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Virtual Reality (VR) has expanded beyond the entertainment field and has become
a valuable tool across different verticals, including healthcare, education, and
professional training, just to name a few. Despite these advancements,
widespread usage of VR systems is still limited, mostly due to motion sickness
symptoms, such as dizziness, nausea, and headaches, which are collectively
termed “cybersickness”. In this paper, we explore the use of
electroencephalography (EEG) as a tool for real-time characterization of
cybersickness. In particular, we aim to answer three research questions: (1)
what neural patterns are indicative of cybersickness levels, (2) do EEG
amplitude modulation features convey more important and explainable
patterns, and (3) what role does EEG pre-processing play in overall
cybersickness characterization. Experimental results show that minimal pre-
processing retains artifacts that may be useful for cybersickness detection
(e.g., head and eye movements), while more advanced methods enable the
extraction of more interpretable neural patterns that may help the research
community gain additional insights on the neural underpinnings of
cybersickness. Our experiments show that the proposed amplitude
modulation features comprise roughly 60% of the top-selected features for
EEG-based cybersickness detection.
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1 Introduction

Virtual Reality (VR) has experienced significant growth in recent years due to advances
in hardware technology and its increasing availability to the general public. Today, it is a
widely adopted solution in various fields beyond entertainment, including medicine,
therapy, and professional training, just to name a few (Angelov et al., 2020; Stecuła,
2022; Cassani et al., 2020a). One of the reasons for its success is its ability to create highly
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realistic and modular environments at fairly low costs. This can
provide exposure therapy for patients with, e.g., obsessive-
compulsive disorder and post-traumatic stress disorder (Cullen
et al., 2021; Maples-Keller et al., 2017) or allow for cost-effective
training in various sectors, such as aerospace or remote surgery (e.g.
(Rojas-Sánchez et al., 2023; Barteit et al., 2021; Dymora et al., 2021;
Fracaro et al., 2021)). Moreover, for training of law enforcement
officers, VR is crucial to allow them to practice decision-making,
communication, and tactical skills in computer-generated scenarios
that closely resemble real-world situations. This overcomes logistical
constraints and allows for training of cadets in safety-critical
situations that would not otherwise be possible in the real-world
(Koutitas et al., 2021; Muñoz et al., 2020; Mills et al., 2020).

However, the widespread adoption of VR has been hindered by a
factor termed ‘cybersickness’, which is akin to motion sickness
experienced by many in boats and moving cars. Cybersickness is
characterized by symptoms such as dizziness, nausea, headaches,
disorientation, vertigo, visual disturbances, and increased salivation.
It can vary significantly among individuals and can be influenced by
numerous factors, including age, gender (Gamito et al., 2008), prior
VR exposure, characteristics of the VR system and the displayed
content (e.g., resolution, field of view, motion dynamics, frame rate),
as well as behavioural factors such head movements or standing
versus sitting (Moss and Muth, 2011). The root causes of
cybersickness and its variability across the general population are
still unknown. The sensory conflict theory posits that cybersickness
primarily arises from discrepancies between visual inputs and
vestibular sensory feedback (Celikcan, 2019). Many studies have
been interpreted in relation to the sensory conflict theory to explain
the relationship between VR system specifications, content design,
and cybersickness symptoms (Sawada et al., 2020; Kim et al., 2020;
Irmak et al., 2023). However, these findings are often compatible
with other etiological theories, and the results are not exclusive to
sensory conflict explanations (Stanney et al., 2020). While the
sensory conflict theory provides a framework for understanding
cybersickness, it did not directly influence the design of this study,
which instead focused on identifying neural markers associated with
symptom intensity.

The traditional method of assessing cybersickness involves
subjective questionnaires, such as the Simulator Sickness
Questionnaire (SSQ) and the Fast Motion Sickness (FMS)
(Keshavarz and Hecht, 2011). Notwithstanding, while subjective
tests are valuable for quantifying the multidimensional impact of
cybersickness, disrupting users to continuously report on their
symptoms can negatively impact the immersiveness of the
application. In recent years, there has been a push for more
objective measures based on processing of different biosignals
and user behaviours. These methods offer a more objective
measure of the user’s physiological state, enhancing our
understanding and ability to quantify and compare the
effectiveness of different VR systems and content designs to
mitigate cybersickness.

VR hardware today is equipped with numerous sensors that may
be useful to characterize cybersickness. For example, several
commercial head-mounted displays (HMDs) are equipped with
IMUs (inertial measurement units) that can help track head
movements, eye trackers to monitor gaze changes, and
photoplethysmography (PPG) sensors to measure heart rate and

heart rate variability. These sensors could be useful in monitoring
discrepancies in perceived motion and orientation in space (Lopes
et al., 2020), as well as in physiological changes such as heart rate
(Kim et al., 2022), postural instability (Risi and Palmisano, 2019),
and visual fatigue (Souchet et al., 2023), among others. These
measures have been shown useful in predicting cybersickness
severity (Arcioni et al., 2019; Islam et al., 2021; Shimada et al.,
2023a; Reyero Lobo and Perez, 2022; Kim, 2024; Setiowati et al.,
2020; Wang et al., 2022).

Moreover, there is a recent trend to add additional (bio)sensors
to VR headsets. For example, the Galea and Kaptics headsets have
proposed the inclusion of sensors such galvanic skin response
(GSR), skin temperature, and electroencephalography (EEG)
(Bernal et al., 2022; Cassani et al., 2020b). GSR can be useful in
detecting sweat, a cybersickness symptom (Dennison et al., 2016;
Islam et al., 2020; Guna et al., 2020), but also changes in mental
states such as stress (Garrido et al., 2022) and cognitive load (Sepich
et al., 2022), which could be due to cybersickness or other external
factors (Katsigiannis et al., 2018; Wu and Lin, 2011). EEG, in turn,
provides a real-time glimpse of neural changes linked to
cybersickness (Krokos and Varshney, 2022; Yang et al., 2022a),
potentially guiding new interventions to mitigate symptoms [e.g.
(Benelli et al., 2023)]. Very recently, several works have suggested
that to more accurately predict cybersickness, multiple signal
modalities need to be explored concurrently, in particular EEG,
electrocardiography (ECG), eye movements, and head movements
(Islam et al., 2022; Jeong et al., 2023; Qu et al., 2022; Hwang et al.,
2022; Moinnereau and Falk, 2024). Electrogastrography (EGG) has
also shown to be useful in characterizing cybersickness, but requires
electrodes to be placed around the participant’s abdomen area,
which could disrupt the user’s immersive experience (Stern, 2002;
Yin and Chen, 2013; Jakus et al., 2022).

Characterizing cybersickness using biosignals has some
disadvantages. For example, signals are often contaminated with
artifacts. While automated pre-processing algorithms exist [e.g.
(Yildirim, 2020; Delorme, 2023)], it is not clear what impact they
may have on signal patterns and, ultimately, on downstream
cybersickness characterization tasks. As an example, automated
pre-processing of EEG signals has shown to affect different
diagnostic tasks, such as Alzheimer’s disease diagnosis (Cassani
et al., 2014). Moreover, when it comes to electrical biosignals,
physiological processes often serve as contaminants. With EEG,
for example, signals may be contaminated by heart beats, as well as
by eye and/or head movements. In this case, removal of eye/head
movement artifacts may indeed be removing information that could
help characterize cybersickness.

Lastly, the latest trend in biosignal processing has involved the
use of deep learning for both feature extraction and classification
(Yildirim, 2020; Liao et al., 2020; Liu et al., 2024). In these scenarios,
there is little interpretability and explainability (Jeong et al., 2019;
Fan et al., 2021). As such, while prediction/detection of
cybersickness is possible with high accuracy, few insights on what
occurs in the brain/body during cybersickness are available, thus
limiting the development of tactics to reduce symptoms. Moreover,
existing datasets are relatively small and with a small number of
subjects, which can likely lead to overfitting by highly-complex
models (Yildirim, 2020; Tsimenidis, 2020), as well as to limited
generalization capability (Roy et al., 2019).
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In this paper, we aim to take a different approach to
cybersickness detection. First, we explore the impact of different
levels of artifact removal–from very basic techniques where head/
body artifacts are kept, to more advanced pipelines leaving only
neural signatures for evaluation–on cybersickness characterization.
While the former effectively transforms the EEG into an embedded
multimodal system, thus potentially improving detection accuracy,
the latter can uncover the specific neurological patterns associated
with cybersickness, thus leading to potential interventions to
mitigate symptoms. Second, we extend our analysis beyond EEG
conventional Power Spectral Density (PSD) features and propose
the use of EEG Amplitude Modulation (AM) and connectivity
features for detection of cybersickness symptoms, offering a
complementary perspective on the neural interactions underlying
cybersickness symptoms. AM analysis has shown to be useful for
mental and cognitive state characterization (Albuquerque et al.,
2020; Clerico et al., 2015; Clerico et al., 2018), as well as for health
diagnostics (Fraga et al., 2013; Trambaiolli et al., 2011). To the best
of our knowledge, this is the first time that AM features are being
explored for cybersickness measurement.

AM is a second-order spectral analysis which aims to capture the
temporal variations of amplitudes in cortical oscillations. It consists
in constructing a frequency representation from the envelope of
these oscillations. This hidden structure in EEG signals reflects the
interaction between several fundamental mechanisms that occur
naturally in the brain (Bondar’ and Fedotchev, 2000; Hidalgo et al.,
2022; Hilla et al., 2020), and therefore may provide greater insights
for cybersickness characterization.

Three different ablation studies are conducted to investigate the
impact of the Automatic Artifact Removal (AAR) algorithm used,
epoch size, and number of features. These ablation studies are used
to find the optimal combination of such factors, which are then used
to find the best cybersickness prediction model to be tested on an
unseen test set. The goal of the first ablation study is to evaluate the
efficacy of each AAR algorithm at removing head and eye
movements. In the second ablation study, we investigate the
predictive power of different combinations of AAR algorithms,
feature types, and epoch sizes. Lastly, in the third ablation study,
we explore the optimal number of features for cybersickness
prediction.

The remainder of this paper is as follows: Section 2 will describe
the methods and materials used in the study, while Section 3
presents the obtained results. Section 4 will discuss the
implications of our findings and, finally, Section 5 will conclude
the paper and suggest directions for future research.

2 Materials and methods

2.1 Dataset

For this study, we relied on a cybersickness dataset described in
Li et al. (2021), which followed an experimental protocol specifically
designed to induce cybersickness. Data was collected from
20 participants who were immersed in two VR scenarios: a
tunnel travel simulation and a roller coaster ride. The ‘Tunnel’
session emphasized strong linear vection with minimal rotational
motion to induce mild to moderate cybersickness. Participants who

did not reach a cybersickness threshold of 11/20 on the Fast Motion
Sickness (FMS) scale after 10 repetitions (approximately 10 min)
proceeded to the ‘Roller Coaster’ session. This session included
similar linear vection but added stronger rotational motion to
intensify symptoms, ensuring that all participants reached
sufficient cybersickness levels to enable subsequent analyses. The
rationale behind these tasks was to account for individual differences
in susceptibility while ensuring sensory conflict through visual
motion without movements.

Each session lasted up to 10 min, with the duration tailored to
individual participant responses, as indicated by their cybersickness
levels. Cybersickness severity was systematically measured using the
20-point FMS questionnaire, administered at the end of each
minute, for as long as the participants could manage their
symptoms until reaching an FMS score of 11. Some participants
did not experience cybersickness and reported FMS values not
exceeding 4 (out of 20). Specifically, subjects 1, 3, 10 and 15 in
the Tunnel session and subjects 1, 3, 10 and 16 in the Roller coaster
session. In addition, data from 10 subjects in the Roller Coaster
session was not available since these subjects did not continue to the
second part of the experiment due to severe discomfort after the first
video. In the roller coaster session only the data from subjects 7, 8,
11, 13, 15 and 20 were included in the analysis.

The study recorded multi-channel EEG, 1-channel
Electrooculography (EOG), and head movements via a 3-axis
accelerometer. The seven EEG channel locations used in this
study included Fz, Pz, P3, P4, Cz, CP5, and CP6, recording with
a sampling rate of 500 Hz. The EOG channel, located on the left
lower eyelid, was used to monitor eye movements and eye blinks.
Both the ground and reference electrodes were connected together
and attached to the right earlobe using an ear clip. The interested
reader is referred to Li et al. (2021) for complete details about the
data collection process and the dataset used.

2.2 Pre-processing

Pre-processing is crucial in EEG research to remove unwanted
physiological (e.g., heart beats, muscle/eye/head movements) and
environmental (e.g., powerline, temperature, humidity)
interferences (Tanner et al., 2016; Bigdely-Shamlo et al., 2020).
With such pre-processing algorithms, a trade-off must always be
achieved between the aggressiveness of the artifact removal step and
the potential (unwanted) removal of useful discriminatory
information from the collected signals (Delorme, 2023; Robbins
et al., 2020). For example, AAR algorithms based on Independent
Component Analysis (ICA) are susceptible to causing phase
distortion (Thatcher et al., 2020) and/or loss of useful
information (Sadiya et al., 2021; Klug and Gramann, 2021).
Similarly, rejecting channels and segments of the signal
contaminated by artifacts introduces information loss and
discontinuities (Sadiya et al., 2021; Huberty et al., 2024).

With cybersickness prediction, however, artifact removal may
play a crucial role, as the information that is often removed, such as
head movements, eye movements, and heart beats, may indeed help
in the prediction process. As such, here we explore three different
levels of AAR, from light to aggressive, to gauge the effect this has on
cybersickness characterization, as well as on the insights generated
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by the top features later used for the prediction task. This, in fact, has
been recently emphasized in Delorme (2023) where a reduction in
the amount of pre-processing was suggested to prevent the loss of
relevant neural information of event related potentials. In addition,
authors in Thatcher et al. (2020) demonstrate that AAR based on
ICA result in phase distortion that could compromise connectivity
analysis. The three different pre-processing techniques explored
herein are detailed next.

2.2.1 Minimal pre-processing
Inspired by the work in Delorme (2023), an extremely simple

pre-processing pipeline–called ‘Minimal’ – was tested to minimize
potential distortion of the EEG signals at the cost of limited noise
reduction. The ‘Minimal’ pre-processing strategy comprised
exclusively of a high-pass filtering using a zero-phase
Butterworth filter set to a cutoff frequency of 0.25 Hz used to
eliminate low-frequency drift. This method should preserve artifacts
related to eye, muscle, and head movements, as well as powerline
interference. Previous studies [e.g. (Zao et al., 2016; Chang et al.,
2021; Jin et al., 2018)] have demonstrated the utility of EOG and
head movement data in cybersickness detection, motivating our
exploration of whether these signals could be indirectly captured and
utilized from EEG alone.

2.2.2 Artifact subspace reconstruction pre-
processing

In this second approach, the widely-used artifact Subspace
Reconstruction (ASR) algorithm (Mullen et al., 2013) followed by
an independent component rejection step using the ICLabel
algorithm (Pion-Tonachini et al., 2019) was used. This
configuration is known to remove many common EEG artifacts
and to minimally interfere with relevant EEG information
(Delorme, 2023). It is important to note that, while the efficiency
of ICA may be reduced when applied to datasets with a small
number of channels, empirical evidence suggests that ICA-based
pre-processing has performed satisfactorily despite these limitations
(Rejer and Górski, 2015). Following ASR pre-processing, any
removed channels were replaced using default EEGLAB spherical
interpolation (Delorme and Makeig, 2004), ensuring a consistent
dataset for subsequent analyses.

