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This study investigates inter-brain synchronization during a collaborative visual
search task performed in Virtual Reality (VR), and compares it to the same task
executed in a real-world environment. Previous research has demonstrated that
collaborative visual search in real-world settings leads to measurable neural
synchrony, as captured through EEG hyperscanning. However, limited work
has explored whether similar neural dynamics occur in immersive VR. In this
study, we recorded EEG hyperscanning data from participant pairs engaged in a
joint visual search task, conducted in both VR and physical settings. Our results
reveal that inter-brain synchronization occurred in the VR condition at levels
comparable to the real world. Furthermore, greater neural synchrony was
positively correlated with better task performance across both conditions.
These findings demonstrate that VR is a viable platform for studying inter-
brain dynamics in collaborative tasks, and support its use for future team-
based neuroscience research in simulated environments.
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1 Introduction

This paper explores brain synchronization between people in Virtual Reality (VR) and
compares it to brain synchronization in the real world. Recent neuroscience research has
shown that brain activity can synchronize between people engaged in a cooperative task
(WilliamsWoolley et al., 2007; Mu et al., 2018; Toppi et al., 2016). The synchronization level
can be a measure of efficiency in collaboration, that may enhance the utility of standard
outcome measures such as response time, accuracy and engagement. Brain synchronization
may provide feedback for facilitating collaboration, enhancing learning and improving team
performance (Szymanski et al., 2017). This is because successful teams have a “shared
attention” resulting from more functional connectivity between the neuroelectric activities
of the team members (Astolfi et al., 2011).

Brain synchronization has been extensively studied in wide range of tasks involving
social interactions, particularly in cooperative and competitive scenarios (Park et al., 2022;
Mendoza-Armenta et al., 2024; ?). However, there has been very little study of brain
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synchronization in VR. Previous research suggests that we tend to
behave similarly in both the real-world and VR (Bailenson et al.,
2003; Gillath et al., 2008). So a key question is: “does brain
synchronization occur in VR in a similar manner to in the real
world”? This is important because there may be perceptual and
cognitive differences between reality and VR that may make it more
difficult to observe brain synchronization.

Relatively little research has been conducted on brain
synchronization in VR, but preliminary results are promising as
they show collaborative tasks in VR can significantly impact inter-
brain synchrony. Gumilar et al. (2022) found that that gaze direction
plays a crucial role in inter-brain synchrony during collaboration in
VR (see Figure 1). Furthermore, collaborative design behavior in VR
based on inter-brain synchrony has been explored, highlighting the
differences in collaborative design behavior between VR and the real
world, and providing objective evidence for studying human neural
activity in natural environments (Ogawa and Shimada, 2023). For
example, Gumilar et al. (2021b) reports on a hyperscanning study in
VR that replicates a previous study on hyperscanning in a real world
finger tracking task (Yun et al., 2012), finding that brain
synchronization also occurs in VR. Similarly, emerging work in
the field of hyperscanning and VR by other researchers (Barde et al.,
2019; Hajika et al., 2019) demonstrates that hyperscanning can be
used across a range of applications to improve collaborative
experiences in VR. Overall, VR has shown a similar impact on
inter-brain synchrony in comparison to the real world environment
during collaborative tasks, offering promising avenues for future
research and improvements in collaborative VR experiences.

These studies have focused on joint action tasks in VR, such
as finger tracking (Gumilar et al., 2021b) and elevating
collaborative artistic experiences (Hajika et al., 2019), but not

many study have been conducted on joint attention tasks. Joint
attention refers to the coordinated focus of two or more
individuals on a common target simultaneously. This concept
plays a crucial role in social interactions, aiding in understanding
others’ intentions and goals (Battich et al., 2021). Research
suggests that joint attention can enhance visual information
encoding and processing, potentially impacting multisensory
integration tasks (Lee et al., 2021). Previous research has
showed that brain synchronization occurs in real world joint
attention tasks, such as a visual search activity (Szymanski et al.,
2017). In this paper we report on brain synchronization in a VR
joint attention task and compare it to brain synchronization in
the same task conducted in the real world.

The main contributions of this paper are:

1. Presenting the first known example of a brain synchronization
study completed in VR for a joint attention task.

2. Providing a comparative study comparing brain
synchronization in both VR and the real world for the same
joint attention task.

3. Demonstrating empirical evidence of correlation between task
performance and inter-brain synchrony.

In the remainder of the paper we first provide an outline of
related work and how it informs our study. Then we describe the
methods used to conduct the study. This is followed by reviewing the
data analysis techniques used for the study and the results obtained
following data processing. Next, we present a discussion section
where we put the results we have obtained into context and discuss
on the limitations. Finally, we conclude with the ways in which this
research can be further extended.

FIGURE 1
Analysis used in hyperscanning to investigate between brain relationships. (A) From Yun et al. (2012) The phase locking value (PLV) topography
between various regions of interest for two participants is depicted for theta (4–7.5 Hz) and beta (12–30 Hz) oscillations. (B) From (Gumilar et al., 2022)
Significant number of inter-brain connections appeared to be in the same frequencies for theta (4–7.5 Hz) band.
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2 Background

Our research is based on earlier studies in hyperscanning, visual
search tasks, and inter-brain synchrony across virtual reality (VR)
and real-world settings. In this section, we review pivotal related
work in each domain, elucidating how our investigation extends
beyond these foundations to explore neural alignment in immersive
VR environments.

2.1 Inter-brain synchrony in VR and
real-world

Inter-brain synchrony (IBS) refers to the way brain activity syncs
up between people during social interactions, helping them
understand and feel for each other. Mental effort, social signals,
and virtual characters can have a big impact on how well this brain
connection works.

High cognitive load can weaken the ability to process social cues by
reducing inter-brain synchrony. For instance, research has shown that
conflicting social signals can elicit neural correlates of cognitive conflict,
as measured by alpha and mid-brain theta oscillations, highlighting the
impact of cognitive load on neural alignment during interactions
(Abubshait et al., 2022; Gumilar et al., 2021c). Also, inter-brain
synchrony aligns neural activity during social interactions, enhancing
understanding and empathy, with eye gaze increasing gamma-band IBS
in real-world (RW) settings and alpha-band IBS in virtual reality (VR),
although VR’s effectiveness lags due to technological limits like delayed
feedback (Luft et al., 2022; Gumilar et al., 2022).

Recent studies on team training and performance, including
research using dual-EEG recordings, suggest that theta and alpha
brainwaves play a key role in how we think during tasks (Cross et al.,
2022). Theta waves, often tied to working memory and staying
focused, seem to predict how well people do in group activities
(Alekseichuk et al., 2016). In real-life situations, stronger inter-brain
synchrony is related to improved teamwork, such as making
decisions together or coordinating smoothly (Reinero et al., 2021;
Mu et al., 2018). However, in VR, things become more complicated.
The difficulty of the task and how real the VR world feels can affect
these brainwaves. For example, while engaging VR setups can keep
theta-driven focus sharp, issues such as clunky embodiment, slow
feedback, or awkward eye-contact simulations might throw off the
natural rhythm of alpha and theta waves between teammates (Pan
et al., 2024).

