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This research explores integrating augmented reality (AR) with machine learning
(ML) to enhance hands-on skill acquisition through origami folding. We
developed an AR system using the YOLOv8 model to provide real-time
feedback and automatic validation of each folding step, offering step-by-step
guidance to users. A novel approach to training dataset preparation was
introduced, which improves the accuracy of detecting and assessing origami
folding stages. In a formative user study involving 16 participants tasked with
folding multiple origami models, the results revealed that while the ML-driven
feedback increased task completion times, it also made participants feel more
confident throughout the folding process. However, they also reported that the
feedback system added cognitive load, slowing their progress, though it provided
valuable guidance. These findings suggest that while ML-supported AR systems
can enhance the user experience, further optimization is required to streamline
the feedback process and improve efficiency in complex manual tasks.
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1 Introduction

Augmented reality (AR) is increasingly transforming education by enabling immersive,
hands-on learning experiences, particularly in scenarios where human instructors are
unavailable or traditional learning environments are inadequate (Zonaphan et al., 2022). By
overlaying digital content onto the physical world, AR facilitates interactive and engaging
training, making it a powerful tool for skill development in both education and practical
applications (Zambri and Kamaruzaman, 2020).

The integration of AR with machine learning (ML) introduces new possibilities for
automated feedback inmanual skill acquisition. Building on our previous work (Łysakowski
et al., 2024), we explore how an AR system powered by a YOLOv8 model can provide real-
time detection and evaluation of user actions, specifically within the context of origami
folding. The novelty of this research lies in the deployment of a state-of-the-art object
detection algorithm on a resource-constrained AR device (HoloLens 2) to enable on-device
step validation without requiring external computation. Unlike previous systems, which
focus on predefined animations or step sequences, our approach evaluates both user actions
and outcomes in real time, directly influencing the learning process.
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Origami, the Japanese art of paper folding, is known to enhance
manual and cognitive skills by improving fine motor abilities, hand-
eye coordination, and spatial awareness (Supple et al., 2021). These
benefits make origami a valuable tool in education, therapy, and
personal development, with research supporting its effectiveness
across various fields (Zhao et al., 2020). For instance, Herbas
Torrico, 2021 highlighted how origami was used during COVID-
19 lockdowns as an educational tool, emphasizing its role in
cognitive development. The pandemic also revealed origami’s
versatility, with Monnier and Winters (2022) demonstrating its
calming and creative benefits during the lockdown, though also
noting that printed instructions were challenging to follow unless
participants had prior knowledge of basic folds. Tutors play an
essential role in guiding learners through complex folding
techniques, ensuring proper understanding of key concepts
(Andreass, 2011).

Existing AR-based origami tutorials, such asWiwatwattana et al.
(2016), lack the ability to recognize user actions or provide
automated feedback, limiting their effectiveness. To address this
gap, our system integrates state detection and validation using
YOLOv8, an advanced computer vision model designed for real-
time edge applications. This ensures that origami folding steps are
evaluated dynamically, enabling interactive, step-by-step guidance
(Figure 1B). Correct folds are validated through the neural network,
allowing progression to subsequent steps (Figure 1C), while
incorrect folds trigger corrective feedback (Figure 1D).

This work builds upon our previous conference paper
(Łysakowski et al., 2024), which primarily demonstrated the
technical feasibility of using YOLOv8 for step validation in AR-
based origami folding on a limited number of models. In contrast,
this study significantly expands the scope by incorporating a broader
range of origami designs and conducting a mixed-methods
experiment comparing user performance and perceptions with
and without ML-driven feedback. By focusing on the
effectiveness of real-time ML-driven feedback in a practical
setting, this work transitions from a proof-of-concept to a
comprehensive evaluation of AR-ML integration for skill
acquisition.

2 Related work

Immersive technologies enable learners to interact with virtual
simulations that replicate real-world tasks, offering opportunities to
develop practical skills in a controlled, repeatable environment

(Zonaphan et al., 2022). This is especially valuable for tasks that
demand manual dexterity and precision, allowing learners to
practice and refine their abilities beyond the constraints of
traditional methods.