2.2.3 Data-driven pre-processing
Automatic artifact detection algorithms, such as ASR, utilize

threshold-based techniques or depend upon predefined templates
and assumptions about the nature of EEG noise. In contrast to these
conventional approaches, data-driven pre-processing pipelines
make use of experiment-specific artifact data from both EOG and
head movement measurements thereby offering more precise noise
reduction of specific types of distortion.

Regression ICA (RegICA) is one such method which combines
blind source separation and regression to more accurately remove,
e.g., ocular artifacts (Klados et al., 2011). Here, RegICA is used to
dynamically attenuate EEG frequency components that originate
from non-neuronal sources, such as ocular and head movements.
Reference signals (i.e., EOG and head accelerometry) are used to
characterize components of the EEG signal that have high
correlations (here, characterized as a correlation greater than
0.25) with the non-neuronal signal.

Since EEG signals and reference signals have very different
magnitudes, the data was scaled by subtracting the median of
each channel and dividing by the median absolute deviation to
avoid numerical instability. Subsequently, RegICA is applied twice:
initially using the head accelerometer signals as references, and then
using EOG signals. Here, the following hyperparameters are used: a
filter order of 3, sigma of 0.01, a forgetting factor of 0.999 and stable
root mean square error as the optimization criterion. Using both
EOG and accelerometer signals as reference with RegICA should
remove eye and head movements in a data-driven manner.

2.3 Feature extraction

2.3.1 Power spectral density and coupling
Traditional methods have relied on conventional power spectral

density measures computed for different EEG frequency bands,
namely,: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
(12–30 Hz), and gamma (30–50 Hz) bands (Li et al., 2022; Ozkan
et al., 2023). Here, band decomposition was achieved using a filter
bank (FB) of zero-phase Finite impulse response (FIR) filter, which
applied two successive filtering steps in opposite directions on a
mirror-padded version of the input signal, thereby producing Band-
filtered time series (BFT). Band-filtered time series were then
epoched with window sizes corresponding to 2, 5, 8, 20 and 30 s
and shifts of 2 s.

Power values were computed per sub-band by squaring the
samples and then normalizing by the total EEG power. Three
statistical functionals are then used to aggregate the per-epoch
features: mean, standard deviation, and skewness. This approach
resulted in 105 PSD candidate features per epoch duration (5 bands
× 7 channels × 3 functionals) for each of the tested epoch sizes. For
notation, henceforth, spectral power-based features are referred to as
〈PSD〉_{statistic} c = 〈channel〉 b = 〈band〉.

Moreover, to measure the coupling between brain regions
(i.e., between different electrodes) and between EEG frequency
bands, a coupling measure is computed using either the Pearson
correlation or mutual information to measure linear and non-linear
properties, respectively, between different electrode pairs or
frequency bands (Clerico et al., 2018; Akhand et al., 2024;
Afshani et al., 2019; Lu et al., 2011). Here, Inter-channel
coupling (CCPL) accounts for 630 candidate features (2 coupling
types × 21 channel pairs × 5 bands × 3 functionals), while Inter-band
coupling (BCPL) accounts for 420 features (2 coupling types ×
7 channels × 10 band pairs × 3 functionals). For notation, Inter-band
coupling (BCPL) are denoted as PSD_{feature subtype}_{statistic}
c = 〈channel〉 b = 〈band1〉 × 〈band2〉, thus representing
interactions between different frequency bands within the same
EEG channel. Conversely, Inter-channel coupling (CCPL) features,
referred to as PSD_{feature subtype}_{statistic} c =
〈channel1〉 × 〈channel2〉 b = 〈band〉, represent the interaction
between channels within the same frequency band.

2.3.2 Amplitude modulation features and coupling
To derive the AM time series, we first extract the temporal

envelope of each of the five BFT employed for the extraction of PSD
features. This initial step is represented in the top left block of
Figure 1A, which shows how the raw signal is filtered by the filter
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bank. The ‘envelope extraction’ block consists of computing the
analytical representation of the signal by applying a Hilbert
transform. In this process, the Hilbert transform is implemented
using a Kaiser-windowed sinc FIR filter. The envelope is then
extracted from the norm of the analytical representation. Finally,
we further decompose the envelopes using the same five bands,
represented in Figure 1A by five BFT blocks, resulting in a total of
25 AM time series. The matrix at the bottom of Figure 1A depicts the
AM time series resulting from this process.

However, according to Bedrosian’s theorem (Trajin et al., 2008),
only 14 of these 25 series are considered valid due to the
inappropriate modulation of low-frequency bands by high-
frequency bands resulting in signals that are not physically
meaningful. The valid AM bands are represented in blue in
Figure 1A. The interested reader is referred to Fraga et al. (2013);
Cassani and Falk (2018) for a more comprehensive exploration of
the features derived from AM.

For these new AM features, the epoch duration is a critical
parameter, as it directly influences the latency in feature extraction
and resolution. Furthermore, identifying the optimal epoch duration
is essential for gaining insights into the temporal dynamics at which
cybersickness-related neuronal patterns become discernible. In the
literature, epoch durations when using AM features have ranged
from 5, 8, to 20 s (Fraga et al., 2013; Cassani and Falk, 2019;
Trambaiolli et al., 2020) to effectively capture neuronal patterns
needed for diagnostics.

As this is the first attempt at using these features for
cybersickness detection, we leave epoch size as a hyper-parameter

to be optimized in the experiments. To capture potential transient
micro-state changes (Nam et al., 2022; Chang et al., 2023; Aubonnet
et al., 2023), shorter windows are also explored. For completeness,
we explore epoch sizes of 2, 5, 8, 20, and 30 s. The power in each of
the 14 〈modulated band〉-m〈modulant〉 time series is computed
per epoch and EEG channel, thus resulting in 294 candidate features.
Here, the following notation is used for the features: 〈AM〉_
{statistic} c = 〈channel〉 b = 〈band〉.

Moreover, as with spectral coupling measures, coupling
between different AM times series was shown in Clerico et al.
(2018) to better characterize different mental states. As such,
AM-CCPL is used to capture interactions between every possible
pair of channels, while AM-BCPL to measure coupling across all
possible cross-band combinations. Figures 1B, C depict the
processing steps to compute the coupling parameters for the
two different scenarios, respectively. Figure 1C depicts the
process of selecting channels or bands (indicated by green and
blue colors, respectively) and combining them to compute AM-
CCPL and AM-BCPL features. The green color represents
selected channels that are paired to compute spatial
interactions (AM-CCPL), while the blue color represents
selected bands that are paired to compute spectral interactions
(AM-BCPL). The pairing itself is handled by the process
illustrated in Figure 1B. In both cases, the notation used for
AM-CCPL and AM-BCPL AM_{feature subtype}_{statistic} c =
< channel1>×< channel2> b = < band> and AM_{feature
subtype}_{statistic} c = < channel> b = < band1>×< band2> ,
respectively.

FIGURE 1
(A)Data flow diagram presenting each step of the AM time series extraction process. Blue arrows and cells correspond tomeaningful AM bandwhile
bands marked as red are discarded. (B) Abstract data flow showing the general extraction process of coupling measurements from a set of time series.
The combination operation generates all unique pairs of channels or bands. Unique pairs refer to the unique occurrence of joint elements regardless of
their order. For example, both pairs (P3, P4) and (P4, P3) refer to the same coupling measure, therefore to prevent redundancy in the coupling
analysis only one occurrence is kept. (C) Schematic representing how time series are selected for the computation of either AM-CCPL or AM-BCPL.
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2.4 Testing setup

Figure 2 illustrates the general testing methodology employed in
this experiment. With the dataset used, cybersickness FMS ratings
were provided every minute.

FMS scores were recorded by participants at the end of each 1-
min interval, while the EEG data used in regression analysis were
taken from the same 1-min segment. This means that EEG trials
could correspond to any moment within the interval-potentially
near the beginning or end of the minute-relative to the reported FMS
score. This approach may introduce a small temporal mismatch
between the EEG features and the moment the FMS score reflects.
As such, in this study we are measuring the cybersickness level
(given by the FMS score) on a per-minute basis. Future studies could
take this further and use the EEG trials to predict cybersickness
levels many minutes ahead.

To augment the amount of data available for training of the
classifiers, a bootstrapping method was applied where a random
selection of epochs within a certain 1-min EEG segment under the
same FMS rating were used. The statistical functionals, such as
mean, standard deviation, and skewness were then computed from
the resulting subset. This process can be repeated multiple times
where after each iteration a distinct set is created. The number of
epochs taken per 1-min segment and the number of times this
bootstrap sampling was done was empirically set to 75% of total
epoch number within the minute and 10 repetitions, respectively.

The data augmentation process produced a total of 712 samples
from the collected data, as compared to the 7,035 features extracted
for analysis. Feature selection methods were implemented to
mitigate the high sample-to-feature ratio, ensuring a more robust
and interpretable regression model. The tuning stage involved the
use of a validation set to estimate the best subset of features, as
depicted in Figures 2A, B.

To avoid data leakage between training and test samples, a
Stratified-group K-fold methodology was used to restrict groups
of samples from the same minute segment to a unique data
subset (i.e., train or test). This step corresponds to item (d) in
Figure 2. Train and test set were generated from the development
set which correspond to a portion of 67% of samples reserved
exclusively for training and testing. Hyperparameters of the
support vector regression model were optimized using the
validation set, as represented by Figure 2C, during the
tuning stage.

2.5 Post-processing

After extracting features from each EEG recording session,
outlier detection was conducted independently on each feature
using a threshold of three times the median absolute deviation.
Detected outliers, along with near infinite, near zero, and missing
samples (Not-A-Number), were corrected via linear

FIGURE 2
Flowchart presenting the testing methodology which is divided into two main stages: Tuning stage (top light grey area) relies on the validation set
(33% of the original dataset). Training and testing stage (bottom white area) relies on the development set (67% of the original dataset). (A) Features are
ranked using their correlation with the FMS score. (B) Incremental cross-validation determines the optimal number of features, ensuring only the top
features are retained in the development set. (C) The validation set is used to find the best hyperparameters for SVR. Once the tuning stage is
completed, the optimal features and hyperparameters are used to train and validate the model (D).
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interpolation of time contiguous samples. Lastly, FMS ratings
were normalized to a scale ranging from 0 to 1 to facilitate the use
of the root-mean-square error (RMSE) as a figure-of-merit to
gauge system accuracy.

2.6 Feature ranking and selection

Given that the used dataset has a low sample-to-feature ratio,
feature selection is needed to reduce the number of features to a
manageable number to prevent overfitting. Additionally, to mitigate
the risk of data leakage, features selection is performed on a
validation subset (set as 33% samples of the dataset) of the data
using the “StratifiedGroupKFold” module within scikit-learn
(Pedregosa et al., 2011) prior to the train/test split procedure.
This approach ensures that the validation samples come from
different time instances than those reserved for testing, keeping
the test set completely unseen.

Here, a simple feature ranking method was utilized based on
Spearman correlation. For each feature, the correlation was
calculated between samples and their corresponding FMS rating.
This process is represented by step (a) in Figure 2. The correlation
score attributed to each feature is used in ablation study II presented
in Section 3.2.

The rank ordering was based firstly by statistical significance
(Holm-Bonferroni corrected with significance set at a threshold of
0.05), followed by absolute Spearman correlation coefficient values.
After this ranking, the top 100 features were selected (empirically)
for further analysis. To gauge the impact of including additional
features on cybersickness measurement, top-features were added
one by one and regression performance on the validation set was
assessed via stratified 5-fold cross-validation. This step corresponds
to item (b) of the Tuning stage presented in Figure 2; this step
further described in the ablation study III in Section 3.3. The final
number of features to be used is the one that leads to the smallest
RMSE value obtained on the validation set after
Gaussian smoothing.

2.7 Regression analysis

A Support Vector Regressor (SVR) was selected as the
regression algorithm, motivated by its robustness to
overfitting, a characteristic particularly advantageous for high
dimensional datasets. Hyper-parameter optimization for the SVR
model was carried out through an exhaustive 3-fold cross-
validation grid search, exploring combinations of 3 × 4 ×
20x20 for kernel types (‘poly’, ‘rbf’, and ‘sigmoid’), polynomial
degrees (2 through 5), and the parameters C and gamma. The
search covered logarithmic scales from 10−4 to 1 for C, and from
10−4 to 102 for gamma, with ‘auto’ and ‘scale’ additionally
evaluated as specific gamma parameters. This step is
represented by block (c) in Figure 2. Prior to training the
SVR, data was normalized subtracting the mean and scaling to
unit variance to address SVR sensitivity to scaling. Bootstrapping
was done 100 times on the 5-fold cross-validation task to allow
for significance calculation of the obtained RMSE values relative
to chance.

3 Results

The following sub-sections presents the results of a series of
ablation studies aimed at examining the impact of different EEG
pre-processing methods, feature types, and epoch sizes on
cybersickness prediction. Ablation studies are analytical
approaches used to investigate the contribution of specific
components or processing steps to the performance of a
predictive model. By systematically isolating and testing
individual factors, such as pre-processing strategies or feature
sets, these studies allow us to evaluate their independent effects
on the inference process.

3.1 Ablation study I: artifacts and
artifact removal

To better understand the impact of head movements and eye
movements on certain EEG frequency bands, Figures 3, 4 depict (top
plots) the power spectral representation of the accelerometer signals
(averaged across the x, y, and z-axes) and the Signal-to-Noise Ratio
(SNR) representation (bottom plot), for each of these two signal
modalities, respectively. SNR is computed for each frequency bin as
the ratio between the power of the bin’s central frequency and the
mean power of neighboring frequencies excluding immediately
adjacent ones (Meigen and Bach, 1999).

As can be seen from Figure 3, notable power peaks occur at
1.7 Hz, 3.3 Hz, and 4.9 Hz, likely harmonics of the head movements.
These findings suggest that head movement information can likely
be a confound for EEG features based on delta and theta bands.
Similarly, from Figure 4 ocular activity exhibits a 1/f spectral roll-off,
suggesting that eye movements may also affect lower frequency
bands, specifically the delta and theta bands.

Next, we wish to explore the potential of the three different AAR
algorithms at removing these two artifact sources. To this end, we
utilize the mutual information computed from the processed EEG
signal and the temporal series of the EOG and the averaged tri-axes
accelerometer signals. A higher mutual information will signal that
the artifacts have not been removed and the EEG signal still contains
substantial artifactual information embedded in the signal. In turn,
lower mutual information values suggest that the artifacts were
correctly removed. Figure 5 presents the computed mutual
information (averaged over the head and eye movement signals)
for each of the seven EEG channels. As can be seen, minimal
processing showed the highest mutual information, as expected.
The RegICA method removed some of the artifacts, while the more
complex ASR + ICLabel combination resulted in the least amount of
mutual information, suggesting the most aggressive removal
of artifacts.

Lastly, Figure 6 depicts the EEG Power Spectral Density
averaged across channels processed by the Minimal and the ASR
+ ICLabel pipelines. As can be seen, the 1.7 Hz, 2.5, and 3.2 Hz
peaks, likely due to head movements, can be seen with the former,
but not the latter. The spectral density above 6 Hz, in turn, closely
matches in both scenarios.

Comparison of the spectra of the two pipelines, Minimal and
ASR + ICLabel, suggests that the components identified as ocular
and motion artifacts, in Figures 3, 4 respectively, were eliminated by
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the ASR + ICLabel pipeline, but not by the Minimal pipeline. This
observation in the spectral domain is consistent with the results
obtained from the mutual information measurements.