In addition, research revealed that resting-state EEG
markers–those brain signals captured when someone is at
rest–can predict how well individuals will perform and even tell
team members apart in a two-person group. Moreover, during
simpler tasks, theta and alpha brainwaves proved to be solid
clues about how someone would handle tougher training
scenarios later on. These results highlight just how crucial brain
oscillations are for teamwork, both in thinking andmoving together,
supporting what earlier studies have found about brain activity
during cooperative efforts (Cross et al., 2022; Schwartz et al., 2022).

2.1.1 Insights from VR-Mediated neural coupling
Inter-brain synchrony reflects the degree to which neural

oscillations align between individuals during social exchanges.

The differences in synchrony observed between virtual reality
and real-world contexts may stem from the distinct
neurophysiological mechanisms underlying these interactions. In
everyday social interactions, the combination of sensory
information and environmental social cues helps forming a clear
perception, enhancing attention, and strengthening brain-to-brain
connections (Seijdel et al., 2024; Cuomo, 2025). Virtual reality
environments, however, can either support or hinder inter-brain
synchrony depending on factors like immersion level, perceptual
consistency, and attention demands. High-immersion VR setups
can improve synchrony by increasing shared attention and
sensorimotor feedback (Tarr et al., 2018). However, low-quality
VR systems or poor visual-auditory alignment may cause attentional
distractions, reducing neural coordination. This highlights the
complex role of technology in influencing inter-brain dynamics.

Also, visual immersion and embodiment within virtual
environments significantly enhance inter-brain synchrony by
aligning participants’ sensory experiences and reinforcing neural
coupling (Hu et al., 2017). Studies indicate that immersive settings
with shared visual perspectives elicit synchronized neural activity,
strengthening interpersonal connections during collaborative tasks
(Gumilar et al., 2022). Furthermore, embodiment, defined as the
perception of inhabiting a virtual body, modulates neural responses,
influencing both perceptual andmotor processes during interactions
(Khalil et al., 2022). Perceptual coherence, facilitated by
synchronized sensory inputs, promotes unified experiences,
enhancing the smoothness of interactions and the robustness of
neural alignment (Pérez et al., 2017). These findings highlight the
necessity of integrating these factors to design virtual environments
that effectively support collaborative neural dynamics.

2.2 Hyperscanning

Hyperscanning is the simultaneous acquisition or recording of
neural activity from two ormore individuals who are interacting during
a particular motor or cognitive task (Babiloni and Astolfi, 2014). This
can be done using several recording techniques. For example, functional
near-infrared spectroscopy (fNIRS) hyperscanning uses InfraRed (IR)
light shone into the head as a method to measure inter-personal
interactions in a natural context (Scholkmann et al., 2013).
Functional Magnetic Resonance Imaging (fMRI) images deeper into
the brain, and is a technique which was used for hyperscanning for the
first time in 2002 (Montague et al., 2002). However, the most common
method is to usemultiple electroencephalographic (EEG) recordings for
simultaneous measurement of brains during a cooperative task
(Babiloni et al., 2006).

The primary purpose of using hyperscanning is to look for
synchronization of brain activity, which tends to occur when two or
more people collaborate to achieve a common goal. For instance, by
using hyperscanning in a training scenario, it is possible to
accurately assess neural connectivity between brains in real-time
which can enable the trainer to make dynamic and more accurate
decisions about the approach to be taken during the training process
(Barde et al., 2020a). Accurate real-time analysis is one of the
overarching goals of the research that is being pursued in the use
of hyperscanning and VR. However, advances in this field have only
been possible in recent years.
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The number of hyperscanning studies have increased owing to
the growing availability of low cost, high quality EEG hardware and
software tools. In recent years, EEG hardware has evolved from
being an unwieldy and wired piece of equipment to a wireless and
easy-to-use tool. Modern day EEG headsets enable researchers to
run studies in more real-world environments (i.e., outside the lab)
and even allow for ambulatory studies to be carried out (Liebherr
et al., 2021).

A common thread that links a majority of the hyperscanning
studies is that they were mostly carried out in a traditional lab setting
(Saito et al., 2010; Yun et al., 2012) or were set-up to mimic a real-
world scenario (Babiloni et al., 2006; Toppi et al., 2016). Some
studies attempted to investigate the effect of face-to-face interactions
between participants using a variety of different tasks, including
finger pointing/tracking exercises (Yun et al., 2012), music
performance (Acquadro et al., 2016) and economic exchange (?).
The finger tracking task is especially popular among researchers
because gesture is thought to represent the most basic form of social
interaction, besides eye gaze (Yun et al., 2012). Finger tracking
allows us to look at synchrony from a neural as well as physical
perspective, i.e., physical manifestation of inter-brain synchrony by
means of identical or mirrored body movements among
participant pairs.

Hyperscanning has been used to explore collaboration in the real
world, but there has been little research that applies it in VR (Barde
et al., 2019, 2020a; Gumilar et al., 2021a). In one of the few examples,
Gumilar et al. (2021b) conducted a finger tracking task in VR,
extending an earlier work Barde et al. (2019). Both of these previous
work report that they were able to observe brain synchronization in
VR that matched brain activity in the same real world task. However,
they were based on joint action tasks, not on joint attention task. A
related study demonstrated that inter-brain synchrony can occur in
cooperative online gaming without physical co-presence, using EEG
to measure brain activity during a multiplayer game (Wikström
et al., 2022). The findings showed that synchronization across
frequency bands decreased during a playing session but was
elevated in the second session, indicating that virtual
environments, though not specifically VR, can support inter-
brain synchrony dynamics. This study highlights the potential for
virtual settings to facilitate neural alignment, although it notes the
dependence on task design and session progression. Another study
used hyperscanning EEG to show that collaborative spatial
navigation in VR involves neural synchronization, with distinct
delta, theta, and alpha band patterns reflecting role-specific
strategies and increased delta causality, but reduced theta/gamma
couplings in faster dyads (Chuang et al., 2024). Moreover, a research
found that real-like avatars in VR produced the highest number of
significant EEG sensor pairs, followed by full-body and head-hand,
suggesting that more realistic avatars enhance neural
synchronization (Yigitbas and Kaltschmidt, 2024). Furthermore, a
study using EEG hyperscanning demonstrated that a shared mixed-
reality (MR) environment enhances inter-brain synchronization
during cooperative motor tasks compared to individual tasks,
with a significant correlation between task performance and
synchronization, validating MR’s effectiveness for collaboration
(Ogawa and Shimada, 2023). Lastly, a study in an Augmented
Reality (AR) setting showed that performing synchronized
movements beforehand in remote AR education improves quiz

scores, brain synchrony between students, and feelings of
closeness, compared to unsynchronized movements, with a clear
link between quiz scores and brain synchrony, indicating that
synchronized movements improve learning (You et al., 2024).

