alpha for all items on the
survey α � 0.851.

5 Discussion and limitations

Statistically significant differences were found in the mean HR
and several HRV time and frequency domain values (most notably
the LF/HF ratio and Stress Index, supporting Hypothesis 5, 6)
between baseline and stress events. No statistically significant
differences were found in the changes between conditions in the
NN intervals, SDNN and RMSSD (although there were within
conditions for the former), therefore, Hypothesis 2, 3, 4
were rejected.

Furthermore, we found that we could indeed moderate the stress
level (as measured by changes in the SI, PNS or SNS from baseline to
stress event in Low and High Stress conditions) by varying the
number of simultaneous tasks per condition, supporting Hypothesis

6, 8. However, further work is clearly needed to determine why the
medium stress condition produced the highest stress response
among participants, refuting Hypothesis 9, as reported in the
preceding section.

Promising results were found in terms of the statistically
significant difference in performance on the narrative task
between conditions, partially supporting Hypothesis 8, 9, showing
that the stress level does indeed affect performance, and that we can
indeed moderate that level by varying our conditions. Further
analysis of the variance between task performance scores revealed
meaningful distinctions, particularly in the low and high stress
conditions. The one-way ANOVA confirmed a statistically
significant difference in narrative task scores between conditions
(p = 0.02), with a moderate effect size (η2 � 0.4).

Participants in the medium stress condition displayed unusually
high baseline stress index values, potentially exacerbated by
technical issues that affected that group. We attribute both
factors to the absence of statistical significance in medium-stress
HRV measures, in turn masking the stress moderation intended by
the manipulation. Although certain HRV measures such as SDNN
and RMSSD lacked significant between-condition differences, these
were found in a number of within-group changes in both the low
and high stress conditions. This highlights the sensitivities between
individuals that researchers need to be mindful of in relation to
HRV-based indices. It also reinforces the need for further
participant segmentation and integration of normalization
procedures in future studies.

The recruited sample did not evenly reflect the general
population, leaning towards a higher than average number of
female participants and being sampled from a university
population. This could be one area where the stress inducers
might be tailor-made to the individual, although this would need
to be assessed by targeted sampling of the population. Since the main
focus of this study was to validate the stress conditions’ ability to
manipulate arousal and quantitatively measure it via biological
signals, the NASA-TLX test and post-treatment questions
pertaining to embodiment were truncated. Future versions of this
study will include the full NASA-TLX as well as the embodiment
questionnaire presented by Peck and Gonzalez-Franco (2021).

Importantly, the regression analysis revealed a significant
interaction effect between PNS and SNS changes and

TABLE 7 Post-treatment questions with answers split by stress level condition.

Post-treatment questions (out of 5) Low stress Mid stress High stress Significance

Realism rating 3.44 3.69 3.38 p = 0.607

Embodiment rating 3.19 4 3.31 p= 0.059

Stress rating 2.81 4.63 3.06 p = 0.592

Abridged NASA-TLX Survey

How mentally demanding was the task? 4.69 4.63 4.81 p = 0.889

How physically demanding was the task? 3.44 2.69 3.19 p = 0.304

How hurried or rushed was the pace of the task? 3.81 4.31 4.81 p = 0.066

How hard did you have to work on the task? 4.13 4.31 4.75 p = 0.212

How insecure, discouraged, irritated were you? 4.06 4.38 3.88 p = 0.726

Mean - all users 4.03 4.06 4.29 p = 0.803

Mean - only naive users 3.75 4 4.42 p = 0.372
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improvements in the narrative task score. While neither in isolation
predicted performance gains, the interaction between the two
yielded a statistically significant result (p = 0.036), with a positive
coefficient of 11.14. This suggests that a dynamic interplay of
sympathetic activation and parasympathetic regulation may
underpin optimal task execution in VR, indicating that successful
task performance is not only a matter of arousal intensity, but of
finding the optimal homeostatic balance between opposing
physiological systems. Future applications may benefit from
dynamically adaptive systems that monitor this interplay to
modulate task difficulty in real-time.

The reliability and noise of the E4 sensors given their wrist
placement is acknowledged as a shortcoming compared to finger-
bound sensors as discussed in Section 3.4, despite its proven
utility and validity (McCarthy et al., 2016). The manual process
(via button pressing on the device) of syncing the biological
signal data with the interaction log data in VR is also highlighted
as a potential area in which data asynchrony could occur. To

mitigate this Unix timestamps were cross-referenced with the log
times inside the headset, which was synced prior to the
experiment.