3.2 Ablation study II: combination of AARs,
epoch size, and feature type

Despite the effective removal of artifacts, AARs can distort the
signals. Therefore, we investigated their impact on the useful
information related to cybersickness. We compared different
combinations of epoch sizes and each AARs for the predictive
power of each type of feature. As a figure-of-merit, we employed
the correlation measures described in Section 2.6, which were
calculated between the samples and the associated FMS rating
independently for each feature.

Figure 7 presents the Spearman correlation between different
features and the FMS scores in the training set. The correlation map
shows results for the different AAR methods, feature types, and
epoch sizes. As can be seen, PSD and AMP features showed the
highest correlations with the Minimal processing pipeline with the
8 and 20 s epochs for AMP features and 8-s epochs for PSDs.
Moreover, the band and channel coupling measures showed mild to
moderate correlation with FMS across various pre-processing
scenarios, suggesting their potential complementarity for
cybersickness characterization.

Overall, the RegICA and ASR + ICLabel AAR methods showed
lower correlation scores with FMS ratings across most epoch sizes

and feature types, whereas the Minimal pre-processing showed the
highest. These findings suggest that, indeed, retaining artifacts
related to blinks, eye movements, and head movements can be
useful to characterize the multimodal effects of cybersickness.

3.3 Ablation study III: feature selection

Next, we explore the selection of the optimal number of features.
Figure 8 shows the coefficient of determination (R2) scores as a
function of number of features for the case of ASR + ICLabel pre-
processing and 5-s epochs. As can be seen, the R2 score improves
with the inclusion of more features until a plateau is reached, which
starts with a R2 score of 0.467 at around 71 selected features. The
optimal feature number is selected for each pre-processing and
epoch size combination; the exact number of features selected for
each of these combinations is shown in Table 1. These top features
are discussed next.

3.4 Top-features analysis

To gain greater insight into cybersickness characterization, two
analyses were performed based on the interpretation of the most
relevant features. The first analysis explores the neural patterns
indicative of cybersickness, while the second investigates the multi-
modal potential of cybersickness detection with minimal EEG pre-
processing.

FIGURE 3
(A) Spectral analysis of accelerometer data: This graph presents the spectral representation of accelerometer data averaged across the x, y, and
z-axes for multiple subjects and sessions. On the y-axis, power is expressed in decibels (dB), while the x-axis displays frequency in Hertz (Hz), covering a
spectrum from 1 Hz to 50 Hz. The blue curve illustrates the mean power spectrum, and the shaded area represents the standard deviation, reflecting
variability across recordings. (B) Signal-to-Noise Ratio (SNR): This part of the figure presents the SNR across the frequency spectrum, amplifying
local activity in relation to adjacent background noise levels. The x-axis displays the frequency in Hertz (Hz), covering the same range as in Figure (A).
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We employed a strategy to summarize the multiple lists of top
features generated for each combination of the AAR algorithm and
epoch size. For each AAR, a unified list was created by gathering all
features that appeared in at least one of the lists across various epoch

sizes. A common list is then defined as the intersection of two unified
lists, meaning that a feature must be present in both lists to be included.
Therefore, the analysis in the discussion section is based on common
features between the two AARs, regardless of the epoch size.

FIGURE 4
(A) Spectral representation of EOG signals: This graph presents the EOG signal averaged across various subjects and sessions, providing a spectral
overview. The y-axis quantifies power in decibels (dB), and the x-axis represents frequency in Hertz (Hz), spanning from 1 Hz to 50 Hz. The blue curve
indicates the average power spectrum, while the shaded area around this curve illustrates the standard deviation, reflecting variability among subjects and
sessions. (B) Signal-to-Noise Ratio (SNR) of the corresponding EOG spectrum.

FIGURE 5
Comparative analysis of pre-processing algorithms for EEG signals based on mutual information. The bar plots illustrate the average mutual
information scores between EEG channels of pre-processed signals and recorded noise signals (EOG and accelerometer signals) for different pre-
processing pipelines. The y-axis represents the mutual information score, quantifying the dependency between the EEG signals and noise, while the
x-axis categorizes EEG electrodes. Error bars indicate standard error, reflecting variability among subjects and sessions.
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3.4.1 Neurological patterns associated with
cybersickness

For this analysis, the underlying assumption is that the common
top-ranked features selected with and without pre-processing will
most likely convey details about the neural underpinnings associated

with cybersickness. Based on the ablation studies, we use the ‘ASR +
ICLabel’ and the ‘Minimal’ pre-processing methods in this analysis.
It was found that the common/overlapped top features list
comprised 51 features with 22 accounting for AMP and PSD;
11 for inter-channel coupling features; and 18 for inter-band
coupling features. More details about these top features
are given next.

3.4.1.1 PSD and AM power features
Figure 9 shows the average correlation with FMS ratings of the

top-22 common features from the AMP and PSD categories. In the
figure, the electrode locations and feature types are detailed in the
x-axis labels, while the frequency bands are color-coded. Spatially,
the neuronal patterns correlated with cybersickness form two
distinct clusters: alpha-mtheta, alpha, and theta bands are
prevalent in the parietal (P3, P4, Pz) and centro-parietal (CP5,
CP6) areas, while alpha-mdelta, delta, and beta-mdelta bands are
primarily observed in the central (Cz) and frontal (Fz) regions.

The average AM power (AMP_mean) primarily consists of
alpha-mtheta frequencies, while the average band power (PSD_
mean) is mainly characterized by theta and alpha frequencies.
Notably, theta oscillations are more significant when their
average power across an entire minute is taken, indicating their
role as a persistent process.

Moreover, the variability in power, as indicated by the standard
deviation features (AMP_std and PSD_std), is most closely
associated with the alpha-mdelta and alpha bands, respectively.
The observed increase in the variability of alpha-mdelta band
power, taken over a 1-min window indicate instability of the
alpha band slow temporal dynamic as the perceived
cybersickness symptoms increase. This feature may reflect

FIGURE 6
Comparison of power spectral density between Minimal and ASR
+ ICLabel pre-processings methods. The y-axis quantifies power
density in (μV)2/Hz, and the x-axis represents frequency in Hertz (Hz),
spanning from 1 Hz to 20 Hz. The blue and red curve correspond
to the average power spectrum of signal after ASR + ICLabel and
Minimal pre-processings respectively, while the shaded area around
each curves illustrates the standard deviation, reflecting variability
among subjects, sessions and channels.

FIGURE 7
Comparative analysis of feature type distribution across different pre-processing conditions and epoch sizes, encompassing six distinct feature
types: AMP, PSD, AM-CCPL, CCPL, AM-BCPL, and BCPL. The color intensity within the heatmap denotes the magnitude of the average correlation
between data of selected features and FMS ratings.
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neuronal mechanisms capable of flexible and adaptive responses to
cybersickness.

Next, we take a more in-depth look at the two features with the
highest correlation with FMS in Figure 9, namely, mean alpha-
mtheta at CP6 and the standard deviation of alpha-mdelta power at
CP5. As can be seen in Figure 10, the average alpha-mtheta activity
and the alpha-mdelta power standard deviation exhibits a significant
positive correlation with FMS ratings. Notably, variability among
participants is increased within the 0.5-1 normalized FMS score
range, suggesting a more unstable/inconsistent pattern across
this interval.

Figure 11, in turn, depicts the temporal changes of the two
features over the 10-min experiment which exhibited increased
cybersickness levels over time. As can be seen, both features
exhibited a significant increase over time, suggesting they may
serve as a precursor to predict the onset of cybersickness, with
symptomatic manifestation becoming consistently evident across
participants only after they have been exposed to VR for an extended
period. Moreover, it is important to highlight that the variability
across subjects (represented by the shaded bands) increased towards
the end of the experiment, likely attributed to the reduced amount of

data available for accurate standard deviation estimation, as not all
participants reached the end of the experiment due to
nausea symptoms.

3.4.1.2 Inter-channel coupling features
Figure 12 depicts the average correlation between data from

CCPL based features and FMS ratings. As observed, the most
relevant pattern appears to be associated with the beta band.
Both average and standard deviation power exhibit similar
correlations with cybersickness, specifically with beta-mtheta and
beta for AM-CCPL and CCPL, respectively. Channel coupling seems
to predominantly occur in centro-parietal (channels Cz, CP5, CP6)
and parietal regions (channels P3, Pz, P4). The predominance of
centro-parietal activity correlated with FMS ratings suggests
involvement in proprioceptive processes, visual/sensorial stimulus
processing, and the integration of contextual information (Albanese
et al., 2023; Walter and Dassonville, 2008; Summerfield and
Mangels, 2005) during cybersickness.

Moreover, the figure reveals a significant pattern of coupling within
the beta-mtheta band, evidenced by features such as AM_ccor_mean
CP5 × CP6 and AM_ccor_std Pz × Cz. This pattern emphasizes the
crucial role of the beta band in mediating interactions between various
cortical areas.

3.4.1.3 Inter-band coupling features
Figure 13 depicts the average correlations between data from

inter-band coupling features and FMS ratings. Within BCPL
features only two features appeared in the top: an average
decoupling is observed between theta and gamma in left Parietal
area (channel P3) whereas a strong coupling variability occurs
between theta and beta band in left centro-parietal area
(channel CP5).

AM-BCPL features are, in turn, predominant in the top feature
list. As can be seen, activities correlated with cybersickness intensity

FIGURE 8
Performance metrics for the ASR + ICLabel pre-processing method over a 5-s epoch, as a function of feature count. The graph illustrates the
variation of coefficient of determination R2 (blue) with increasing feature counts. Hashed lines correspond to the smoothed trends. The observed
increase in R2, indicates enhanced model efficacy with additional features. The vertical dashed line marks the automatically determined optimal feature
count under these conditions.

TABLE 1 Optimal number of features selected for each combination of
epoch sizes and pre-processing techniques. The maximum number of
features is set (empirically) to 100 to prevent overfitting.

Epoch size Minimal REGICA ASR + ICLabel

2 100 23 67

5 100 86 100

8 97 100 73

20 78 97 100

30 81 94 81
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are observed in multiples cortical regions with alpha and beta band
couplings in the midline electrodes (Fz, Cz and Pz) represented by
features alpha-mdelta×beta-mdelta and alpha-mdelta×beta-mbeta.
In the centro-parietal region, increased coupling is observed in
bilateral parietal area between gamma-mtheta and beta-mdelta

(P4) and gamma-malpha (P3), accompanied by decoupling
within the beta band: beta-mtheta×beta-malpha (Pz, P4).

The frontal lobe (channel Fz), like the centro-parietal area,
seems to be particularly important in the coupling between
frequency bands. A notable decoupling between gamma and

FIGURE 9
Bar plot representing average correlation between overlapped AMP and PSD features and FMS ratings. The feature types and EEG electrodes are
described on the x-axis, while the corresponding frequency bands are color-coded (see the figure legend).

FIGURE 10
Lateral Parietal Grand average feature values of AMP_mean_alpha-mtheta_CP6 and AMP_std_alpha-mdelta_CP5 versus FMS ratings using the ASR
+ ICLabel pre-processed dataset. The grand average was calculated by grouping individual subject ratings, averaging them within subjects, and then
averaging these values across all subjects to obtain a unified measure for each feature. Both features show a significant positive correlation. The filled
areas correspond to standard errors around each curve. Coefficients marked with * and ** represent the Pearson correlation between the grand
average and FMS ratings with a p-value <0.05 and <0.01, respectively.

Frontiers in Virtual Reality frontiersin.org12

Rosanne et al. 10.3389/frvir.2025.1468971

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1468971


alpha bands, represented by the feature alpha-mtheta×gamma-
malpha, is concurrently observed with an increase in coupling
within the temporal structure of both beta and gamma bands
represented by the features gamma-mdelta×gamma-mtheta and
beta-mdelta×beta-mtheta. Taking gamma as an example, gamma-
mdelta and gamma-mtheta bands measure the slowest changes in

the instantaneous amplitude of the band. The increased coupling
between these two bands can be interpreted as the progressive
homogenization of the long time scale structure of gamma
oscillations.

Overall, the prevalent patterns involve the average coupling of
the modulated beta band with alpha and gamma bands, suggesting

FIGURE 11
Lateral Parietal Grand average feature value of AMP_mean_alpha-mtheta_CP6 (blue curve) and AMP_std_alpha-mdelta_CP5 (orange curve) as a
function of time using ASR + ICLabel pre-processed dataset with 5 s epoch size. Both features show an increase over time, suggesting potential tracking
of cybersickness levels. The filled area corresponds to the standard error around each curves. Coefficients marked with *** represent the Pearson
correlation with a p-value <0.001 between grand average and time stamps.

FIGURE 12
Bar plot representing average correlation between overlapped CCPL features and FMS ratings. The feature subtype and coupled channel pairs are
described in the x-axis, while the corresponding frequency bands are color coded (see figure legend).

Frontiers in Virtual Reality frontiersin.org13

Rosanne et al. 10.3389/frvir.2025.1468971

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1468971


that the beta band may act as a conduit between slow and rapid
neuronal activities during cybersickness episodes. Furthermore, the
coupling between beta-mtheta and beta-malpha can be identified as
a significant pattern associated with cybersickness. Theta and alpha
bands appear to engage in a common neuronal mechanism that
modulates the amplitude of fast oscillations, notably within the beta
band. According to the top-down theory (Richter et al., 2017), this
modulation could be attributed to changes in activity within local
neuronal assemblies–represented by fast oscillations–under the
remote control of deeper brain structures through slower waves.

The manifestation of coupling related to the beta band, both
spatially across centro-parietal channels (Cz, CP5, CP6, Pz) and
spectrally between the beta-mtheta and beta-malpha bands,
highlights the beta band’s central role in facilitating the dynamic
formation and integration of cortical networks under cybersickness
conditions.

The negative correlation between cybersickness severity and the
coupling between beta-mtheta and beta-malpha indicates a
diminishing interaction between their respective cortical
processes as cybersickness intensifies, as depicted by Figures 14,
15. It could be argued that increased presence of artifacts affecting
the theta band with rising cybersickness levels, could lead to a
decoupling. However, the temporal progression of both beta-mtheta
and beta-malpha, shown in Figure 16, exhibits a significant increase
over time. The increase is also observed in the P4 electrode, although
not significant, as illustrated in Figure 17. Furthermore, the similar
correlation values of −0.31 and −0.29 for the Minimal and ASR +
ICLabel pipelines, respectively, suggest that the decoupling between
beta-mtheta and beta-malpha bands is not primarily due to artifacts.

Additionally, both bands display a similarly weak, non-
significant correlation with FMS ratings for both channels P4 and
Pz, as illustrated in Figures 14, 15. Considering the absence of a
significant correlation with FMS ratings, the observed decoupling
between beta-mtheta and beta-malpha bands is unlikely to stem

from direct changes in power within either band. Instead, this
pattern underscores a more complex interaction, suggesting a
dynamic rerouting or reorganization of the cortical network as
an adaptive response to cybersickness. This observation support
the robustness of AM-based features in extracting meaningful
patterns regardless of the presence of artifacts.

3.4.2 EEG-based embedding of multiple modalities
and their role in cybersickness prediction

As mentioned previously, minimal pre-processing of the EEG
signal leaves several artifacts within the EEG time series that may be
useful for cybersickness prediction, such as eye and head
movements. In this analysis, we take an in-depth look at the top-
features selected with the Minimal pre-processing pipeline that did
not overlap with those selected from the other two more complex
pre-processing methods. The top-features were selected based on
their prevalence within the top feature lists across at least three out of
five epoch sizes tested within the Minimal pre-processing condition.