Given the lack of extended research in this area, we attempt to
bridge this gap by studying how VR and neural activity
measurements can be combined to investigate cognitive tasks in
collaborative VR environments. Our study attempts to gather
information on how monitoring neural activity in VR can
measure inter-brain synchrony in VR environments on a joint
attention task, and how it is comparable to measuring inter-brain
synchrony in the real-world environment. In particular we explore
brain synchronization in a collaboration on a visual search task in
VR, extending earlier work done in the real-world (Szymanski
et al., 2017).

2.3 Joint attention and visual search tasks

Vision is considered the most dominant of our senses (Krishna,
2012). We rely on it to navigate through environments we
encounter, and it also serves as a way to corroborate what the
auditory sense detects in an environment (Witkin et al., 1952;
Jackson, 1953). The visual faculty relies on a host of complex
cues–color, depth, motion etc., – in order to make accurate
judgements regarding regions or objects of interest, and the
environments in which these are based. Visual search tasks
involve finding specific objects among distractors in a visual
display, whether in 2D or 3D environments, with varying levels
of cognitive demand (Santos, 2023; Anderson and Lee, 2023; Zhang
and Pan, 2022). These tasks can range from routine searches like
locating keys on a table to more critical searches like identifying
tumors inmedical images (Samiei and Clark, 2022). The efficiency of
visual search can be influenced by factors such as the size and
eccentricity of the target object, with larger and more eccentric
targets being found faster with fewer fixations (Wolfe, 2010).

It is the complexities encompassing the visual sense which
makes visual search tasks a great tool to analyze a number of
factors that affect interaction, cognition and other processes. For
example, researchers have used visual search tasks to explore the
difference between how visual and auditory cues are assimilated in
order to locate a target in an environment (Barde et al., 2020). Other
researchers have looked at how motivation and the strategies
employed by users affect performance in a visual search task
(Boot et al., 2009).

In the neuroscience domain, visual search tasks have been used
to induce neural activity of a given band of frequencies (Tallon-
Baudry et al., 1997), to study memory (Postle, 2021; Peterson et al.,
2001) and to study the effect of visual distractors on task
performance (Won et al., 2020; Tanrıkulu et al., 2020), among
other things. While an exhaustive review is beyond the scope of
this paper, we can clearly see that the visual search is a popular
method employed by researchers. Visual search tasks can also be
adapted to study a range of cognitive and neurological processes that
affect our functioning as humans. Employing visual search tasks in
VR offers a valuable method for studying human attention
processes. Studies have shown that VR can provide a more
ecologically valid setting for visual search experiments, allowing
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for improved visual realism and participant interaction (Hadnett-
Hunter et al., 2022). Also, research has demonstrated that immersive
VR technology can effectively evaluate spatial and distractor
inhibition attention using complex 3D objects, replicating
previous findings and supporting the use of VR for such
assessments (Ajana et al., 2023). Additionally, distractions in VR
activities can impact task performance, with task-oriented selective
attention enhancing performance without compromising the flow
experience (Bian et al., 2020). So, this collective evidence reveals the
potential of VR for investigating visual search tasks and its
connection to attention mechanisms, including joint
attention systems.

There are a number of papers that have used hyperscanning
to explore brain synchronization in joint attention tasks in the
real world (Lachat et al., 2012; Szymanski et al., 2017). For
example, Lachat et al. (2012) performed a hyperscanning
study and used an eye-gaze task in a face-to-face setup to find
the relation between joint attention and alpha and mu bands.
Szymanski et al. (2017) provided evidence that during joint
attention in a visual search study, local and inter-brain phase
synchronization increases and behavioral team performance is
correlated with phase synchronization. They also found that
neural phase synchronization correlates to social facilitation,
which may reveal neural correlates for better performance
among some teams when compared to others. In our work, we
make a novel contribution by presenting results from the first
known joint attention brain synchronization experiment in VR,
and compare them with the real world studies. In the next section
we describe our experimental method, including the hypothesis,
task, and participants.

3 Method

3.1 Hypothesis

The main purpose of our study was to evaluate inter-brain
synchrony in a VR environment in a representative joint visual
search task, comparing the results of a real-world study with
those obtained in VR. We believe that such comparisons are good
indicators of how real-world tasks translate to VR by maintaining
similar neural activity as seen in the real-world (Gumilar et al.,
2021b). They also provide empirical evidence that demonstrates
neural inter-connectivity can be achieved in a manner similar to
that in the real-world. Furthermore, use of VR has shown positive
impacts on collaboration efficiency (Xanthidou et al., 2023).
Previous studies have highlighted that virtual knowledge
sharing positively influences team effectiveness, especially
when supported by collaborative technologies (Farooq and
Bashir, 2023). Additionally, remote collaboration in virtual
reality, particularly through head-mounted displays (HMD),
enhances the sense of co-presence among users, indicating
improved collaboration effectiveness (Latini et al., 2022; Bayro
et al., 2022). So, we can investigate if brain synchronization in VR
collaborative tasks is higher than similar tasks in the “real-world”
environment.

To that end, the three hypotheses for our research are:

• H1: Inter-brain phase synchronization will increase during
visual search task cooperation in the real-world (reproducing
the result of previous real world studies).

• H2: Phase synchronization will occur during a visual search
task in VR in amanner which is not significantly different than
the real-world.

• H3: Task performance in VR will be higher than in the
real-world.

3.2 Participants

Twenty-eight individuals (9 female, 19 male) were recruited via
flyers, university mailing lists, social media advertisements and
personal contacts. Participants were mostly university students or
staff aged between 21 and 39 years (M = 29.11, SD = 6.27). All dyads
knew each other previously (i.e., were classmates or colleagues). All
participants were right-handed, presented normal or corrected-to-
normal visual acuity, and provided informed written consent to
participate in the study. No neurological, psychiatric or
psychological problems or brain injury history were reported by
any of the participants, as determined in a preliminary screening
phase. They were also asked if they have previous experience with
VR. Nine out of 28 participants (32%) didn’t have any experience
with VR while 51.5% used VR several times per month.

Prior to conducting the experiment we calculated the required
sample size to achieve an acceptable power in the analysis using
G*Power version 3.1. We found that to achieve a power of 0.85,
24 participants were required. Hence, our sample size is sufficient for
the experimental validity. Participation was voluntary, and each of
the participants were given a $40 gift voucher as compensation for
taking part in the study.