6 Conclusion and future work

In conclusion, our study demonstrated that manipulating
mental workload in a narrative VRE can influence both task
performance and autonomic indicators of arousal, although
further refinement is necessary to moderate this effect more
precisely. A one-way ANOVA revealed a statistically significant
effect of the stress condition on VR narrative scores (F(2, 45) � 5.06,
p � 0.02, SE � 23.89), with the low stress group outperforming both
medium and high stress groups.

Statistically significant differences were found in the Stress Index
(p � 0.043, LF/HF ratio (p � 0.005 in the low stress condition, p �
0.008 in the high stress condition), PNS and SNS activity, with the

TABLE 8 Simulator Sickness Questionnaire results split by stress level condition.

Condition Nausea Oculomotor Disorientation TS

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Low Stress (n = 16) 35.18 (25.768) 47.38 (28.022) 67.86 (50.542) 55.40 (34.743)

Medium Stress (n = 16) 41.14 (35.986) 44.53 (36.706) 67.86 (70.956) 56.33 (48.041)

High Stress (n = 16) 32.79 (19.696) 53.06 (24.288) 67.86 (30.866) 57.27 (25.282)

All (n = 48) 36.37 (27.597) 48.32 (29.694) 67.86 (52.212) 56.33 (36.420)

TABLE 9 Biological signal results by stress level condition.

Biological signals Low Medium High Significance

Average HR from baseline during bus scene 4.55 3.96 5.09 p = 0.76

Average abs difference from mean HR during Bus 2.81 2.34 3.98 p = 0.63

Average GSR from baseline during Bus 1.15 1.32 0.87 p = 0.64

Average Temp from baseline during Bus 0.33 0.32 0.51 p = 0.27

TABLE 10 VR score levene test results.

Source DF Sum of square Mean square F statistic P-value

VR Score (between groups) 2 251.5417 125.7708 0.5585 0.576

Error (within groups) 45 10,133.9375 225.1986

Total 47 10,385.4791 220.9676

TABLE 11 Post-VR score levene test results.

Source DF Sum of square Mean square F statistic P-value

Post-VR Score (between groups) 2 932.6667 466.3333 2.1925 0.1234

Error (within groups) 45 9571.2497 212.6944

Total 47 10,503.9164 223.4876
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most pronounced effects observed within the low and high
stress groups.

There was also a statistically significant negative correlation
between the SI and VR performance scores in both the low and high
stress conditions (p< 0.001; t � −0.2), indicating that elevated
physiological stress was associated with decreased task accuracy,
as shown in Supplementary Figures S9, 10 of the appendix. Although
the difference between baseline and stress event in the HRV-derived
SI between conditions was statistically significant, it was the opposite
of our hypothesis (the low stress group had the highest mean SI
difference and the medium stress group the lowest).

Also contrary to our hypotheses, the medium stress produced
anomalous results, likely attributable to the higher number of
technical issues in that participant group, which raised baseline
stress scores due to repeated runs, in turn reducing the difference
between the baseline and stress event data. The medium stress level
group scored the highest in the “how insecure, discouraged,
irritated” post-treatment question (see Table 7), perhaps alluding
to a negative sense of stress born of frustration inside the experience,
as opposed to the sense of eustress tied to higher engagement that
the experiment was designed to create.

Post-hoc regression revealed that PNS-SNS interplay had a
moderating effect on some improvements in VR score,
highlighting a nuanced physiological dynamic that underpins
cognitive performance. Future work will extend this regression
analysis, investigating the predictive relationship between changes
to the PNS and SNS and task performance, as well as place greater
emphasis on the stress index metric and less emphasis on body
temperature, which was found to be noisier and less prone to
phasic changes than expected. We will also add a user interface
prompt inside the user’s heads-up display (HUD) to guide them to
the next interactive object after 10 s of inactivity, in an attempt to
improve the user experience. The monitoring task (high stress
condition) will also be altered, since many participants complained
that they struggled with this task. The subsequent study will prioritise
real-time adaptive stress manipulation using biofeedback from a
Bluetooth wearable that will refine task difficulty and procedural
variation based on a custom optimal arousal margin per participant.
Incorporating personalized stress baselines may also help control
for variability between individuals that affected metrics such as
RMSSD and SDNN. Additionally, a validated embodiment scale
and the full NASA-TLX will be integrated, as will the Implicit
Association Test (Greenwald et al., 1998) to further contextualise
findings within intergroup empathy, while continuing to explore how
stress and embodiment may contribute to behavioural change in
perspective-taking.
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