Integrating neural networks with AR significantly enhances
these technologies by offering real-time feedback and adaptive
learning paths. This integration is crucial for mastering complex
manual tasks where precision and accuracy are vital. In the
automotive industry, for example, AR systems enhanced with ML
models guide workers through the assembly of intricate engine
components. As demonstrated by Zogopoulos et al. (2021), these
systems use image-based state tracking to identify parts and tools,
overlaying step-by-step instructions directly onto physical
components.

Similarly, in industrial maintenance, AR systems combined with
predictive ML models offer technicians a virtual training
environment to anticipate and address potential faults before
they occur (Palmarini et al., 2018). These systems leverage
historical data to predict common issues, guiding users through
diagnostic and repair procedures with real-time feedback, thus
enhancing both learning outcomes and operational efficiency
(Danielsson et al., 2020).

In the medical field, AR and ML are revolutionizing surgical
training. Systems like those developed by Pauly et al. (2015) allow
surgical trainees to practice in a simulated, risk-free environment.
ML algorithms analyze surgical movements, providing immediate
feedback on technique, which is crucial for developing the precision
required in real-life surgeries (Khandelwal et al., 2019).

Traditional crafts, such as carpentry, are also finding new
possibilities through the integration of AR and ML. Palmarini
et al. (2018) explored AR systems to guide users through
processes like cutting, assembling, and finishing woodwork, with
ML used for object recognition and tracking to ensure accuracy at
each stage. With the use of immersive technologies, such training
can be extended, offering learners a virtual workshop where they can
experiment and learn without the risk of wasting materials.

Origami, which requires intricate manual skills, serves as an
exemplary case for AR-enhanced learning. Wiwatwattana et al.
(2016) introduced Origami Guru, an AR application designed to
assist users in paper folding. However, limitations such as the lack of
real-time feedback and action recognition reduced its effectiveness.
Our work addresses these limitations by incorporating ML,
particularly object detection frameworks like YOLOv8, to provide
real-time feedback and assessment. This approach allows users to
practice origami in a virtual environment that replicates the physical

FIGURE 1
A user wearing a HoloLens 2 head-mounted display while folding an origami model (A), and screenshots from the AR application showing: (B) an
animated model guiding the folding process, (C) a correctly completed folding step, and (D) an incorrectly completed folding step.
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world, offering instant corrections and ensuring precise execution of
each folding step.

Research such as PlayGAMI (Grandhi and Chang, 2019) and the
work of Watanabe and Kinoshita (2012) have explored the potential
of real-time tracking in origami using visual markers on paper or
comparing silhouettes of the folded paper for each step, though these
methods are less adaptable to standard origami materials. Similarly,
Shimanuki et al. (2020) employed single-camera setups to analyze
origami operations, but this pipeline requires rigid constraints, such
as uniform backgrounds and simplistic assumptions about paper
geometry. By contrast, our system applies YOLOv8, leveraging its
ability to generalize across diverse backgrounds and lighting
conditions without relying on strict environmental controls.

Recently, the mixed-reality system Origami Sensei (Chen et al.,
2023) achieved automatic origami step recognition based solely on
the paper’s appearance, using computer vision to identify folding
steps and provide real-time projections and verbal instructions.
Unlike our approach, which leverages YOLOv8 directly on a
HoloLens 2 for real-time, on-device feedback and step validation,
Origami Sensei relies on external devices like a tablet and projector,
introducing latency and hardware dependencies. By implementing
our system entirely within the AR glasses, we eliminate external
components, achieving a more seamless and portable user
experience. The application of object detection on AR headsets
has been a significant area of research (Farasin et al., 2020; Goka
et al., 2022; Kim et al., 2023; Łysakowski et al., 2023a). For instance,
Farasin et al. (2020) investigated a two-stage network strategy for
object detection and tracking that relies on offloading computation
to a high-performance server. While this method benefits from
server-side processing power, it restricts the headset to merely
capturing video frames and displaying the processed results,
necessitating reliable and fast network connections like Wi-Fi or
LTE. In contrast, our approach focuses on achieving real-time object
detection directly on the headset using the advanced YOLOv8s
network, eliminating the need for server-side processing. This
software design reduces latency, which is essential for
maintaining user immersion (Chen et al., 2018).

Furthermore, simpler algorithms that are designed to execute in
real-time on AR headsets, as demonstrated by Malek et al. (2022),
highlight the practicality of performing computations directly on the
device for certain tasks. Additionally, frameworks such as Vuforia
(PTC, 2023) and EasyAR (EasyAR, 2024) can also be utilized. Our
approach strikes a balance by employing a robust, cutting-edge
model on the AR headset, combining the benefits of real-time, on-
device processing with the adaptability and broad applicability of
sophisticated object detection frameworks.