3.3 Task and Procedure

The visual search task for participants involved locating target
objects within a static scene. This static scene included 82 distractor
objects usually found in an office or home (e.g., toys, kitchenware,
office stationary and small home objects). The objects used and the
experiment method followed was adapted from a similar real world
study reported in Szymanski et al. (2017).

The object combinations were displayed on a wall using a video
projector for the real-world condition (RW) and were presented in a
head mounted display (HMD) for the VR condition (Figure 2).
Participants could see a blank scene displaying an object name in the
VR environment asking them to count a specific target object on the
shelves in front of them, which could be zero, one or two objects
amongst a collection of random objects. The same object never
appeared as a target more than once in the same display condition,
either VR or RW, and each time a different combination of random
objects was displayed for them. This was done to prevent
participants from being able to memorize and predict the
placement of target objects during the experiment. These
conditions were designed for both the RW and VR
environments. Users had the freedom to look around in the VR
environment as they normally would in the real-world. This was
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done to mimic, as closely as possible, the task carried out in the real-
world condition.

The study was designed as a 2 × 2 within-subjects experiment
with two factors: 1) environment and 2) cooperation.
Participants experienced four conditions in total; in each
environment (VR or RW) there were two conditions where
participants performed the task individually, or completed the
task as a team. In team conditions, participants sat side by side in
the same room, having the same view and they were given a
question about the object which they had to look for in the next
scene, and to find the number of occurrences of that specific
object. Participants were instructed in team condition to decide
on a strategy to collaborate and find the objects faster and in a
more accurate way. For example, they could divide the shelves in
2 sections (i.e., top/down or left/right of the shelves) and each
participant looked for the objects only in half of the shelves. In
both individual and team conditions, each participant was asked
to find 14 objects in 14 different scenes of random placements in
each environment condition (VR and Real-world). In the VR
mode, participants had to wear an HTC VIVE VR HMD and
experienced the same number of scenes. The VIVE headset
featured a 110 field of view, a refresh rate of 90 Hz and built-
in headphones.

In this study, the order of environments and conditions for study
groups was randomly selected to counterbalance the experiment,
however the order of questions was the same for each group. In the
individual condition in both environments, participants were given
the same set of questions and objects placement while each
participant could not see the other participants’ scenes and
questions during the experiment in the study room.

After three practice trials, the main task started in which
participants saw three scenes with collections of objects from
where the participants were asked to find target objects and
count their number. The target object that was required to be
found was communicated to them in advance by showing a
message on the screen asking to find a certain object. Once
reading the question, participants pulled the trigger on a
handheld controller which showed a scene in which a shelf of
objects was displayed. Participants were required to search this

scene to decide on the number of targets they had found.
Following this, they moved to the next scene by pressing the
trigger on a handheld controller which showed the same
question again and they had to call out the answer, i.e., the
number of objects they found. EEG signals were recorded at the
beginning of the search task and paused at the end of the task so the
synchronization was based on the starting and ending time of the
activity (Figure 3). This ensured that neural activity that was
recorded only represented the time that was spent on
collaborative search tasks which was mostly less than 20 s to
answer each question.

After each team condition, subjects were surveyed on how they
felt about their partner’s presence and cooperation during the visual
search task. This was done by asking them to complete a short Likert
scale survey (see Figure 4), where they rated items on a scale of 1
(totally disagree) to 7 (totally agree). This questionnaire was adapted
from a study by Gupta et al. (2016).

3.4 EEG data acquisition

During the tasks, neural activity was recorded using two sets
of 32 electrodes (Ag/AgCl) Brain Vision LiveAmp EEG devices1.
Separate amplifiers with individual ground electrodes were used
for each person linked to two PCs to collect synchronized brain
signals. For the placement of EEG electrodes on scalp, the
international 10–20 system was used. The EEG channels were
recorded at a sampling rate of 512 Hz. Two other computers with
multiple synchronized screens were used for stimulus
presentation. Prior to data collection, we adjusted electrode
placements until all signals indicating optimal impedance <
10 kΩ and minimizing the proportion of bad channels to near
zero across conditions. While we did not quantify impedance
variations post hoc, we assessed signal quality by comparing alpha
power spectra (8–13 Hz) between conditions, finding no

FIGURE 2
A set of 82 distracting objects in (A) the real world adapted from Szymanski et al. (2017) and (B) the VR environment.

1 https://pressrelease.brainproducts.com/liveamp/
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significant differences (RW: M = 1.8 μV2, SD = 0.4; VR: M =
1.7 μV2, SD = 0.5; t(23) = 0.82, p = 0.42). These values align with
typical resting-state EEG norms, suggesting that technical
limitations from the VR headset did not introduce substantial
biases in our data.

3.5 Behavioral analysis

The accuracy of answers was calculated for each individual and
team conditions using the data analysis methods provided in prior
work (Szymanski et al., 2017). Efficiency was calculated based on the
number of correct answers, and the time participants took to find
the objects was also recorded. These were compared between the
team and the individual sessions as well as VR and RW
environments.

3.6 EEG data analysis

Two pairs (one male-male and one female-female) were
excluded from the analysis due to technical issues with EEG
recording hardware. As a result, only data from 24 participants
(twelve pairs) was analysed. The recorded data was processed using
MNE Python2 and the HyPyP library for Python (Ayrolles et al.,
2021). This was done to determine which environment showed a
higher neural synchrony in social sessions. Prior research suggested
that the Circular Correlation Coefficient (CCorr) offers enhanced
robustness in detecting artificial inter-brain associations (Burgess,
2013). Therefore, we utilized CCorr (Jammalamadaka and Sengupta,

FIGURE 3
EEG hyperscanning during the study in (A) the real world and (B) the VR environment.

FIGURE 4
Likert scale rating questions on co-presence and cooperation adapted from Gupta et al. (2016).

2 https://mne.tools/stable/index.html
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2001) to evaluate the synchrony between the two cerebral signals.
The integration of this equation into the HyPyP library facilitated its
application for analyzing inter-brain synchronization data.

To reduce electrical interference, the EEG data were initially pre-
processed using a 50 Hz notch filter and a band-pass filter (1–60 Hz).
The filters were implemented using the MNE-Python library
(Gramfort et al., 2013), employing finite impulse response (FIR)
filters to preserve phase information critical for PLV calculations.
Default filter orders were used as provided by MNE-Python version
22.3.0, ensuring minimal distortion of the phase relationships
between signals.