Figure 18 shows the top PSD and AM power-based features,
which accounted to 23 of the 44 top features. As can be seen, the
correlation values are higher than those reported from the previous
analysis. Moreover, a marked increase in the occurrence of the delta
and theta band features is shown, especially around the central and
parietal regions (channels Cz, CP5, CP6, P3, Pz, P4). As was
discussed in Section 3.1, these bands tend to be more sensitive to
head and eye movements artifacts, thus may be encoding
such details.

Comparing Figure 18 with Figure 9, the presence of delta and
theta bands in the latter remains limited. This is likely due to
contamination by ocular and movement artifacts preserved by
Minimal pipeline but removed by ASR + ICLabel.
Notwithstanding, the previous analysis also showed the presence
of theta band activity within the top features that overlapped the
ASR + ICLabel and Minimal pre-processing approaches, thus

FIGURE 13
Bar plot representing average correlation between overlapped BCPL features data and FMS ratings. The feature subtype and coupled band pairs are
described in the x-axis, while the corresponding channels are color coded (see figure legend).
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suggesting that theta-band patterns may not be entirely attributed to
artifacts, but may also convey some neurological origin related to
cybersickness.

Table 2 shows the remaining top-21 features (out of total 44)
from the CCPL and BCPL feature categories. As can be seen, the
majority of the top features correspond to band coupling between

FIGURE 14
Right Parietal Grand average feature value of AMP_mean_beta-malpha_P4 (blue), AMP_mean_beta-mtheta_P4 (orange) and AM_bcor_mean_P4_
beta-mtheta_beta-malpha (green) across recordings as a function of normalized FMS ratings using ASR + ICLabel pre-processed dataset with 5 s epoch
size. A strong significant negative correlation is observed with AM_bcor_mean_P4_beta-mtheta_beta-malpha. Coefficients marked with * and n.s.
represent the Pearson correlation between grand average and FMS ratings with a p-value <0.05 and non-significance, respectively.

FIGURE 15
Parietal Grand average feature value of AMP_mean_beta-malpha_Pz (blue), AMP_mean_beta-mtheta_Pz (orange) and AM_bcor_mean_Pz_beta-
mtheta_beta-malpha (green) across subjects and sessions as a function of normalized FMS ratings using ASR + ICLabel pre-processed dataset. A strong
significant negative correlation is observed with AM_bcor_mean_Pz_beta-mtheta_beta-malpha. Coefficients marked with ** and n.s. represent the
Pearson correlation between grand average and FMS ratings with a p-value <0.01 and non significance respectively.
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FIGURE 16
Parietal Grand average feature value of AMP_mean_beta-malpha_Pz (blue), AMP_mean_beta-mtheta_Pz (orange) and AM_bcor_mean_Pz_beta-
mtheta_beta-malpha (green) across subjects and sessions as a function of time using ASR+ ICLabel pre-processed dataset. Both power beta-malpha and
beta-mtheta features show a significant strong positive correlation with time. Coefficients marked with **, * and n.s. represent the Pearson correlation
between grand average and FMS ratings with a p-value <0.01, p-value <0.05 and non significance, respectively.

FIGURE 17
Right Parietal Grand average feature value of AMP_mean_beta-malpha_P4 (blue), AMP_mean_beta-mtheta_P4 (orange) and AM_bcor_mean_P4_
beta-mtheta_beta-malpha (green) across recordings as a function of time using ASR + ICLabel pre-processed dataset. Both power beta-malpha and
beta-mtheta features show aweak positive correlation with time. Coefficients represent the Pearson correlation between grand average and FMS ratings.
None of the correlations were significant as indicated by n.s.
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amplitude modulated bands. The most recurring carrier band is
gamma followed by beta, while the most recurring modulator band
is theta.

3.5 Overall cybersickness characterization

Table 3 lists the final RMSE achieved between the real
(normalized) FMS ratings and the predicted ones for each pre-
processing strategy and epoch size. These results reflect the
model’s performance on unseen data, as the training and
testing folds used in cross-validation are strictly non-
overlapping. To gauge the significance of the results in the
table over chance, a random classifier is also trained where the
FMS ratings, which serve as regression labels, are randomized. As
can be seen, across all tested configurations, performance
significantly exceeded this chance level. Table 4 summarizes
the main relevant features used for cybersickness level
measurement.

Overall, the ‘Minimal’ pre-processing approach achieved the
lowest RMSE values with top features computed from 8-s epochs,
achieving an RMSE of 0.234, significantly lower than chance-level
(0.327), corroborating the importance of the multi-modal aspect
achieved by leaving artifacts untouched. In contrast, the RegICA
and ASR + ICLabel pre-processing approaches achieved their
lowest RMSE values at higher epoch sizes. As these methods tend
to remove artifacts, the regressors are relying solely on neural
signatures for cybersickness prediction. In such cases, the longer
duration epochs are needed to capture the neural underpinnings
of cybersickness, which may be present in lower-
frequency activity.

4 Discussion

In this study, we started with two main objectives: (1) to better
understand the impact of artifact removal on EEG-based
cybersickness prediction, and (2) to obtain more insights on the
neural underpinnings of cybersickness via the use of new amplitude
modulation features. Via a series of ablation studies, correlation
analyses, and top-feature evaluations, our experiments have
provided cues into these two objectives. In the subsequent
sections, we discuss these findings in more detail.

4.1 To pre-process or not to pre-process?

In EEG studies, the presence of artifacts can negatively influence
the validity and interpretation of results (Zhou et al., 2023; Lopes
et al., 2023; Bennett et al., 2021), as artifacts can take on various
forms (Delorme, 2023; Michel and Brunet, 2019; Jin et al., 2023) and
overlap with neurological signals in spatial, temporal and spectral
domains (Thompson et al., 2008; Chiarion et al., 2023). While this
makes the use of pre-processing an essential step in EEG signal
analysis, there is no universally accepted method. Algorithms are
developed to target certain types of artifacts [e.g. (Robbins et al.,
2020; Yu et al., 2022)] and each pre-processing method comes with
its own set of advantages and limitations. As such, researchers must
trade-off between effective artifact removal and minimal signal
distortion (Bouazizi and Ltifi, 2024; Tajmirriahi et al., 2022; Bao
et al., 2022).

Recently, the extensive use of AAR has been contested due to the
excessive data distortions and destruction they might cause to the
data (Delorme, 2023; Chiarion et al., 2023). For instance, ICA has

FIGURE 18
Bar plot representing average correlation between feature data and FMS ratings from the top features list using Minimal pre-processing method.
Some features overlap with those from the ASR + ICLabel preprocessing. Only the AMP and PSD features are represented. The feature type and EEG
electrodes are described in the x-axis, while the corresponding frequency bands are color coded (see figure legend).
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been shown to produce distortions due to the non-stationary nature
of EEG signals (Chiarion et al., 2023; Bouazizi and Ltifi, 2024).
Additionally, it may mix neurological and non-neurological sources
within the same components when the number of channels is much
smaller than the number of sources (Thompson et al., 2008; Sun and
Mou, 2023; Chaddad et al., 2023), which can often be the case in VR
applications.

As with most EEG studies, our results also indicate that non-
neurological activity is recorded along with neurological activity.
More specifically, we show that ocular activity and head movements
are observed in the lower frequencies of the EEG spectrum, such as
delta and theta, and these were selected as top-features in the
Minimal processing case. In turn, other features from these
regions, but measuring temporal dynamics information, could be

TABLE 2 Top-selected coupling features (BCPL, CCPL, AM-BCPL and AM-CCPL) identified usingMinimal pre-processing across different epoch durations (2,
5, 8, 20, and 30 s).

Feature type Band Channel Mean absolute correlation

beta CCPL_std Pz×P3 0.34

gamma-mtheta×gamma-malpha AM_BCPL_mean Fz 0.34

beta-malpha×beta-mbeta AM_BCPL_mean P4 0.33

alpha-mtheta×gamma-mbeta AM_BCPL_mean Fz 0.33

gamma-mtheta×gamma-malpha AM_BCPL_mean Pz 0.32

gamma-mbeta×gamma-mgamma AM_BCPL_mean P3 0.32

gamma-mdelta×gamma-malpha AM_BCPL_mean Pz 0.32

theta-mtheta×gamma-mbeta AM_BCPL_mean Cz 0.32

gamma-mtheta×gamma-malpha AM_BCPL_mean P3 0.32

theta-mtheta×gamma-mbeta AM_BCPL_mean P3 0.31

gamma-mdelta×gamma-mtheta AM_BCPL_mean CP6 0.31

beta-mdelta×beta-mtheta AM_BCPL_mean CP6 0.31

beta-mtheta×beta-malpha AM_BCPL_mean P4 0.31

beta-malpha×beta-mbeta AM_BCPL_mean P3 0.31

gamma-mtheta×gamma-mbeta AM_BCPL_std Fz 0.31

gamma-mtheta×gamma-malpha AM_BCPL_mean CP6 0.31

gamma-mdelta×gamma-malpha AM_BCPL_mean P3 0.30

gamma-mbeta×gamma-mgamma AM_BCPL_std CP5 0.30

gamma-mdelta×gamma-mtheta AM_BCPL_mean P3 0.30

beta-mdelta AM_CCPL_std Pz×P3 0.29

beta-mbeta×gamma-mgamma AM_BCPL_mean P4 0.29

TABLE 3 RMSE values derived from a 5-fold cross-validation regression analysis, assessing the impact of various pre-processing techniques over different
epoch durations on regression performance. The benchmark for random performance was established through successive permutation tests and random
FMS ratings. Entries significantly surpassing this benchmark (p <0.05) are denoted by an asterisk (*). Lower RMSE values, indicative of bestmodel prediction
across epoch sizes, are emphasized in bold for each pre-processing condition.

Minimal REGICA ASR + ICLabel

Epoch size Score Random Score Random Score Random

2 0.253* 0.333 0.268* 0.337 0.254* 0.32

5 0.246* 0.331 0.249* 0.323 0.247* 0.327

8 0.234* 0.327 0.262* 0.326 0.254* 0.327

20 0.258* 0.327 0.248* 0.327 0.248* 0.309

30 0.25* 0.324 0.245* 0.329 0.257* 0.332
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indicative of regulatory and coordinating roles in
cognitive processes.

Unlike other studies, however, for cybersickness prediction, the
presence of physiological artifacts can serve as useful sources of
multimodal information to predict cybersickness levels (Islam et al.,
2021; Dennison et al., 2016; Islam et al., 2022; Chang et al., 2021;
Shimada et al., 2023b; Jeong et al., 2022). The obtained findings
showed that Minimal processing, indeed, resulted in the lowest
cybersickness level prediction error. Therefore, if one is interested in
maximizing cybersickness prediction accuracy, performing minimal
pre-processing may be the way to go. It is suggested, however, that
careful scrutiny of the top-used features be evaluated, to ensure that
indeed the developedmodels are also relying on relevant neural data,
and not just physiological artifacts. Furthermore, the main sources
of artifacts should be precisely identified when implementing an
EEG-embedded multimodal system, as not all artifacts are useful for
predictions and may negatively impact outcomes.

4.2 Cybersickness and neural insights

4.2.1 Beta band insights
We showed that the features measuring CCPL and AM-CCPL

variability in the centro-parietal region (channels Cz, CP5, P3, Pz,
P4) within the beta and beta-mtheta bands indicated an increase in
coupling variability as the FMS score increased. With the increase in
cybersickness symptoms reflected by the FMS score, not only did we
observe a decrease in the interaction between distant regions of the
parietal area, but their connections also become more unstable.

Although a decrease in beta power is the most recurrent pattern
related to cybersickness in the literature (Chang et al., 2023; Jang
et al., 2022; Achanccaray and Sumioka, 2023), some studies showed
that spectral activity above 11 Hz showed no significant difference
(Nürnberger et al., 2021) (or inconsistent trend across subjects and

electrodes (Ozkan et al., 2023)) between baseline and severe
cybersickness conditions. In our analyses, features measuring beta
power were not representative of the most correlated features with
cybersickness. Thus, since most of the observed beta activity was
related to coupling measures, our results better align with the theory
that beta is linked to the temporary cohesion of distant cortical
regions (Li et al., 2021; Yang et al., 2022b), rather than due to a
specific change in local activity.

Overall, cortical networks formed within the beta band have
been associated with fundamental function of complex cognitive
processes, such as active waiting and anticipation of a stimulus (Betti
et al., 2021), temporary retention of sensory information (Liang
et al., 2021; Silberstein and Klimesch, 2006), and the dynamic
allocation of cognitive resources (Betti et al., 2021). The dynamic
nature of these networks explains the rapid changes in activity
observed in the beta band, thereby leading to the disparity in
observations across cybersickness studies. Moreover, power
change observed during high levels of cybersickness might be
attributed to cybersickness related physiological states such as
arousal (Agić and Mandić, 2019), cognitive effort (Li et al., 2021;
Arafat et al., 2018), as well as visual and mental fatigue (Foong et al.,
2019; Yue and Wang, 2019).

Moreover, decreases in the correlation between the beta-mtheta
and beta-malpha bands at the Pz and P4 electrodes were observed as
the intensity of the cybersickness symptoms increased. As shown in
Figures 14, 15, the power of the two beta-malpha and beta-mtheta
bands increases with the FMS score, and their correlation decreases.
These findings corroborate the importance of the AM features in
capturing the temporal dynamics of the beta band.

According to the literature, the theta band plays a role in the
temporal organization of cognitive processes (Herweg et al., 2016;
Popov et al., 2018). Therefore, we hypothesize that beta-mtheta may
be linked to the process of integration of sensory information
mentioned earlier. Moreover, since alpha is known to reflect
selective inhibition of population of neurons [as per (Ahn et al.,
2021) and (Sauseng et al., 2005)], and beta is associated with intense
cognitive activity [(Borra et al., 2023) and (Ghiani et al., 2021)], the
beta-malpha feature may reflect a selective attention mechanism.
Although alpha and beta are associated with opposite mechanisms,
it is hypothesized that their interaction may serve a complementary
role in the integration of extracted visual features into a coherent
representation of the object (Di Dona and Ronconi, 2023). The
proposed AM measures may be able to capturing and quantifying
this interaction.

4.2.2 Alpha band insights
In addition to its interaction with beta, the alpha band power in

the parietal cortex (channels P3, P4) was also highlighted in the
analysis of the most correlated features. The increase in alpha
activity in this area is indicative of sensory information
processing inhibition in response to the sensory conflict induced
by the VR experience. This activity appears to be a reliable marker of
cybersickness, as this pattern is recurrent across EEG studies (Yang
et al., 2022a; Ahn et al., 2021; Kim et al., 2019; Aboud, 2023).

Interestingly, the increase in alpha band identified by PSD
features co-occurred with an increase in alpha-mtheta feature,
suggesting that theta may play a regulatory role on inhibition
similarly to what is observed with the beta band. While theta,

TABLE 4 Summary of relevant features for cybersickness measurement.