While YOLOv8 provides critical real-time detection capabilities
for a hands-on AR application, it faces challenges such as varying
environmental conditions and the computational constraints of AR
devices. Łysakowski et al. (2023b) highlight these issues, noting that
factors like lighting and view angles can impact detection accuracy.
To mitigate these challenges, alternative object detection algorithms
can be considered. For instance, the Single Shot MultiBox Detector
(SSD) discussed by Liu et al. (2015) offers a balance between speed
and accuracy, making it suitable for scenarios where slightly higher
processing latency is acceptable. This approach gives users more
time to process visual and contextual information, reducing
cognitive overload and allowing for better decision-making (Johri

et al., 2024). Alternatively, Faster R-CNN (Ren et al., 2015) provides
higher detection accuracy at the cost of speed, making it a viable
option for tasks requiring meticulous object recognition and
classification, such as detailed medical simulations or complex
industrial processes.

The integration of ML with AR for hands-on training, as
explored in this work, marks a significant advancement by
enabling autonomous, real-time evaluation of each step’s
correctness directly on AR headgear. This approach surpasses
traditional AR tutorials by offering intelligent, interactive
feedback, enhancing user independence.

3 System architecture and
implementation

Our system is implemented within the Unity game engine,
leveraging its robust capabilities to develop an interactive AR
application aimed at assisting users with origami folding lessons.
At the start, users can select the primary color of the paper sheet,
assuming the opposite side is white, and then choose one of the
available origami models to fold. Initially, our application presents
an animation demonstrating the complete folding process (see
Figure 1B), followed by interactive, step-by-step instructions.
Next, the users physically fold the paper according to these
instructions and, after completing each step, press a virtual
button to confirm their progress (see Figure 1C). The completion
of this process results in a folded origami model.

The system architecture (Figure 2) integrates a neural network-
based algorithm that predicts the state of the folded paper after each
step. Specifically, a YOLOv8s (Yaseen, 2024) neural network, a state-
of-the-art object detection framework known for its speed and
accuracy in identifying objects within images, is employed to
detect and classify the various stages of the paper folding process.
The YOLO (“You Only Look Once”) model operates by dividing an
input image into a grid and predicting bounding boxes and class
probabilities for objects within the image in a single pass, making
them well-suited for real-time applications (Redmon et al., 2016).
Since predictions are made on demand, the system uses a compact
neural network model with input images resized to 320 × 320 pixels,
achieving an inference time of approximately 500 m, which strikes a
balance between accuracy and performance.

The diagram (Figure 3) outlines the interactive origami folding
process supported by animation and real-time validation. It features
a sequence starting with an animation button to demonstrate each
folding step, followed by a validation process that uses camera-based
feedback to assess fold result, displaying success or error messages
accordingly.

We chose the YOLOv8s model for its efficiency in balancing
speed and accuracy, making it well-suited for real-time or near-real-
time applications, such as detecting the stages of paper folding in our
AR origami system. YOLOv8s offers a compact architecture that
delivers high detection accuracy while maintaining fast inference
times (Jocher et al., 2023), which is crucial for processing on
resource-constrained devices like the Microsoft HoloLens 2
(HL2) mixed reality head-mounted display (HMD). Additionally,
YOLOv8s′ ability to perform well with relatively small input image
sizes (in our case 320 × 320 pixels) ensures that our system can
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quickly and accurately classify folding stages without compromising
the user experience. The model’s robust performance across various
datasets also ensures that it can generalize well to unseen paper
colors and different lighting conditions, further justifying its use in
this application. We further enhanced system performance by
employing the Unity Sentis library, a successor to the Barracuda
neural network inference library, for on-device inference on
the HL2 HMD.

The origami models were designed using Blender software,
following a detailed analysis and preparation of physical models.
The folding mechanics were studied, and a virtual grid was created
to accurately represent the fold lines (Figure 4A). Each folding step
was modeled as a distinct entity, with transitions between steps
smoothly animated within Unity. These animations were carefully
synchronized so that the final state of one step seamlessly aligns with
the initial state of the next, as illustrated in Figure 4B. Although an
animation method similar to the one proposed by Agui et al. (1983),
which utilizes folding rules, could have been applied, the keyframe-
based method supported by Blender offers several advantages.