Motion artifacts induced by the VR headset, along with eye
movement and muscle (EMG/EOG) noise, were addressed using a
machine learning technique from MNE-Python integrated into the
HyPyP module, a Python tool for inter-brain synchrony research as
well as independent component analysis (ICA). To assess signal
quality, the signal-to-noise ratio (SNR) was estimated post-
preprocessing for a subset of data, yielding an average SNR of
approximately 3.2 dB (SD = 0.8 dB) across conditions, indicating
acceptable signal clarity for phase synchronization analysis despite
the challenges posed by VR headset movements. An automatic
rejection threshold, implemented via the auto-reject package (Jas
et al., 2017), rejected approximately 5%–10% of epochs across
participants, with paired rejection ensuring synchrony analysis
integrity. When a participant’s data was rejected, the
corresponding epoch for the other participant was automatically
rejected as well.

3.7 Phase locking value (PLV) analysis

The Phase Locking Value (PLV) is a measurement of the relative
phase difference between two signals (Lachaux et al., 1999). In EEG
hyperscanning, the PLV is used to analyze the phase of pairs of
simultaneous EEG signals. This is one of the most frequently used
methods to demonstrate that brain-to-brain coupling exists between
individuals in social interactions (Haresign et al., 2022; Gumilar
et al., 2021a). The PLV takes values on the scale of [0, 1] in which
0 being the situation where there is no phase synchrony and
1 reflecting the situation where relative phases are identical in all
trials. From filtered and pre-processed EEG data, the phase value of
the signal using the Hilbert transform can be extracted. As originally
proposed by Lachaux et al. (1999), PLV is derived from this phase
information by calculating a time-varying value for neural
synchrony and is computed as:

PLVij � 1
N

∑ e ϕi−ϕj( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ (1)

Where N indicates the total number of epochs (the data organized
into equal parts according to a specified time frame) and ϕi and ϕj
indicates the phase of the signals for the electrodes i and j and ϕi-ϕj
are the electrode phase differences. Inter-brain synchrony analysis
calculates the PLV value for each pair of electrodes i and j, each
belonging to a different subject.

In this study, we began by calculating the PLV, denoted as the
“real” PLV for this analysis, for each set of 1024 (32 × 32)
connections, performed according to Equation 1. For the control

measure, random PLV scores were generated by randomizing the
epoch of the recorded data prior to PLV calculation. This
randomization process was iterated 200 times for each electrode
pair, resulting in a distribution of 200 randomized PLV scores.
Subsequently, the “real” PLV score for each electrode pair was
compared to the distribution of randomized PLV scores. This
comparison allowed for the evaluation of whether the observed
PLV score exceeded the level of random chance synchronization
(Yun et al., 2012), and if it was significant.

4 Results

4.1 Statistical analysis

In this study we adopted the PLV method using the HyPyP
package and used the analysis method of Gumilar et al. (2022) to
find the functional connectivity between the two interacting brains.
Before processing raw data, the MNE-Python package (Gramfort
et al., 2013) and the HyPyP package were utilized for pre-processing
the raw EEG signals. According to their method, there were
1024 electrode pairs (32 × 32 electrodes) for each pair of
participants. So, there were 1024 PLV scores between 0 and
1 that indicated the magnitude of inter-brain synchrony for all
possible pairs. By applying a cut-off (p < 0.05) to a distribution of the
PLV scores (1024 PLV scores for each pair of subjects), we extracted
only those scores that were below the threshold. Pairs with PLV
scores above the 95% confidence interval were retained as significant
PLV scores which reflect the top 5% highest synchronization and we
call them significant connections or significant connectivity. The
total number of aligned electrode pairs (significant connections)
were counted (out of 1024 total pairs) for each condition along with
the frequency bands (i.e., theta, alpha, beta, and gamma) within
which they were observed. Tables 1, 2 presents an overview of the
total number of connections that were observed along with a band-
wise breakdown of the inter-brain connections.

4.2 EEG data analysis results

4.2.1 Individual vs team conditions
Tables 1, 2 summarises the results of each conditions. Our data

analysis using paired t-tests shows that the number of significant
connections between participants’ brains in the team condition
(mean = 283.8, SD = 27.3) was significantly higher
(t(11) � 17.395, p< .001) than the individual condition (mean =
241.7, SD = 26.2) in the RW condition. This result supports H1,
which is confirming the findings from prior work (Szymanski et al.,
2017). In support of H2, the results from the VR conditions also
indicated the number of significant connections significantly
increased (t(11) � 18.655, p< .001) in the team condition
(mean = 300, SD = 23.8) compared to the individual condition
(mean = 263.1, SD = 26.4). Finally, the results comparing the team
conditions between VR and RW, shows a menainful increase
(t(11) � 3.249, p � .007) in number of significant connections in
VR (mean = 300, SD = 23.8) compared to the RW condition
(mean � 283.8, SD � 27.3).
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We also found that the average response time of each pair in the
RW environment in the individual condition was significantly less
than the response time in the team condition in the same
environment (t(11) � 4.01, p � 0.0002). However, the
difference between the average response time of each pairs in the
VR environment compared to the team condition was not

statistically significant (t(11) � 1.07, p � 0.3) (Table 3). The
answers in team conditions in both environments were more
accurate (Team-VR: mean = 12, SD = 1.8; Individual-VR:
mean = 11, SD = 1.3; Team-RW: mean = 11.4, SD = 1;
Individual-RW: mean = 10.7, SD = 1.3) with a paired t-test
analysis showing a statistically significant increase in correct

TABLE 1 Number of strong brain connections in team condition (VR vs RW environments).

Alpha low Alpha high Theta Beta Gamma Total

Group VR RW VR RW VR RW VR RW VR RW VR RW

G1 29 29 64 52 38 36 68 56 66 54 265 227

G2 29 29 58 64 52 48 76 76 84 80 299 297

G3 29 31 64 68 52 58 88 58 80 80 313 295

G4 31 29 72 66 58 50 92 88 86 78 339 311

G5 33 29 70 58 60 50 68 72 88 66 319 275

G6 31 31 68 68 50 38 78 72 66 52 293 261

G7 29 29 66 64 64 46 84 78 74 72 317 289

G8 29 29 68 64 48 48 78 78 74 76 297 295

G9 31 29 72 72 48 58 82 74 70 70 303 303

G10 31 31 70 64 48 54 78 82 76 72 303 303

G11 31 31 72 64 42 40 60 58 44 48 249 241

G12 33 31 68 64 54 56 60 82 88 76 303 309

Average 30.5 29.8 67.7 64 51.2 48.5 76 72.8 74.7 68.7 300 283.8

SD 1.51 1.03 4.16 5.05 7.31 7.49 10.23 10.39 12.49 11.29 23.84 27.34

TABLE 2 Number of strong brain connections in individual condition (VR vs RW environments).