Type Function Channel Band

PSD Mean CP6 Alpha-mTheta

PSD Std CP5 Alpha-mDelta

PSD Mean P3 Alpha

PSD Std Pz Alpha

AM Mean P4 Beta-mDelta

AM Std Pz Beta-mTheta

AM Mean P3 Gamma-mTheta

AM Mean Fz Gamma-mBeta

AM-BCPL Mean Fz Alpha-mTheta × Gamma-mBeta

AM-BCPL Std Pz Beta-mTheta × Beta-mAlpha

AM-BCPL Mean CP6 Gamma-mDelta × Gamma-mTheta

AM-CCPL Mean Cz × CP6 Beta

CCPL Std Pz × P3 Beta

BCPL Mean P4 Theta × Gamma
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alpha, and beta bands seem to have an intricate hierarchical role
aligning with the top-down theory, the location of relevant activity
in the cortex provides additional insights. In addition to revealing
interactions between AM bands that suggest the coordination of
distinct cognitive processes, AM features allow a better
understanding of the nature of neurological processes,
particularly those linked to top-down mechanisms.

4.2.3 Gamma band insights
The analysis the top-features obtained from the Minimal pre-

processing method revealed the presence of activity in the gamma
band potentially related to artifacts. Figure 18 showed that the
average power in amplitude of gamma-mbeta was correlated with
FMS scores, while Figure 13 showed the presence of average
coupling of the gamma band with other AM bands present in
Table 2. However, the presence of gamma modulated by theta
and alpha in the top BCPL features presented in Figure 13
suggests rather an underlying neurological origin related to the
symptom of cybersickness. Therefore, an increase in the coupling of
the gamma-mtheta band would not be caused by the presence of
artifacts but would serve as an additional marker of the brain’s
cognitive state during virtual reality sickness. Specifically, the fact
that gamma activity is regulated by low-frequency oscillations
suggests downward control mechanisms (Ahn et al., 2021).

The EEG high-frequency range, comprised of the gamma and
beta bands, is thought to reflect intense local cognitive activity, as
indicated by various studies (Freeman and Vitiello, 2015; Palva and
Palva, 2012; Jerbi et al., 2010; Jensen and Mazaheri, 2010). These
bands are often observed in the occipito-parietal region as correlated
with increased cybersickness symptoms (Yang et al., 2022a). Given
these findings, the gamma-band activity observed during the
participants’ exposure to the VR simulation can be, similarly to
the beta band, attributed to sensory information processing.
However, both bands have separate sources and serve different
roles. Gamma rhythms often involve interactions between
excitatory pyramidal cells and fast-spiking inter-neurons in the
formation of cell assemblies (Neske and Connors, 2016; Nunez
and Srinivasan, 2010). In contrast, beta band rhythms mainly
originating from gap junction-connected bursting pyramidal cells
enable the binding of different neural assemblies thereby allowing a
simultaneous manipulation of past and current input and the
integration from different modalities (Alavash et al., 2017; Kopell
et al., 2010).

4.2.4 Brain regions and lateralization insights
The increase in coupling variability observed in Figure 12 for the

beta (CCPL_std) and beta-mtheta (AM_CCPL_std) bands was
predominant in the left hemisphere (i.e., the features most
correlated with the FMS score in the beta-mtheta band concern
the coupling between the Pz electrode and the P3 and Cz electrodes,
and in the beta band between the CP5 electrode and the P3 and
P4 electrodes, as well as the coupling between P3 and Pz). The mean
coupling measurement (AM_CCPL_mean and CCPL_mean), in
turn, was more correlated with the FMS ratings on the right
hemisphere (i.e., with P4 and CP6 electrodes).

In addition, the left centro-parietal region (channels CP5, P3)
exhibited highly variable power in the alpha-mdelta band, thus
aligning with findings from Angioletti and Balconi (2022).

According to the study, increased delta band activity and
decreased alpha band activity in the centro-temporal cortex were
indicative of a shift in attention towards endogenous sensory
information. This lateralization of activity has been recognized in
the literature, with right-hemisphere parietal activity associated with
visuospatial attention to the environment, whereas the left
hemisphere has shown to be responsible for motor coordination
and planning related to proprioception (Rushworth et al., 2001).

In contrast, when processing visuo-spatial information, the
superior parietal lobe and the primary visual cortex are activated
(Rolls, 2020; Li et al., 2018; Andersson et al., 2019), which have
nearest electrodes Cz, Pz, P3, Pz, and P4. Consistent with these
studies, we posit that the coupling variability is associated with active
cognitive processes in this area, particularly those involving
proprioceptive information rather than visual information. This
implies that shifts of attention towards proprioceptive
information may either instigate or respond to cybersickness.
This hemispheric phenomenon during cybersickness was well
captured by the new AM features.

In addition to the lateralized role, the study in Limanowski and
Friston (2020) also revealed significant bilateral activity in the
superior parietal lobe–covered by electrodes Pz and Cz–where its
role would be to resolve inter-sensory conflict, enabling the
maintenance of a unique body representation. Therefore, this
region plays an important role in the management of the
cognitive processes that process sensory information.

Interestingly, within Cz, an increasing alpha-mdelta power
observed in Figure 9 was accompanied by an increase in its
coupling with the beta-mdelta and beta-mbeta features over Cz
and Fz observed in Figure 13. This coupling was shown with the
mutual information measurement analysis, thus suggesting a
nonlinear relationship between alpha and beta band activity.

Moreover, Figure 13 showed that the delta band frequently
appears to modulate the amplitude of both the alpha and beta bands,
thereby controlling their activity. This observation supports the top-
down control theory, which suggests long-distance control from the
brain’s decision-making centers to local cortical activity.

4.3 Limitations and future work

This research presents some limitations. First, the use of a non-
linear SVR kernel made it difficult to analyze feature ranking by
inherent regularization, which is possible only with linear kernels.
As a result, we relied on Spearman correlation for feature ranking,
which does not consider the interaction between features. Future
work may explore the use of more advanced feature selection
methods that take such interactions into account, such as the
mRMR (Minimum Redundancy Maximum Relevance) (Ding and
Peng, 2005).

The findings of this study apply primarily to open-loop VR
systems, where users have limited control over motion stimuli. EEG
patterns observed under these conditions may not directly translate
to closed-loop systems, where active control relies on anticipatory
mechanisms, as shown in research comparing drivers and
passengers (Dong et al., 2011; Rolnick and Lubow, 1991), in
contrast to the compensatory responses observed in open-loop
scenarios. While the study provides valuable insights into the
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neural correlates of cybersickness, its findings are primarily
applicable to open-loop VR systems. Given that closed-loop
systems are more common among general VR users, further
research is needed to validate the relevance of these markers in
user-controlled environments.

Moreover, here we relied on the efficiency metrics for pre-
processing algorithms based on the mutual information
difference with head accelerometer and one EOG time serie.
Other artifacts may contaminate the EEG signals, such as muscle
movements, poor electrode-skin contact, and sweat, to name few.
Continuous measurement of such signals are more challenging, but
alternate modalities, such as galvanic skin response, facial
electromyography (EMG), or impedance measurements may
provide additional cues for future works. Emerging VR headsets
are already including such modalities directly into the head-
mounted display, thus facilitating this type of analyses in the
future. In this study, we relied on a publicly available dataset,
which primarily included artifacts from ocular and head
movements. While these are common in VR scenarios, future
work should validate the impact of minimal preprocessing under
a broader range of artifact types to ensure the generalizability of
these findings.

Lastly, the proposed work relied on publicly available data,
which was collected from a limited number of participants, and
not all of them completed the full task. This limitation led to
variability across subjects, particularly at higher FMS rating
levels. Additionally, the dataset’s gender composition (31 females,
9 males) introduces a potential bias, as the findings may
predominantly reflect female responses, consistent with studies
reporting higher susceptibility to motion sickness among females
(Koslucher et al., 2015; Munafo et al., 2017). Furthermore, while this
study focused on the sensory conflict theory, other theories, such as
the ecological theory of motion sickness and postural instability
(Stanney et al., 2020; Riccio and Stoffregen, 1991), emphasize
individual differences and environmental interactions that were
beyond the scope of this work. Future research could investigate
these complementary perspectives and employ advanced cross-
subject generalization tools (e.g. (Albuquerque et al., 2022)) to
address these limitations.

5 Conclusion

In this study, we sought to answer two main research questions:
(1) what role does EEG pre-processing play on overall cybersickness
characterization?, and (2) what neural patterns can be indicative of
cybersickness levels? To help answer these questions, we processed a
publicly-available EEG-cybersickness dataset with three pre-
processing methods, from minimal to more complex methods
removing head and eye movements, as well as explored several
benchmark power spectral and coupling features. To assist with
question #2, we also explored new amplitude modulation power and
coupling measures to capture interactivity between frequency bands
and channels. We showed that, indeed, minimal processing kept
head and eye movement related cues that were important for
cybersickness detection, but did not provide a full glimpse into
the neural patterns associated with cybersickness. To this end, a
more complex pre-processing method was used. Ultimately, several

AM and coupling measures showed to be top-performing features,
thus emphasizing their complementarity to PSD parameters and
their importance for cybersickness prediction.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://zenodo.org/records/6373681.

Ethics statement

The studies involving humans were approved by the University
of Glasgow (No. 300200009), College of Science and Engineering.
The studies were conducted in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required from the participants or the
participants’ legal guardians/next of kin in accordance with the
national legislation and institutional requirements.

Author contributions

OR: Formal Analysis, Investigation, Software, Writing–original
draft, Writing–review and editing. DB: Conceptualization,
Methodology, Resources, Writing–original draft, Writing–review
and editing. GK: Conceptualization, Resources, Writing–original
draft, Writing–review and editing. SP: Conceptualization,
Methodology, Resources, Writing–original draft, Writing–review
and editing. NB: Writing–original draft, Writing–review and
editing. TF: Conceptualization, Methodology, Resources,
Supervision, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The authors
would like to acknowledge funding from the Natural Sciences and
Engineering Research Council of Canada, MITACS, and Thales
Digital Solutions Inc. under the Alliance Grants Program
(ALLRP576732 - 22).

Acknowledgments

ChatGPT-4 and Copilot were used in drafting of the very first
version of the introductory text. The generated text was then fully
reviewed and edited by the author(s), who take full responsibility for
the final content presented here.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Virtual Reality frontiersin.org21

Rosanne et al. 10.3389/frvir.2025.1468971

https://zenodo.org/records/6373681
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1468971


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aboud, A. (2023). Identifying cybersickness features from eeg data using deep learning.
University of Oulu. Master’s thesis, 67. Available at: https://oulurepo.oulu.fi/handle/
10024/46862.

Achanccaray, D., and Sumioka, H. (2023). “A physiological approach of presence and
vr sickness in simulated teleoperated social tasks,” in 2023 IEEE international
conference on systems, man, and cybernetics (SMC), 01-04 October 2023,
Honolulu, Oahu, HI, USA, (IEEE), 4562–4567.

Afshani, F., Shalbaf, A., Shalbaf, R., and Sleigh, J. (2019). Frontal–temporal functional
connectivity of eeg signal by standardized permutation mutual information during
anesthesia. Cogn. neurodynamics 13, 531–540. doi:10.1007/s11571-019-09553-w

Agić, A., and Mandić, L. (2019). Evaluation of cybersickness in virtual reality in
driving simulator. Acta Graph. znan. časopis za tisk. i graf. komun. 30 (2), 11–16. doi:10.
25027/agj2017.28.v30i2.210

Ahn, S., Gleghorn, D., Doudican, B., Fröhlich, F., and Cha, Y.-H. (2021). Transcranial
alternating current stimulation reduces network hypersynchrony and persistent vertigo.
Neuromodulation Technol. at Neural Interface 24 (5), 960–968. doi:10.1111/ner.13389

Akhand, M., Maria, M. A., Kamal, M. A. S., and Shimamura, T. (2024). Emotion
recognition from eeg signal enhancing feature map using partial mutual information.
Biomed. Signal Process. Control 88, 105691. doi:10.1016/j.bspc.2023.105691

Alavash, M., Daube, C., Wöstmann, M., Brandmeyer, A., and Obleser, J. (2017).
Large-scale network dynamics of beta-band oscillations underlie auditory perceptual
decision-making. Netw. Neurosci. 1 (2), 166–191. doi:10.1162/netn_a_00009

Albanese, G. A., Marini, F., Morasso, P., Campus, C., and Zenzeri, J. (2023). μ-band
desynchronization in the contralateral central and central-parietal areas predicts
proprioceptive acuity. Front. Hum. Neurosci. 17, 1000832. doi:10.3389/fnhum.2023.
1000832

Albuquerque, I., Monteiro, J., Rosanne, O., and Falk, T. H. (2022). Estimating
distribution shifts for predicting cross-subject generalization in
electroencephalography-based mental workload assessment. Front. Artif. Intell. 5,
992732. doi:10.3389/frai.2022.992732

Albuquerque, I., Tiwari, A., Parent, M., Cassani, R., Gagnon, J.-F., Lafond, D., et al.
(2020). Wauc: a multi-modal database for mental workload assessment under physical
activity. Front. Neurosci. 14, 549524. doi:10.3389/fnins.2020.549524

Andersson, P., Ragni, F., and Lingnau, A. (2019). Visual imagery during real-time
fmri neurofeedback from occipital and superior parietal cortex. NeuroImage 200,
332–343. doi:10.1016/j.neuroimage.2019.06.057

Angelov, V., Petkov, E., Shipkovenski, G., and Kalushkov, T. (2020). “Modern virtual
reality headsets,” in 2020 international congress on human-computer interaction,
optimization and robotic applications (HORA), 26-28 June 2020, (IEEE), 1–5.

Angioletti, L., and Balconi, M. (2022). Delta-alpha eeg pattern reflects the
interoceptive focus effect on interpersonal motor synchronization. Front.
Neuroergonomics 3, 1012810. doi:10.3389/fnrgo.2022.1012810

Arafat, I. M., Ferdous, S. M. S., and Quarles, J. (2018). “Cybersickness-provoking
virtual reality alters brain signals of persons with multiple sclerosis,” in 2018 IEEE
conference on virtual reality and 3D user interfaces (VR), 18-22 March 2018, (IEEE),
1–120.

Arcioni, B., Palmisano, S., Apthorp, D., and Kim, J. (2019). Postural stability predicts
the likelihood of cybersickness in active hmd-based virtual reality. Displays 58, 3–11.
doi:10.1016/j.displa.2018.07.001

Aubonnet, R., Hassan, M., Mheich, A., Di Lorenzo, G., Petersen, H., and Gargiulo, P.
(2023). Brain network dynamics in the alpha band during a complex postural control
task. J. Neural Eng. 20 (2), 026030. doi:10.1088/1741-2552/acc2e9

Bao, C., Hao, Z., and Dou, W. (2022). “Automatic removal of scalp eeg artifacts using
an interpretable hybrid deep learning method,” in 2022 IEEE international conference
on bioinformatics and biomedicine (BIBM), 6-8 Dec. 2022, (IEEE), 1451–1456.

Barteit, S., Lanfermann, L., Bärnighausen, T., Neuhann, F., and Beiersmann, C.
(2021). Augmented, mixed, and virtual reality-based head-mounted devices for
medical education: systematic review. JMIR serious games 9 (3), 29080. doi:10.
2196/29080

Benelli, A., Neri, F., Cinti, A., Pasqualetti, P., Romanella, S. M., Giannotta, A., et al.
(2023). Frequency-dependent reduction of cybersickness in virtual reality by
transcranial oscillatory stimulation of the vestibular cortex. Neurotherapeutics 20
(6), 1796–1807. doi:10.1007/s13311-023-01437-6

Bennett, J. D., John, S. E., Grayden, D. B., and Burkitt, A. N. (2021). “Universal
neurophysiological interpretation of eeg brain-computer interfaces,” in 2021 9th

international winter conference on brain-computer interface (BCI), 22-24 Feb. 2021,
(IEEE), 1–6.