Alpha low Alpha high Theta Beta Gamma Total

Group VR RW VR RW VR RW VR RW VR RW VR RW

G1 22 19 54 44 29 22 56 54 59 49 220 188

G2 23 25 45 50 45 32 67 65 78 75 258 247

G3 21 12 56 55 46 56 76 53 77 76 276 252

G4 34 13 65 61 46 54 79 76 79 70 303 274

G5 23 17 63 54 54 43 65 68 79 64 284 246

G6 26 22 58 47 45 29 76 65 60 53 265 216

G7 19 19 57 57 60 39 78 64 65 71 279 250

G8 23 19 57 52 45 39 77 70 69 71 271 251

G9 19 18 64 49 37 50 76 68 63 59 259 244

G10 26 22 65 56 38 54 73 78 56 61 258 271

G11 30 23 60 56 35 36 49 54 34 34 208 203

G12 25 23 59 52 57 38 58 78 77 67 276 258

Average 24.3 19.3 58.6 52.8 44.8 41.0 69.2 66.1 66.3 62.5 263.1 241.7

SD 4.4 4.0 5.6 4.7 9.1 10.8 10.1 8.9 13.3 12.3 26.4 26.2
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answers in team condition compared to individual condition in VR
(t(11) � 2.07, p � 0.02) while in the RW condition the
significance level was statistically significant (t(11) � 2.07, p �
0.05).

4.2.2 Regression analysis
Regression analysis results demonstrate a significant positive

relationship between task performance and inter-brain synchrony in
RW condition (R − squared � 0.8913, p< 0.05) as well as VR
condition (R − squared � 0.8724, p< 0.05). This significant
correlation supports our findings with further evidence on the
relationship between neural alignment and performance
outcomes in both RW and VR Figure 5.

The regression model for real-world condition is articulated
as follows:

TotalConnections = 315.38 − 8.91 × Time +
7.22 × correct answers

The regression model, with an R-squared value of 0.8913,
accounts for approximately 89% of the variance in total,
indicating robust predictive capability. The Mean Squared Error
(MSE) of 74.46 reinforces the model’s correctness by signifying a
comparatively minor average squared deviation between observed
and projected values.

For VR dataset, the regression model is expressed as:
TotalConnections = 260.48 − 4.26 × Time +

7.51 × correct answers

TABLE 3 Response time for individual condition comparing to team condition in both VR and RW environments.

Group RW-T VR-T RW-I (P1) RW-I (P2) VR-I (P1) VR-I (P2)

G1 16.7 15.1 12.6 13.6 13.5 14.1

G2 13 12.5 11.8 11.7 12.8 13.3

G3 12.8 10.7 12 12.3 12.1 12

G4 11.5 9.2 8.9 8.6 8.6 9.9

G5 13.2 12.5 11 11.7 10.2 11.3

G6 15.4 11.5 9.8 9.2 11 10.1

G7 12.1 9.5 9 8.7 8.6 9.4

G8 10.6 11.8 11.3 10.8 12.6 11.6

G9 10.2 9.6 9.7 8.9 8.5 9.2

G10 11.5 12.5 8.9 10.7 13.6 11

G11 15.8 16.5 14.5 11.5 15.1 13.8

G12 10.8 11.2 9.3 12 12.7 12.1

Average 12.8 11.9 10.7 10.8 11.6 11.5

SD 2.1 2.2 1.8 1.6 2.2 1.7

FIGURE 5
Regression analysis for task performance and inter-brain synchrony in RW (R − squared � 0.8913,p<0.05) and VR (R − squared � 0.8724,p<0.05).
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The regression model explains about 87.24% of the changes in
the data, as shown by an R-squared value of 0.8724, which means it
fits the data well. The Mean Squared Error (MSE) of 66.47 shows
that the average difference between predicted and real total scores is
quite small, proving the model predicts steadily. These numbers
together show the model works well to find the total score, with
Time and correct answers having big but different effects on the
result (Figure 6).

More checkingwith residual analysis and Bland-Altman plots, done
in both Real-World (RW) and Virtual Reality (VR) settings, shows the
regression models give fair predictions. The average residual is almost
zero (−2.37 × 10−15), meaning no big errors lean one way, and the
standard deviation of residuals (SD ≈ 8.63) shows errors spread out in a
normal way. Bland-Altman analysis says most prediction mistakes stay
within a good range of −17 to +17, proving themodels are useful in real
situations (Figure 7).

Overall, both models catch the data patterns well, as seen in their
high R-squared values and decent prediction correctness. Though
the data is a bit off from being perfectly normal, this happens often
in real studies and does not ruin the results. Future work could try
changing the data or using stronger methods to improve the
findings’ sureness. Still, for practical use, the models are strong
and trustworthy enough.

4.2.3 Correlation test
By running data analysis using PLV method and calculating the

number of significant connections between all 1024 electrode pairs
in each group in both real-world and VR conditions, we noticed a
high correlation between the correct answers and number of
significant connections in Beta, Gamma and Theta bands in both
VR and RW, but no significant correlation was found in alpha-low
and alpha-high bands, as expected (Table 4). This is because the

FIGURE 6
Residuals histograms in the RW and VR conditions.

FIGURE 7
Bland-Altman comparison of measurement agreement in RW and VR conditions.
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TABLE 4 Correlation test results (r: correlation coefficient) between the number of significant connections and correct answers or average response time.

Band Correlation (Correct answers) -
real world

Correlation (time) - real
world

Correlation (correct
answers) - VR

Correlation (time)
- VR

Total 0.85 −0.93 0.91 −0.87

Alpha_Low −0.01 0.19 0.06 −0.01

Alpha_High 0.3 −0.52 0.09 −0.08

Theta 0.73 −0.83 0.67 −0.71

Beta 0.76 −0.73 0.76 −0.74

Gamma 0.73 −0.8 0.68 −0.61

FIGURE 8
Comparing brain areas which reflected more inter-brain synchrony appeared in most subjects.
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Alpha band is mostly related to relaxation state or slow activity
which was not included in our cooperative task.

We also noticed that there was a high number of connections
between specific brain areas which appeared in most of participants
during the search task in Beta, Theta and Gamma bands (Figure 8)
specially in the same electrode pairs. However, the strong connections
that appeared in both VR and the RW environments were almost the
same. Figure 9 presents all the brain areas with significant correlation

seen in all subjects which represents the similarity of most areas in
subject pairs. These heat-map grids also show that there are less
connections in the frontal areas of the brain and the strongest
connections appears from center to back areas of the brain.
Although there were many common areas with strong connections
in both VR and the RW environments, some connections were seen
distinctively in each environment (Figure 10). In theVR conditionmore
unique active brain areas have been seen in Beta and Theta bands.