Bernal, G., Hidalgo, N., Russomanno, C., and Maes, P. (2022). “Galea: a physiological
sensing system for behavioral research in virtual environments,” in IEEE Conference on
Virtual Reality and 3D User Interfaces (VR) (IEEE), 66–76.

Betti, V., Della Penna, S., Pasquale, F., and Corbetta, M. (2021). Spontaneous beta
band rhythms in the predictive coding of natural stimuli. Neurosci. 27 (2), 184–201.
doi:10.1177/1073858420928988

Bigdely-Shamlo, N., Touryan, J., Ojeda, A., Kothe, C., Mullen, T., and Robbins, K.
(2020). Automated eeg mega-analysis i: spectral and amplitude characteristics across
studies. NeuroImage 207, 116361. doi:10.1016/j.neuroimage.2019.116361

Bondar’, A., and Fedotchev, A. (2000). Concerning the amplitude modulation of the
human eeg. Hum. Physiol. 26, 393–399. doi:10.1007/bf02760265

Borra, D., Fantozzi, S., Bisi, M. C., and Magosso, E. (2023). Modulations of cortical
power and connectivity in alpha and beta bands during the preparation of reaching
movements. Sensors 23 (7), 3530. doi:10.3390/s23073530

Bouazizi, S., and Ltifi, H. (2024). Enhancing accuracy and interpretability in eeg-based
medical decision making using an explainable ensemble learning framework application
for stroke prediction. Decis. Support Syst. 178, 114126. doi:10.1016/j.dss.2023.114126

Cassani, R., and Falk, T. H. (2018). “Spectrotemporal modeling of biomedical signals:
theoretical foundation and applications,” in Encyclopedia of Biomedical Engineering.
Editor R. Narayan Elsevier 3, 144–163. doi:10.1016/B978-0-12-801238-3.99993-8

Cassani, R., and Falk, T. H. (2019). Alzheimer’s disease diagnosis and severity level
detection based on electroencephalography modulation spectral “patch” features. IEEE
J. Biomed. health Inf. 24 (7), 1982–1993. doi:10.1109/jbhi.2019.2953475

Cassani, R., Falk, T. H., Fraga, F. J., Kanda, P. A., and Anghinah, R. (2014). The effects
of automated artifact removal algorithms on electroencephalography-based alzheimer’s
disease diagnosis. Front. aging Neurosci. 6, 55. doi:10.3389/fnagi.2014.00055

Cassani, R., Moinnereau, M.-A., Ivanescu, L., Rosanne, O., and Falk, T. H. (2020b).
Neural interface instrumented virtual reality headsets: toward next-generation
immersive applications. IEEE Syst. Man, Cybern. Mag. 6 (3), 20–28. doi:10.1109/
msmc.2019.2953627

Cassani, R., Novak, G. S., Falk, T. H., and Oliveira, A. A. (2020a). Virtual reality and
non-invasive brain stimulation for rehabilitation applications: a systematic review.
J. neuroengineering rehabilitation 17, 16. doi:10.1186/s12984-020-00780-5

Celikcan, U. (2019). “Detection and mitigation of cybersickness via eeg-based visual
comfort improvement,” in 2019 3rd international symposium on multidisciplinary
studies and innovative technologies (ISMSIT), 11-13 Oct. 2019, (IEEE), 1–4.

Chaddad, A., Wu, Y., Kateb, R., and Bouridane, A. (2023). Electroencephalography
signal processing: a comprehensive review and analysis of methods and techniques.
Sensors 23 (14), 6434. doi:10.3390/s23146434

Chang, E., Billinghurst, M., and Yoo, B. (2023). Brain activity during cybersickness: a
scoping review. Virtual Real. 27 (3), 2073–2097. doi:10.1007/s10055-023-00795-y

Chang, E., Kim, H. T., and Yoo, B. (2021). Predicting cybersickness based on user’s
gaze behaviors in hmd-based virtual reality. J. Comput. Des. Eng. 8 (2), 728–739. doi:10.
1093/jcde/qwab010

Chiarion, G., Sparacino, L., Antonacci, Y., Faes, L., and Mesin, L. (2023). Connectivity
analysis in eeg data: a tutorial review of the state of the art and emerging trends.
Bioengineering 10 (3), 372. doi:10.3390/bioengineering10030372

Clerico, A., Gupta, R., and Falk, T. H. (2015). “Mutual information between inter-
hemispheric eeg spectro-temporal patterns: a new feature for automated affect
recognition,” in 2015 7th international IEEE/EMBS conference on neural
engineering (NER), 22-24 April 2015, (IEEE), 914–917.

Clerico, A., Tiwari, A., Gupta, R., Jayaraman, S., and Falk, T. H. (2018).
Electroencephalography amplitude modulation analysis for automated affective tagging of
music video clips. Front. Comput. Neurosci. 11, 115. doi:10.3389/fncom.2017.00115

Cullen, A. J., Dowling, N. L., Segrave, R., Carter, A., and Yücel, M. (2021). Exposure
therapy in a virtual environment: validation in obsessive compulsive disorder. J. anxiety
Disord. 80, 102404. doi:10.1016/j.janxdis.2021.102404

Delorme, A. (2023). Eeg is better left alone. Sci. Rep. 13 (1), 2372. doi:10.1038/s41598-
023-27528-0

Delorme, A., and Makeig, S. (2004). Eeglab: an open source toolbox for analysis of
single-trial eeg dynamics including independent component analysis. J. Neurosci.
methods 134 (1), 9–21. doi:10.1016/j.jneumeth.2003.10.009

Frontiers in Virtual Reality frontiersin.org22

Rosanne et al. 10.3389/frvir.2025.1468971

https://oulurepo.oulu.fi/handle/10024/46862
https://oulurepo.oulu.fi/handle/10024/46862
https://doi.org/10.1007/s11571-019-09553-w
https://doi.org/10.25027/agj2017.28.v30i2.210
https://doi.org/10.25027/agj2017.28.v30i2.210
https://doi.org/10.1111/ner.13389
https://doi.org/10.1016/j.bspc.2023.105691
https://doi.org/10.1162/netn_a_00009
https://doi.org/10.3389/fnhum.2023.1000832
https://doi.org/10.3389/fnhum.2023.1000832
https://doi.org/10.3389/frai.2022.992732
https://doi.org/10.3389/fnins.2020.549524
https://doi.org/10.1016/j.neuroimage.2019.06.057
https://doi.org/10.3389/fnrgo.2022.1012810
https://doi.org/10.1016/j.displa.2018.07.001
https://doi.org/10.1088/1741-2552/acc2e9
https://doi.org/10.2196/29080
https://doi.org/10.2196/29080
https://doi.org/10.1007/s13311-023-01437-6
https://doi.org/10.1177/1073858420928988
https://doi.org/10.1016/j.neuroimage.2019.116361
https://doi.org/10.1007/bf02760265
https://doi.org/10.3390/s23073530
https://doi.org/10.1016/j.dss.2023.114126
https://doi.org/10.1016/B978-0-12-801238-3.99993-8
https://doi.org/10.1109/jbhi.2019.2953475
https://doi.org/10.3389/fnagi.2014.00055
https://doi.org/10.1109/msmc.2019.2953627
https://doi.org/10.1109/msmc.2019.2953627
https://doi.org/10.1186/s12984-020-00780-5
https://doi.org/10.3390/s23146434
https://doi.org/10.1007/s10055-023-00795-y
https://doi.org/10.1093/jcde/qwab010
https://doi.org/10.1093/jcde/qwab010
https://doi.org/10.3390/bioengineering10030372
https://doi.org/10.3389/fncom.2017.00115
https://doi.org/10.1016/j.janxdis.2021.102404
https://doi.org/10.1038/s41598-023-27528-0
https://doi.org/10.1038/s41598-023-27528-0
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1468971


Dennison, M. S., Wisti, A. Z., and D’Zmura, M. (2016). Use of physiological signals to
predict cybersickness. Displays 44, 42–52. doi:10.1016/j.displa.2016.07.002

Di Dona, G., and Ronconi, L. (2023). Beta oscillations in vision: a (preconscious)
neural mechanism for the dorsal visual stream? Front. Psychol. 14, 1296483. doi:10.
3389/fpsyg.2023.1296483

Ding, C., and Peng, H. (2005). Minimum redundancy feature selection from
microarray gene expression data. J. Bioinforma. Comput. Biol. 3 (02), 185–205.
doi:10.1142/s0219720005001004

Dong, X., Yoshida, K., and Stoffregen, T. A. (2011). Control of a virtual vehicle
influences postural activity and motion sickness. J. Exp. Psychol. Appl. 17 (2), 128–138.
doi:10.1037/a0024097

Dymora, P., Kowal, B., Mazurek, M., and Romana, S. (2021). “The effects of virtual
reality technology application in the aircraft pilot training process,” in IOP Conf. Ser,
Mater. Sci. Eng., IOP Conference Series: Materials Science and Engineering, 2nd to 5th
September 2020, Bristol, United Kingdom: IOP Publishing, 1024, 012099. doi:10.1088/
1757-899x/1024/1/012099

Fan, F.-L., Xiong, J., Li, M., and Wang, G. (2021). On interpretability of artificial
neural networks: a survey. IEEE Trans. Radiat. Plasma Med. Sci. 5 (6), 741–760. doi:10.
1109/trpms.2021.3066428

Foong, R., Ang, K. K., Quek, C., Guan, C., Phua, K. S., Kuah, C. W. K., et al. (2019).
Assessment of the efficacy of eeg-based mi-bci with visual feedback and eeg correlates of
mental fatigue for upper-limb stroke rehabilitation. IEEE Trans. Biomed. Eng. 67 (3),
786–795. doi:10.1109/tbme.2019.2921198

Fracaro, S. G., Chan, P., Gallagher, T., Tehreem, Y., Toyoda, R., Bernaerts, K., et al.
(2021). Towards design guidelines for virtual reality training for the chemical industry.
Educ. Chem. Eng. 36, 12–23. doi:10.1016/j.ece.2021.01.014

Fraga, F. J., Falk, T. H., Kanda, P. A., and Anghinah, R. (2013). Characterizing
alzheimer’s disease severity via resting-awake eeg amplitude modulation analysis. PloS
one 8 (8), 72240. doi:10.1371/journal.pone.0072240

Freeman, W. J., and Vitiello, G. (2015). Matter and mind are entangled in eeg
amplitude modulation and its double. Berkeley, USA: University California.

Gamito, P., Oliveira, J., Santos, P., Morais, D., Saraiva, T., Pombal, M., et al. (2008).
Presence, immersion and cybersickness assessment through a test anxiety virtual
environment. Annu. Rev. CyberTherapy Telemedicine 6, 83–90.

Garrido, L. E., Frías-Hiciano, M., Moreno-Jiménez, M., Cruz, G. N., García-Batista, Z.
E., Guerra-Peña, K., et al. (2022). Focusing on cybersickness: pervasiveness, latent
trajectories, susceptibility, and effects on the virtual reality experience. Virtual Real. 26
(4), 1347–1371. doi:10.1007/s10055-022-00636-4

Ghiani, A., Maniglia, M., Battaglini, L., and Ronconi, L. (2021). Binding mechanisms
in visual perception and their link with neural oscillations: a review of evidence from
tacs. Front. Psychol. 12, 643677. doi:10.3389/fpsyg.2021.643677

Guna, J., Geršak, G., Humar, I., Krebl, M., Orel, M., Lu, H., et al. (2020). Virtual reality
sickness and challenges behind different technology and content settings. Mob. Netw.
Appl. 25, 1436–1445. doi:10.1007/s11036-019-01373-w

Herweg, N. A., Apitz, T., Leicht, G., Mulert, C., Fuentemilla, L., and Bunzeck, N.
(2016). Theta-alpha oscillations bind the hippocampus, prefrontal cortex, and striatum
during recollection: evidence from simultaneous eeg–fmri. J. Neurosci. 36 (12),
3579–3587. doi:10.1523/jneurosci.3629-15.2016

Hidalgo, V. M., Díaz, J., Mpodozis, J., and Letelier, J.-C. (2022). Envelope analysis of
the human alpha rhythm reveals eeg gaussianity. IEEE Trans. Biomed. Eng. 70 (4),
1242–1251. doi:10.1109/tbme.2022.3213840

Hilla, Y., Von Mankowski, J., Föcker, J., and Sauseng, P. (2020). Faster visual
information processing in video gamers is associated with eeg alpha amplitude
modulation. Front. Psychol. 11, 599788. doi:10.3389/fpsyg.2020.599788

Huberty, S., Desjardins, J., Collins, T., Elsabbagh, M., and O’Reilly, C. (2024).
Pylossless: a non-destructive eeg processing pipeline. bioRxiv. doi:10.1101/2024.01.
12.575323

Hwang, J.-U., Bang, J.-S., and Lee, S.-W. (2022). “Classification of motion sickness
levels using multimodal biosignals in real driving conditions,” in 2022 IEEE
international conference on systems, man, and cybernetics (SMC), 9-12 October
2022, (IEEE), 1304–1309.

Irmak, T., Pool, D. M., Winkel, K. N., and Happee, R. (2023). Validating models of
sensory conflict and perception for motion sickness prediction. Biol. Cybern. 117 (3),
185–209. doi:10.1007/s00422-023-00959-8

Islam, R., Desai, K., and Quarles, J. (2021). “Cybersickness prediction from integrated
hmd’s sensors: a multimodal deep fusion approach using eye-tracking and head-
tracking data,” in 2021 IEEE international symposium on mixed and augmented
reality (ISMAR), 4-8 October 2021, (IEEE), 31–40.

Islam, R., Desai, K., and Quarles, J. (2022). “Towards forecasting the onset of
cybersickness by fusing physiological, head-tracking and eye-tracking with
multimodal deep fusion network,” in 2022 IEEE international symposium on mixed
and augmented reality (ISMAR), 17-21 October 2022, (IEEE), 121–130.

Islam, R., Lee, Y., Jaloli, M., Muhammad, I., Zhu, D., Rad, P., et al. (2020). “Automatic
detection and prediction of cybersickness severity using deep neural networks from

user’s physiological signals,” in 2020 IEEE international symposium on mixed and
augmented reality (ISMAR), 9-13 November 2020, (IEEE), 400–411.

Jakus, G., Sodnik, J., and Miljković, N. (2022). Electrogastrogram-derived features for
automated sickness detection in driving simulator. Sensors 22 (22), 8616. doi:10.3390/
s22228616

Jang, K.-M., Kwon, M., Nam, S. G., Kim, D., and Lim, H. K. (2022). Estimating
objective (eeg) and subjective (ssq) cybersickness in people with susceptibility to motion
sickness. Appl. Ergon. 102, 103731. doi:10.1016/j.apergo.2022.103731

Jensen, O., and Mazaheri, A. (2010). Shaping functional architecture by oscillatory
alpha activity: gating by inhibition. Front. Hum. Neurosci. 4, 186. doi:10.3389/fnhum.
2010.00186

Jeong, D., Jeong, M., Yang, U., and Han, K. (2022). Eyes on me: investigating the role
and influence of eye-tracking data on user modeling in virtual reality. PLoS One 17 (12),
0278970. doi:10.1371/journal.pone.0278970

Jeong, D., Paik, S., Noh, Y., and Han, K. (2023). Mac: multimodal, attention-based
cybersickness prediction modeling in virtual reality. Virtual Real. 27 (3), 2315–2330.
doi:10.1007/s10055-023-00804-0

Jeong, D., Yoo, S., and Yun, J. (2019). “Cybersickness analysis with eeg using deep
learning algorithms,” in 2019 IEEE conference on virtual reality and 3D user interfaces
(VR), 23-27 March 2019, (IEEE), 827–835.

Jerbi, K., Vidal, J. R., Ossandon, T., Dalal, S. S., Jung, J., Hoffmann, D., et al. (2010).
Category-specific visual responses: an intracranial study comparing gamma, beta, alpha,
and ERP response selectivity. Front. Syst. Neurosci. 4, 195. doi:10.3389/fnhum.2010.
00195

Jin, W., Fan, J., Gromala, D., and Pasquier, P. (2018). “Automatic prediction of
cybersickness for virtual reality games,” in 2018 IEEE games, entertainment, media
conference (GEM), 15-17 Aug. 2018, (IEEE), 1–9.

Jin, X., Wang, J., Liu, L., and Lin, Y. (2023). Uncertainty-aware denoising network for
artifact removal in eeg signals. IEEE Trans. Neural Syst. Rehabilitation Eng. 31,
4470–4480. doi:10.1109/tnsre.2023.3330963

Katsigiannis, S., Willis, R., and Ramzan, N. (2018). A qoe and simulator sickness
evaluation of a smart-exercise-bike virtual reality system via user feedback and
physiological signals. IEEE Trans. Consumer Electron. 65 (1), 119–127. doi:10.1109/
tce.2018.2879065

Keshavarz, B., and Hecht, H. (2011). Validating an efficient method to quantify
motion sickness. Hum. factors 53 (4), 415–426. doi:10.1177/0018720811403736

Kim, A. (2024). “Exploring the relationship among cybersickness, locomotion
method, and heart rate variability when navigating a virtual environment,” in
2024 IEEE international conference on artificial intelligence and eXtended and
virtual reality (AIxVR), 17-19 January 2024, (IEEE), 215–220.

Kim, J., Luu, W., and Palmisano, S. (2020). Multisensory integration and the
experience of scene instability, presence and cybersickness in virtual environments.
Comput. Hum. Behav. 113, 106484. doi:10.1016/j.chb.2020.106484

Kim, J.-Y., Son, J.-B., Leem, H.-S., and Lee, S.-H. (2019). Psychophysiological
alteration after virtual reality experiences using smartphone-assisted head mount
displays: an eeg-based source localization study. Appl. Sci. 9 (12), 2501. doi:10.3390/
app9122501

Kim, Y. S., Won, J., Jang, S.-W., and Ko, J. (2022). Effects of cybersickness caused by
head-mounted display–based virtual reality on physiological responses: cross-sectional
study. JMIR Serious Games 10 (4), 37938. doi:10.2196/37938

Klados, M. A., Papadelis, C., Braun, C., and Bamidis, P. D. (2011). Reg-ica: a hybrid
methodology combining blind source separation and regression techniques for the
rejection of ocular artifacts. Biomed. Signal Process. Control 6 (3), 291–300. doi:10.1016/
j.bspc.2011.02.001

Klug, M., and Gramann, K. (2021). Identifying key factors for improving ica-based
decomposition of eeg data in mobile and stationary experiments. Eur. J. Neurosci. 54
(12), 8406–8420. doi:10.1111/ejn.14992

Kopell, N., Kramer, M. A., Malerba, P., and Whittington, M. A. (2010). Are different
rhythms good for different functions? Front. Hum. Neurosci. 4, 187. doi:10.3389/fnhum.
2010.00187

Koslucher, F., Haaland, E., Malsch, A., Webeler, J., and Stoffregen, T. A. (2015). Sex
differences in the incidence of motion sickness induced by linear visual oscillation.
Aerosp. Med. Hum. Perform. 86 (9), 787–793. doi:10.3357/amhp.4243.2015

Koutitas, G., Smith, S., and Lawrence, G. (2021). Performance evaluation of ar/vr
training technologies for ems first responders. Virtual Real. 25 (1), 83–94. doi:10.1007/
s10055-020-00436-8

Krokos, E., and Varshney, A. (2022). Quantifying vr cybersickness using eeg. Virtual
Real. 26 (1), 77–89. doi:10.1007/s10055-021-00517-2

Li, G., McGill, M., Brewster, S., Chen, C. P., Anguera, J. A., Gazzaley, A., et al. (2021).
Multimodal biosensing for vestibular network-based cybersickness detection. IEEE
J. Biomed. Health Inf. 26 (6), 2469–2480. doi:10.1109/jbhi.2021.3134024

Li, M., Pan, J., Gao, Y., Shen, Y., Luo, F., Dai, J., et al. (2022). Neurophysiological and
subjective analysis of vr emotion induction paradigm. IEEE Trans. Vis. Comput. Graph.
28 (11), 3832–3842. doi:10.1109/tvcg.2022.3203099

Frontiers in Virtual Reality frontiersin.org23

Rosanne et al. 10.3389/frvir.2025.1468971

https://doi.org/10.1016/j.displa.2016.07.002
https://doi.org/10.3389/fpsyg.2023.1296483
https://doi.org/10.3389/fpsyg.2023.1296483
https://doi.org/10.1142/s0219720005001004
https://doi.org/10.1037/a0024097
https://doi.org/10.1088/1757-899x/1024/1/012099
https://doi.org/10.1088/1757-899x/1024/1/012099
https://doi.org/10.1109/trpms.2021.3066428
https://doi.org/10.1109/trpms.2021.3066428
https://doi.org/10.1109/tbme.2019.2921198
https://doi.org/10.1016/j.ece.2021.01.014
https://doi.org/10.1371/journal.pone.0072240
https://doi.org/10.1007/s10055-022-00636-4
https://doi.org/10.3389/fpsyg.2021.643677
https://doi.org/10.1007/s11036-019-01373-w
https://doi.org/10.1523/jneurosci.3629-15.2016
https://doi.org/10.1109/tbme.2022.3213840
https://doi.org/10.3389/fpsyg.2020.599788
https://doi.org/10.1101/2024.01.12.575323
https://doi.org/10.1101/2024.01.12.575323
https://doi.org/10.1007/s00422-023-00959-8
https://doi.org/10.3390/s22228616
https://doi.org/10.3390/s22228616
https://doi.org/10.1016/j.apergo.2022.103731
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.1371/journal.pone.0278970
https://doi.org/10.1007/s10055-023-00804-0
https://doi.org/10.3389/fnhum.2010.00195
https://doi.org/10.3389/fnhum.2010.00195
https://doi.org/10.1109/tnsre.2023.3330963
https://doi.org/10.1109/tce.2018.2879065
https://doi.org/10.1109/tce.2018.2879065
https://doi.org/10.1177/0018720811403736
https://doi.org/10.1016/j.chb.2020.106484
https://doi.org/10.3390/app9122501
https://doi.org/10.3390/app9122501
https://doi.org/10.2196/37938
https://doi.org/10.1016/j.bspc.2011.02.001
https://doi.org/10.1016/j.bspc.2011.02.001
https://doi.org/10.1111/ejn.14992
https://doi.org/10.3389/fnhum.2010.00187
https://doi.org/10.3389/fnhum.2010.00187
https://doi.org/10.3357/amhp.4243.2015
https://doi.org/10.1007/s10055-020-00436-8
https://doi.org/10.1007/s10055-020-00436-8
https://doi.org/10.1007/s10055-021-00517-2
https://doi.org/10.1109/jbhi.2021.3134024
https://doi.org/10.1109/tvcg.2022.3203099
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1468971


Li, Y., Hu, X., Yu, Y., Zhao, K., Saalmann, Y. B., and Wang, L. (2018). Feedback from
human posterior parietal cortex enables visuospatial category representations as early as
primary visual cortex. Brain Behav. 8 (1), 00886. doi:10.1002/brb3.886

Liang, W.-K., Tseng, P., Yeh, J.-R., Huang, N. E., and Juan, C.-H. (2021).
Frontoparietal beta amplitude modulation and its interareal cross-frequency
coupling in visual working memory. Neuroscience 460, 69–87. doi:10.1016/j.
neuroscience.2021.02.013

Liao, C.-Y., Tai, S.-K., Chen, R.-C., and Hendry, H. (2020). Using eeg and deep
learning to predict motion sickness under wearing a virtual reality device. Ieee Access 8,
126784–126796. doi:10.1109/access.2020.3008165

Limanowski, J., and Friston, K. (2020). Attentional modulation of vision versus
proprioception during action. Cereb. Cortex 30 (3), 1637–1648. doi:10.1093/cercor/
bhz192

Liu, M., Yang, B., Xu, M., Zan, P., Chen, L., and Xia, X. (2024). Exploring quantitative
assessment of cybersickness in virtual reality using eeg signals and a cnn-eca-lstm
network. Displays 81, 102602. doi:10.1016/j.displa.2023.102602

Lopes, F., Leal, A., Pinto, M. F., Dourado, A., Schulze-Bonhage, A., Dümpelmann, M.,
et al. (2023). Removing artefacts and periodically retraining improve performance of
neural network-based seizure prediction models. Sci. Rep. 13 (1), 5918. doi:10.1038/
s41598-023-30864-w

Lopes, P., Tian, N., and Boulic, R. (2020). “Eye thought you were sick! exploring eye
behaviors for cybersickness detection in vr,” in Proceedings of the 13th ACM
SIGGRAPH Conference on Motion, Interaction and Games, October 16–18, 2020,
New York, NY, United States: Association for Computing Machinery, 1–10.

Lu, C.-F., Teng, S., Hung, C.-I., Tseng, P.-J., Lin, L.-T., Lee, P.-L., et al. (2011).
Reorganization of functional connectivity during the motor task using eeg
time–frequency cross mutual information analysis. Clin. Neurophysiol. 122 (8),
1569–1579. doi:10.1016/j.clinph.2011.01.050

Maples-Keller, J. L., Yasinski, C., Manjin, N., and Rothbaum, B. O. (2017). Virtual
reality-enhanced extinction of phobias and post-traumatic stress. Neurotherapeutics 14,
554–563. doi:10.1007/s13311-017-0534-y

Meigen, T., and Bach, M. (1999). On the statistical significance of electrophysiological
steady-state responses. Doc. Ophthalmol. 98, 207–232. doi:10.1023/a:1002097208337

Michel, C. M., and Brunet, D. (2019). Eeg source imaging: a practical review of the
analysis steps. Front. neurology 10, 325. doi:10.3389/fneur.2019.00325

Mills, B., Dykstra, P., Hansen, S., Miles, A., Rankin, T., Hopper, L., et al. (2020).
Virtual reality triage training can provide comparable simulation efficacy for
paramedicine students compared to live simulation-based scenarios. Prehospital
Emerg. Care 24 (4), 525–536. doi:10.1080/10903127.2019.1676345

Moinnereau, M.-A., and Falk, T. (2024). “Cybersickness marker prediction using a
biosensors-instrumented vr headset: a pilot study,” in 4th IEEE international conference
on human-machine systems/ICHMS 2024, 15-17 May 2024.

Moss, J. D., and Muth, E. R. (2011). Characteristics of head-mounted displays and
their effects on simulator sickness. Hum. factors 53 (3), 308–319. doi:10.1177/
0018720811405196

Mullen, T., Kothe, C., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S., et al. (2013). “Real-
time modeling and 3d visualization of source dynamics and connectivity using wearable
eeg,” in 2013 35th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 3–7 July 2013, (IEEE: EMBC), 2184–2187.

Munafo, J., Diedrick, M., and Stoffregen, T. A. (2017). The virtual reality head-
mounted display oculus rift induces motion sickness and is sexist in its effects.
Exp. brain Res. 235, 889–901. doi:10.1007/s00221-016-4846-7

Muñoz, J. E., Quintero, L., Stephens, C. L., and Pope, A. T. (2020). A
psychophysiological model of firearms training in police officers: a virtual reality
experiment for biocybernetic adaptation. Front. Psychol. 11, 683. doi:10.3389/fpsyg.
2020.00683

Nam, S., Jang, K.-M., Kwon, M., Lim, H. K., and Jeong, J. (2022).
Electroencephalogram microstates and functional connectivity of cybersickness.
Front. Hum. Neurosci. 16, 857768. doi:10.3389/fnhum.2022.857768

Neske, G. T., and Connors, B. W. (2016). Synchronized gamma-frequency inhibition
in neocortex depends on excitatory-inhibitory interactions but not electrical synapses.
J. neurophysiology 116 (2), 351–368. doi:10.1152/jn.00071.2016

Nunez, P. L., and Srinivasan, R. (2010). Scale and frequency chauvinism in brain
dynamics: too much emphasis on gamma band oscillations. Brain Struct. Funct. 215 (2),
67–71. doi:10.1007/s00429-010-0277-6

Nürnberger, M., Klingner, C., Witte, O. W., and Brodoehl, S. (2021). Mismatch of
visual-vestibular information in virtual reality: is motion sickness part of the brains
attempt to reduce the prediction error? Front. Hum. Neurosci. 15, 757735. doi:10.3389/
fnhum.2021.757735

Ozkan, A., Uyan, U., and Celikcan, U. (2023). Effects of speed, complexity and
stereoscopic vr cues on cybersickness examined via eeg and self-reported measures.
Displays 78, 102415. doi:10.1016/j.displa.2023.102415

Palva, S., and Palva, J. M. (2012). Discovering oscillatory interaction networks with m/
eeg: challenges and breakthroughs. Trends cognitive Sci. 16 (4), 219–230. doi:10.1016/j.
tics.2012.02.004

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pion-Tonachini, L., Kreutz-Delgado, K., and Makeig, S. (2019). Iclabel: an automated
electroencephalographic independent component classifier, dataset, and website.
NeuroImage 198, 181–197. doi:10.1016/j.neuroimage.2019.05.026

Popov, T., Popova, P., Harkotte, M., Awiszus, B., Rockstroh, B., and Miller, G. A.
(2018). Cross-frequency interactions between frontal theta and posterior alpha control
mechanisms foster working memory. NeuroImage 181, 728–733. doi:10.1016/j.
neuroimage.2018.07.067

Qu, C., Che, X., Ma, S., and Zhu, S. (2022). Bio-physiological-signals-based vr
cybersickness detection. CCF Trans. Pervasive Comput. Interact. 4 (3), 268–284.
doi:10.1007/s42486-022-00103-8

Rejer, I., and Górski, P. (2015). “Benefits of ica in the case of a few channel eeg,” in
2015 37th annual international conference of the IEEE engineering in medicine and
biology society (EMBC), 25-29 Aug. 2015, (IEEE), 7434–7437.

Reyero Lobo, P., and Perez, P. (2022). “Heart rate variability for non-intrusive
cybersickness detection,” in Proceedings of the 2022 ACM International Conference
on Interactive Media Experiences, June 22 - 24, 2022, New York, NY, United States:
Association for Computing Machinery, 221–228.