FIGURE 9
Comparing brain areas which reflected more inter-brain synchrony appeared in all subjects.
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4.2.4 Beta band
Based on the correlation analysis, we observed that in the Beta

band (13.5–29.5 Hz) the number of significant connections
demonstrated a strong correlation with the number of correct
answers in both the RW and VR environments (RW = 0.76,
VR = 0.76). The Beta band is generally thought to be associated
with listening, thinking, analytical problem solving and decision
making (Sherlin, 2009). Given that these were activities that the
participants were involved in as part of the task, the increased
activity in this band, especially for pairs with a greater percentage of
correct answers, appears logical and in line with previous literature
(Szymanski et al., 2017).

4.2.5 Gamma band
Our analysis also revealed a strong correlation between the

Gamma band and total number of correct answers, i.e., the
greater the number of significant connection observed
between the participants’ brains in Gamma band, the better
performance (RW = 0.73, VR = 0.68). Gamma is measured
between 30 and 44 Hz and is the only frequency band found
in every part of the brain. The subjective feeling states for gamma
bands are thinking and integrated thoughts, high-level
information processing and binding (Kaiser and
Lutzenberger, 2003). It’s also associated with information-rich
task processing which was a part of this study.

4.2.6 Theta band
Theta activity is classified as “slow” (4–7 Hz) and is associated

with creativity, intuition, daydreaming, and fantasizing. It also
serves as a storage area for memories and emotions, sensations
(Carson, 2010; Bekkedal et al., 2011). We observed a strong
correlation between the number of correct answers and the
number of significant brain connections in Theta band in both
RW and VR environments (RW = 0.73, VR = 0.67).

4.2.7 All bands results
Our statistical analysis reveals an improvement in the number of

correct answers (Figure 11) and faster response time (Figure 12)
when the total number of significant brain connections across all
bands is increased. Correlation tests showed a meaningful

correlation between total number of strong connections and
correct answers in the VR and RW conditions as well as
response time in both environments (Table 4).

4.3 Subjective data analysis

Statistical analysis of the subjective data using a correlation test
and the Wilcoxon signed-rank test demonstrated that there
appeared to be no correlation between how the participants felt
and the proportion of correct answers, or time on task. The rating
scores from the subjective questionnaire results also demonstrated
no significant differences (p > 0.05) between the RW and VR
conditions for any of the questions (Table 5). This is an indicator
that participants did not appear to differentiate significantly between
the two environments, or how they felt it affected their sense of
presence and interaction with their partners. This result bodes well
as it demonstrates that VR is capable of eliciting similar responses to
the RW in terms of presence and interactions with another person
inhabiting the same environment.

4.3.1 Mediation analysis
We also conducted a mediation analysis to test whether the

path “task performance → neural synchrony → subjective
experience” holds, or to discuss why subjective ratings and
neural synchrony don’t always match–maybe because high
ratings (close to 7) – create a ceiling effect that hides small
differences. In both Real-World (RW) and Virtual Reality (VR),
the results showed a clear pattern: doing well on the task (faster
time and more correct answers) boosted neural synchrony (RW:
a � 0.45, p � 0.03; VR: a � 0.42, p � 0.035), and this synchrony
made people have better subjective experience (RW: b � 0.38,
p � 0.04; VR: b � 0.37, p � 0.042). Without synchrony in the
model, task performance did not directly affect feelings (RW:
c′ � 0.12, p � 0.22; VR: c′ � 0.10, p � 0.28), and the indirect
effect was significant (bootstrap excluded zero). So, neural
synchrony fully links performance to subjective experience in
both settings. Still, the ceiling effect in ratings suggests we need
better ways to measure subjective experience to catch
tiny changes.

FIGURE 10
Strong connections unique in each environment.
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4.3.2 Participants’ VR experience effect
Our study included one group new to VR, four with a single

VR-experienced member, and seven where both teammates were
VR-familiar. To address the potential confounding effect of
participants’ VR experience and the limitations of our final
sample size (n � 24), we conducted an ANCOVA with total
significant inter-brain connections as the dependent variable,
VR experience as a categorical factor (novices vs. experienced
users), and average response time per question (Time) as a
covariate. The analysis revealed a significant main effect of VR

experience on Total scores, F(2, 9) � 5.78, p � 0.028,
indicating that VR familiarity influences performance
independently of response time, which was controlled to
disentangle its potential confounding role such as preventing
inflated effects if experienced users responded more slowly.
While our sample meets the G*Power minimum (n � 24,
power = 0.85), we recognize that high inter-individual EEG
variability and the complexity of team collaboration may
increase Type II error risk, particularly for non-significant
findings like the theta-band VR-RW difference (Section 4.2.6).

FIGURE 11
Correct answers and total number of significant connections across all bands.

FIGURE 12
Average response time and total number of significant connections across all bands.

TABLE 5 Subjective data analysis result (average and SD in Likert scale rating for RW and VR).

Question Average (RW) SD (RW) Average (VR) SD (VR)

I felt connected with my partner 6.63 0.74 6.46 0.58

I felt I was present with my partner 6.63 0.77 6.25 1.10

My partner was able to sense my presence 6.63 0.38 6.54 0.62

I enjoyed the experience 6.46 0.72 6.79 0.33

I was able to focus on the task activity 6.67 0.39 6.83 0.33

I am confident that we completed the task well 6.58 0.36 6.33 0.49

My partner and I worked together well 6.71 0.40 6.63 0.38
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5 Discussion

The research study detailed in this paper set out to explore the
neural correlates of cooperation in VR versus the RW using the
hyperscanning technique for a joint attention task. We chose an
existing real world visual search task that had previously been found
to produce brain synchronization (Szymanski et al., 2017). This was
replicated in the RW and in VR to study the similarities and/or
differences in the inter-brain connectivity of the pairs undertaking
the task. Task completion times and a subjective measures of
presence and cooperation were recorded in order to evaluate
their correlation with inter-brain connectivity measures.

For both the VR and real world conditions, statistical analysis
revealed that dyads with a higher number of significant inter-brain
connections performed better at the collaborative visual search tasks
than dyads with a lower number of significant inter-brain
connections. It also appears that teams with a higher number of
inter-brain connections within the three bands (beta, gamma and
theta) performed significantly better at the task than dyads that had
less number of connections within those bands. Interestingly, studies
have shown that alterations in theta band activities in occipital and
frontal brain areas can significantly impact memory processing and
performance (Takase et al., 2019). Additionally, enhancements in
frontal theta and beta oscillatory synchronizations have been linked
to improved executive abilities, attention control, and memory
maintenance during working memory tasks, showcasing the
importance of different frequency band oscillations in cognitive
processes (Tian et al., 2021). While there appears to be few studies in
VR looking at inter-brain synchrony, the results obtained here
appear to suggest that a large amount of inter-brain connectivity
within a certain set of bands can be a predictor of outcomes in a joint
attention collaborative task.