Riccio, G. E., and Stoffregen, T. A. (1991). An ecological theory of motion sickness
and postural instability. Ecol. Psychol. 3 (3), 195–240. doi:10.1207/s15326969eco0303_2

Richter, C. G., Thompson, W. H., Bosman, C. A., and Fries, P. (2017). Top-down beta
enhances bottom-up gamma. J. Neurosci. 37 (28), 6698–6711. doi:10.1523/jneurosci.
3771-16.2017

Risi, D., and Palmisano, S. (2019). Effects of postural stability, active control, exposure
duration and repeated exposures on hmd induced cybersickness. Displays 60, 9–17.
doi:10.1016/j.displa.2019.08.003

Robbins, K. A., Touryan, J., Mullen, T., Kothe, C., and Bigdely-Shamlo, N. (2020).
How sensitive are eeg results to preprocessing methods: a benchmarking study. IEEE
Trans. neural Syst. rehabilitation Eng. 28 (5), 1081–1090. doi:10.1109/tnsre.2020.
2980223

Rojas-Sánchez, M. A., Palos-Sánchez, P. R., and Folgado-Fernández, J. A. (2023).
Systematic literature review and bibliometric analysis on virtual reality and education.
Educ. Inf. Technol. 28 (1), 155–192. doi:10.1007/s10639-022-11167-5

Rolls, E. (2020). “The parietal cortex, spatial functions, and navigation,” in Brain
computations, 363–378.

Rolnick, A., and Lubow, R. (1991). Why is the driver rarely motion sick? the role of
controllability in motion sickness. Ergonomics 34 (7), 867–879. doi:10.1080/
00140139108964831

Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., and Faubert, J. (2019).
Deep learning-based electroencephalography analysis: a systematic review. J. neural
Eng. 16 (5), 051001. doi:10.1088/1741-2552/ab260c

Rushworth, M. F., Krams, M., and Passingham, R. E. (2001). The attentional role of
the left parietal cortex: the distinct lateralization and localization of motor attention in
the human brain. J. cognitive Neurosci. 13 (5), 698–710. doi:10.1162/
089892901750363244

Sadiya, S., Alhanai, T., and Ghassemi, M. M. (2021). “Artifact detection and
correction in eeg data: a review,” in 2021 10th international IEEE/EMBS conference
on neural engineering (NER), 4-6 May 2021, (IEEE), 495–498.

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., et al.
(2005). A shift of visual spatial attention is selectively associated with human eeg alpha
activity. Eur. J. Neurosci. 22 (11), 2917–2926. doi:10.1111/j.1460-9568.2005.04482.x

Sawada, Y., Itaguchi, Y., Hayashi, M., Aigo, K., Miyagi, T., Miki, M., et al. (2020).
Effects of synchronised engine sound and vibration presentation on visually induced
motion sickness. Sci. Rep. 10 (1), 7553. doi:10.1038/s41598-020-64302-y

Sepich, N. C., Jasper, A., Fieffer, S., Gilbert, S. B., Dorneich, M. C., and Kelly, J. W.
(2022). The impact of task workload on cybersickness. Front. Virtual Real. 3, 943409.
doi:10.3389/frvir.2022.943409

Setiowati, N., Wijayanto, T., and Trapsilawati, F. (2020). “Identifying cybersickness
when wearing a head-mounted display through heart rate variability data,” IOP Conf.
Ser, Mater. Sci. Eng., IOP Conference Series: Materials Science and Engineering,
31 October 2019, Makassar, Indonesia, Bristol, United Kingdom: IOP Publishing,
885, 012069 doi:10.1088/1757-899x/885/1/012069

Shimada, S., Ikei, Y., Nishiuchi, N., and Yem, V. (2023a). “Study of cybersickness
prediction in real time using eye tracking data,” in 2023 IEEE conference on virtual
reality and 3D user interfaces abstracts and workshops (VRW), 25-29 March 2023,
(IEEE), 871–872.

Shimada, S., Pannattee, P., Ikei, Y., Nishiuchi, N., and Yem, V. (2023b). High-
frequency cybersickness prediction using deep learning techniques with eye-related
indices. IEEE Access 11, 95825–95839. doi:10.1109/access.2023.3312216

Silberstein, R. (2006). “Dynamic sculpting of brain functional connectivity andmental
rotation aptitude in Neuper C,” in Event-related dynamics of brain oscillations. Editor
W. Klimesch (Amsterdam, Netherlands: Elsevier. Google Scholar), 63–78.

Souchet, A. D., Lourdeaux, D., Pagani, A., and Rebenitsch, L. (2023). A narrative
review of immersive virtual reality’s ergonomics and risks at the workplace:

Frontiers in Virtual Reality frontiersin.org24

Rosanne et al. 10.3389/frvir.2025.1468971

https://doi.org/10.1002/brb3.886
https://doi.org/10.1016/j.neuroscience.2021.02.013
https://doi.org/10.1016/j.neuroscience.2021.02.013
https://doi.org/10.1109/access.2020.3008165
https://doi.org/10.1093/cercor/bhz192
https://doi.org/10.1093/cercor/bhz192
https://doi.org/10.1016/j.displa.2023.102602
https://doi.org/10.1038/s41598-023-30864-w
https://doi.org/10.1038/s41598-023-30864-w
https://doi.org/10.1016/j.clinph.2011.01.050
https://doi.org/10.1007/s13311-017-0534-y
https://doi.org/10.1023/a:1002097208337
https://doi.org/10.3389/fneur.2019.00325
https://doi.org/10.1080/10903127.2019.1676345
https://doi.org/10.1177/0018720811405196
https://doi.org/10.1177/0018720811405196
https://doi.org/10.1007/s00221-016-4846-7
https://doi.org/10.3389/fpsyg.2020.00683
https://doi.org/10.3389/fpsyg.2020.00683
https://doi.org/10.3389/fnhum.2022.857768
https://doi.org/10.1152/jn.00071.2016
https://doi.org/10.1007/s00429-010-0277-6
https://doi.org/10.3389/fnhum.2021.757735
https://doi.org/10.3389/fnhum.2021.757735
https://doi.org/10.1016/j.displa.2023.102415
https://doi.org/10.1016/j.tics.2012.02.004
https://doi.org/10.1016/j.tics.2012.02.004
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/j.neuroimage.2018.07.067
https://doi.org/10.1016/j.neuroimage.2018.07.067
https://doi.org/10.1007/s42486-022-00103-8
https://doi.org/10.1207/s15326969eco0303_2
https://doi.org/10.1523/jneurosci.3771-16.2017
https://doi.org/10.1523/jneurosci.3771-16.2017
https://doi.org/10.1016/j.displa.2019.08.003
https://doi.org/10.1109/tnsre.2020.2980223
https://doi.org/10.1109/tnsre.2020.2980223
https://doi.org/10.1007/s10639-022-11167-5
https://doi.org/10.1080/00140139108964831
https://doi.org/10.1080/00140139108964831
https://doi.org/10.1088/1741-2552/ab260c
https://doi.org/10.1162/089892901750363244
https://doi.org/10.1162/089892901750363244
https://doi.org/10.1111/j.1460-9568.2005.04482.x
https://doi.org/10.1038/s41598-020-64302-y
https://doi.org/10.3389/frvir.2022.943409
https://doi.org/10.1088/1757-899x/885/1/012069
https://doi.org/10.1109/access.2023.3312216
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1468971


cybersickness, visual fatigue, muscular fatigue, acute stress, andmental overload.Virtual
Real. 27 (1), 19–50. doi:10.1007/s10055-022-00672-0

Stanney, K., Lawson, B. D., Rokers, B., Dennison, M., Fidopiastis, C., Stoffregen, T.,
et al. (2020). Identifying causes of and solutions for cybersickness in immersive
technology: reformulation of a research and development agenda. Int.
J. Human–Computer Interact. 36 (19), 1783–1803. doi:10.1080/10447318.2020.1828535

Stecuła, K. (2022). Virtual reality applications market analysis—on the example of
steam digital platform. Informatics 9, 100. doi:10.3390/informatics9040100

Stern, R. (2002). The psychophysiology of nausea. Acta Biol. Hung. 53 (4), 589–600.
doi:10.1556/abiol.53.2002.4.17

Summerfield, C., and Mangels, J. A. (2005). Coherent theta-band eeg activity predicts
item-context binding during encoding. Neuroimage 24 (3), 692–703. doi:10.1016/j.
neuroimage.2004.09.012

Sun, C., and Mou, C. (2023). Survey on the research direction of eeg-based signal
processing. Front. Neurosci. 17, 1203059. doi:10.3389/fnins.2023.1203059

Tajmirriahi, M., Amini, Z., Rabbani, H., and Kafieh, R. (2022). An interpretable
convolutional neural network for p300 detection: analysis of time frequency features for
limited data. IEEE Sensors J. 22 (9), 8685–8692. doi:10.1109/jsen.2022.3159475

Tanner, D., Norton, J. J., Morgan-Short, K., and Luck, S. J. (2016). On high-pass filter
artifacts (they’re real) and baseline correction (it’sa good idea) in erp/ermf analysis.
J. Neurosci. methods 266, 166–170. doi:10.1016/j.jneumeth.2016.01.002

Thatcher, R., Soler, E., North, D., and Otte, G. (2020). Independent components
analysis “artifact correction” distorts eeg phase in artifact free segments. J. Neurol.
Neurobiol. 6 (4), 5–7. doi:10.16966/2379-7150.172

Thompson, T., Steffert, T., Ros, T., Leach, J., and Gruzelier, J. (2008). Eeg applications
for sport and performance. Methods 45 (4), 279–288. doi:10.1016/j.ymeth.2008.07.006

Trajin, B., Chabert, M., Regnier, J., and Faucher, J. (2008). “Space vector analysis for
the diagnosis of high frequency amplitude and phase modulations in induction motor
stator current,” in 5th international conference on condition monitoring and machinery
failure prevention technologies-CM/MFPT 200810, 1–8.

Trambaiolli, L. R., Cassani, R., and Falk, T. H. (2020). “Eeg spectro-temporal
amplitude modulation as a measurement of cortical hemodynamics: an eeg-fnirs
study,” in 2020 42nd annual international conference of the IEEE engineering in
medicine and biology society (EMBC), 20-24 July 2020, (IEEE), 3481–3484.

Trambaiolli, L. R., Falk, T. H., Fraga, F. J., Anghinah, R., and Lorena, A. C. (2011).
“Eeg spectro-temporal modulation energy: a new feature for automated diagnosis of
alzheimer’s disease,” in 2011 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (IEEE), 3828–3831.

Tsimenidis, S. (2020). Limitations of deep neural networks: a discussion of g. marcus’
critical appraisal of deep learning. arXiv Prepr. arXiv:2012, 15754. doi:10.48550/arXiv.
2012.15754

Walter, E., and Dassonville, P. (2008). Visuospatial contextual processing in the
parietal cortex: an fmri investigation of the induced roelofs effect. Neuroimage 42 (4),
1686–1697. doi:10.1016/j.neuroimage.2008.06.016

Wang, J., Liang, H.-N., Monteiro, D., Xu,W., and Xiao, J. (2022). Real-time prediction
of simulator sickness in virtual reality games. IEEE Trans. Games 15 (2), 252–261.
doi:10.1109/tg.2022.3178539

Wu, S., and Lin, T. (2011). “Exploring the use of physiology in adaptive game design,”
in 2011 international conference on consumer electronics, communications and
networks (CECNet), 16-18 April 2011, (IEEE), 1280–1283.

Yang, A. H. X., Kasabov, N., and Cakmak, Y. O. (2022a). Machine learning methods
for the study of cybersickness: a systematic review. Brain Inf. 9 (1), 24. doi:10.1186/
s40708-022-00172-6

Yang, S., Hwang, H.-S., Zhu, B.-H., Chen, J., Enkhzaya, G., Wang, Z.-J., et al. (2022b).
Evaluating the alterations induced by virtual reality in cerebral small-world networks
using graph theory analysis with electroencephalography. Brain Sci. 12 (12), 1630.
doi:10.3390/brainsci12121630

Yildirim, C. (2020). “A review of deep learning approaches to eeg-based classification
of cybersickness in virtual reality,” in 2020 IEEE international conference on artificial
intelligence and virtual reality (AIVR), 14-18 Dec. 2020, (IEEE), 351–357.

Yin, J., and Chen, J. D. (2013). Electrogastrography: methodology, validation and
applications. J. Neurogastroenterol. Motil. 19 (1), 5–17. doi:10.5056/jnm.2013.19.1.5

Yu, J., Li, C., Lou, K., Wei, C., and Liu, Q. (2022). Embedding decomposition for
artifacts removal in eeg signals. J. Neural Eng. 19 (2), 026052. doi:10.1088/1741-2552/
ac63eb

Yue, K., and Wang, D. (2019). Eeg-based 3d visual fatigue evaluation using cnn.
Electronics 8 (11), 1208. doi:10.3390/electronics8111208

Zao, J. K., Jung, T.-P., Chang, H.-M., Gan, T.-T., Wang, Y.-T., Lin, Y.-P., et al. (2016).
“Augmenting vr/ar applications with eeg/eog monitoring and oculo-vestibular
recoupling,” in Foundations of augmented cognition: neuroergonomics and
operational neuroscience: 10th international conference, AC 2016, held as part of
HCI international 2016, Toronto, ON, Canada, july 17-22, 2016, proceedings, Part I 10,
Toronto, ON, Canada, July 17-22, 2016, (Springer), 121–131.

Zhou, X., Liu, C., Zhai, L., Jia, Z., Guan, C., and Liu, Y. (2023). Interpretable and
robust ai in eeg systems: a survey. arXiv Prepr. arXiv:2304.10755. doi:10.48550/arXiv.
2304.10755

Frontiers in Virtual Reality frontiersin.org25

Rosanne et al. 10.3389/frvir.2025.1468971

https://doi.org/10.1007/s10055-022-00672-0
https://doi.org/10.1080/10447318.2020.1828535
https://doi.org/10.3390/informatics9040100
https://doi.org/10.1556/abiol.53.2002.4.17
https://doi.org/10.1016/j.neuroimage.2004.09.012
https://doi.org/10.1016/j.neuroimage.2004.09.012
https://doi.org/10.3389/fnins.2023.1203059
https://doi.org/10.1109/jsen.2022.3159475
https://doi.org/10.1016/j.jneumeth.2016.01.002
https://doi.org/10.16966/2379-7150.172
https://doi.org/10.1016/j.ymeth.2008.07.006
https://doi.org/10.48550/arXiv.2012.15754
https://doi.org/10.48550/arXiv.2012.15754
https://doi.org/10.1016/j.neuroimage.2008.06.016
https://doi.org/10.1109/tg.2022.3178539
https://doi.org/10.1186/s40708-022-00172-6
https://doi.org/10.1186/s40708-022-00172-6
https://doi.org/10.3390/brainsci12121630
https://doi.org/10.5056/jnm.2013.19.1.5
https://doi.org/10.1088/1741-2552/ac63eb
https://doi.org/10.1088/1741-2552/ac63eb
https://doi.org/10.3390/electronics8111208
https://doi.org/10.48550/arXiv.2304.10755
https://doi.org/10.48550/arXiv.2304.10755
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1468971


Glossary
AAR Automatic Artifact Removal

AM Amplitude Modulation

AM-BCPL Amplitude Modulation inter-band coupling

AM-CCPL Amplitude Modulation inter-channel coupling

AMP Amplitude Modulation Power

ASR artifact Subspace Reconstruction

BCPL Inter-band coupling

BFT Band-filtered time series

CCPL Inter-channel coupling

EOG Electrooculography

FIR Finite impulse response

FMS Fast Motion Sickness

ICA Independent Component Analysis

PSD Power Spectral Density

SNR Signal-to-Noise Ratio

SSQ Simulator Sickness Questionnaire

SVR Support Vector Regressor

VR Virtual Reality
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