Our results in this study demonstrate that there appears to be a
meaningful correlation of inter-brain connectivity within certain
bands and the number of correct answers and time of doing the
requested visual search task. It also demonstrations effective
collaboration between individuals when they display a certain
level of inter-brain connectivity across a range of bands. These
results indicate that there is potential to evoke activity in those
bands among collaborating individuals which shows some
correlation in the number of significant connections and
collaboration efficiency without considering the causality. This,
in turn, could aid in measuring or monitoring the quality of
collaboration between individuals and result in improved task
completion times, as based on this study results, there’s a
correlation and brain synchrony in VR comparable to the same
task in the real world.

So, in terms of the three hypotheses, we did indeed see an
increase in brain synchronization from individual to team
conditions in the real world, reproducing the previous results
of Szymanski et al. (2017), so hypothesis H1 was supported. We
also observed brain synchronization in the visual search task in
VR for most of the EEG bands, so hypothesis H2 was supported.
However, there was no significant increase in brain
synchronization in the VR condition, compared to the real
world condition in task completion time (t (11) = 2.2, p =
0.073) and number of correct answers (t (11) = 2.2, p =
0.206), so hypothesis H3 was not supported.

While these results are promising, it must be noted that there is
still an element of uncertainty to the research detailed in this paper.
Hyperscanning is an emerging technique that has found usage in a
number of fields that explore the different facets of collaboration,
both in real and virtual environments. A major factor determining
the validity of the results obtained via Hyperscanning are the
analysis methods. In its current state, there exist several methods
for processing data that have stirred a considerable debate within the
community with regards to their validity and ability to reliably
measure and represent inter-brain synchrony. However,
notwithstanding these methods, Hyperscanning has shown itself
to be a useful technique to capture neural data from two or more
individuals interacting simultaneously both in the real and virtual
environments.

6 Limitations of the research

Although these results are very interesting, there are a
number of limitations with the study that will have to be
addressed in future work. We tried to reproduce the results of
a similar real world study Szymanski et al. (2017) and compare it
to running the study in a VR environment. So the task employed
for this study was very simple and the results obtained may not be
generalizable to a wider range of VR activities. In the future we
would like to explore a range of different joint activity tasks in
VR, such as object matching, tracking, and text comprehension,
among others. The task simplicity meant that there was only a
small range in the number of correct answers, which may have
limited amount of data points for the correlation measures. In the
future we will look for tasks that can produce a wider range of
performance measures. The participants were all university
students or staff which may limit the applicability of the
results. For example, elderly may exhibit different behaviours.
In the future we plan to test with a wider range of subjects.

Another important limitation was lack of a standard data
analysis method or tool in EEG hyperscanning studies to
identify synced brain signals, so we had to work on different
techniques and prepare custom scripts for data analysis to get
reliable results. Automatic visualizing tools for such studies are
also not yet available to draw different understandable brain
figures and connections. There is a great opportunity for
developers to work on such tools to be used in future
hyperscanning studies.

In addition to this, it is also important to note that another
limitation is the lack of directionality analysis in our PLV results.
PLV measures phase synchronization but does not distinguish the
direction of information flow, such as whether a “leader-follower”
neurodynamic pattern exists, potentially involving enhanced
parietal-to-frontal information flow in VR. This could provide
insights into hierarchical collaboration dynamics, as parietal
regions are associated with spatial attention and frontal regions
with executive control. The absence of analyses like Granger
causality or Phase Lag Index limits our ability to explore these
patterns, which was not feasible in the current study due to time and
resource constraints. Future work should address this by
incorporating directionality measures to better understand the
neural mechanisms of VR-based collaboration.
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Technical problems and limitations were also considerable in
this study. Placing VR displays on EEG caps added some pressure
on a few electrodes and in some cases caused electrode
movements and signal weakness. To overcome this issue and
have reliable EEG signals, we had to reset the electrodes
placements and EEG setup after each condition which
increased the study time and led to EEG gel dryness. So we
needed to reapply gel on the head to prevent signal loss and
enable capture of constant signals. In the future VR HMDs such
as the OpenBCI Galea3 will become available which has EEG
sensors into the HMD, reducing this problem.

Moreover, the possibility of EEG signal interference caused by
the VR head-mounted displays was another limitation of this study.
To control or reduce the interference, the participants were asked to
avoid unnecessary movements to minimize the electrical noise from
the device, movement-related artifacts, or changes in electrode
placement when wearing the headset. To address this, future
studies could use VR headsets with built-in EEG sensors, which
may improve signal stability and reduce motion-related noise.
Additionally, multiple signal processing techniques were used to
help separate brain signals from unwanted interference. However,
we note that other processing methods such as surrogate analysis or
machine learning-based noise removal methods can be employed
for upcoming studies in the future to enhance the signal quality.

Finally, another limitation was that the study participants were
mainly university students, which may not represent the general
population. Students often have similar experiences, education
levels, and familiarity with technology, which could influence the
results. Future research should include a wider range of participants,
such as people of different ages, backgrounds, and professional
experiences. This would make the findings more applicable to
real world settings. Increasing the number of participants and
including individuals with different levels of VR experience could
also provide insights into how familiarity with VR affects brain
synchrony and collaboration quality.

7 Conclusion and future work

In this paper we presented results from one of the first brain
synchronization studies using a joint attention task in VR. We
observed inter-brain synchrony occurred in the VR environment
similar to the real world as well as increased phase synchronization
between the brains.

The results confirm that brain synchronization can occur in a
joint attention task in VR and produces similar results to those seen
in the real-world. This implies that collaborative VR environments
could be used as a means to elicit, promote and increase inter-brain
synchrony among individuals. VR could be also used to perform
more controlled experiments that might help better understanding
brain synchronization in the real world, exploring more about the
social neuroscience of communication, and creating guidelines for
developing better collaborative VR experiences.

There are many directions that this research could go in the
future. In the limitations section we outlined some work that could
be done to address some of the shortcomings of this study. In
addition to this, we would like to explore what features could be
added to VR experiences to increase the amount of brain
synchronization. For example, in VR it is possible for both
people in the real world to have the same viewpoint and share
the same virtual body. This shared perception may increase the
amount of brain synchronization (Gumilar et al., 2022). Another
interesting area of research would be to see if other physiological
cues also synchronize in collaborative tasks. For instance, VR HMDs
may have integrated eye tracking, heart rate sensors and EEG
sensors4. Using these, it would be interesting to see if pupil
dilation and heart rate demonstrate the kind of synchronization
between participants that we have observed with neural activity.
Finally, we would like to explore brain synchronization in large
group settings in VR, and see if this could be used as a potential team
performance enhancement tool in the future.

This research is just the beginning of various work that can be
done to explore the potential of VR for social neuroscience studies.
We hope that the study detailed in this paper will inspire others to
continue research in this area.
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