Blender allows for precise control over fold geometry, integrates
seamlessly with modern 3D rendering tools, including Unity (Suhail
et al., 2024), and supports intuitive adjustments of fold animations
through a graphical interface, reducing the complexity of manually
assigning keyframe coordinates.

The YOLOv8s model was trained on a custom dataset
comprising images of the folded models captured from different
angles and distances to closely resemble real-world conditions (see
Figure 5). To capture these images the frontal camera of the
HL2 HMD was used, which is the only RGB camera available on
this device.

To streamline the dataset preparation process, we utilized the
Segment Anything Model (SAM) by Kirillov et al. (2023), an
advanced image segmentation tool developed by Meta AI, and
the Track Anything algorithm (Yang et al., 2023), which is based
on the Segment Anything Model. The ability of SAM to perform
zero-shot learning, which allows it to identify objects without
needing specific training examples, makes it an ideal fit for our
application. We used prompts based on points on the folded objects

FIGURE 2
Data and control flow in the origami folding application with ML-based outcome assessment.

FIGURE 3
The diagram illustrates the step-by-step origami folding process with feedback. The initial step illustrates the (1) “Play animation” button, which
initiates the animation demonstrating the correctmethod for executing the current step of the folding process. Once the folding process is complete, the
user is required to press the button labeled (2), which initiates the validation process. Subsequently, the user is prompted by the text (3) “Look at your card”
to move their head to make the paper sheet visible in the camera. In the event of a successful fold detection, the text element (4), “OK!“, is displayed.
Conversely, in the event of an unsuccessful fold, the text (3), “Error! Do it again!”, is displayed.
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to guide SAM in achieving precise segmentation. Then, Track
Anything facilitated the generation of the ground truth data.
After manually labeling the first frame of each stage, we used
Track Anything to segment the folded models from the
remaining images in the sequence, considering different color on
both sides of the folded paper sheet. The obtained segmentation
masks were used to create bounding boxes, which were then saved in
the appropriate format. This automated pipeline significantly
expedited the process of data acquisition, labeling, and model
training, enabling the efficient training of the
YOLOv8 neural network.

Additionally, color augmentation was applied in the HSV (Hue,
Saturation, Value) space to increase the dataset’s variability by
changing the color of the other (non-white) side of the paper.
This process resulted in approximately 150 training images and

70 validation images per stage for each origami model. Additionally,
30 images per stage were collected for the test set, featuring new
paper colors and various lighting conditions to ensure robust
generalization. The dataset covers all folding stages, and standard
augmentation techniques—such as image rotation, translation,
scaling, and mosaics—were applied during training. The test set
did not include color replacement augmentation.

Figure 5 displays the outcomes of the color augmentation
process for the origami models, followed by example images
from the test set and successful detections made by the model.
Finally, we tested the detection procedure using the YOLOv8s
network on a separate test set of images, and the resulting
Average Precision (AP) values are shown in Table 1. Average
Precision indicates how well the model predicts the correct
folding stage across various threshold values, while AP50

FIGURE 4
Representation of an example models’ grid in Blender (A) and a diagram depicting the step-by-step process of folding the model (B).

FIGURE 5
Example images for the samurai hat, bird, box, fly and yacht origami models. Images from the train/val set with color augmentation (A–C). Examples
from the test set (D) and final detection (E).
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represents the precision at an Intersection over Union (IoU)
threshold of 50%, measuring the overlap between the predicted
and actual paper folds.

For the experiments described, a dataset was compiled featuring
the “Yacht”, “Samurai Hat”, “Bird”, “Fly”, and “Box” origami models
(Figure 7). These models consist of 9, 11, 12, 13, and 19 folding
stages, respectively, with each stage corresponding to a specific,
predefined paper shape. All these models were prepared according
to instructions from the Origami Guide website1. They were selected
from the extensive number of designs available on the website to
represent varying levels of complexity, both in terms of the number
of stages and visual appearance, which posed additional challenges
for the vision-based automatic validation procedure. All physical
models were folded from 15 × 15 cm sheets of standard Toyo
Origami Paper. We intentionally used paper sheets that are white
on one side and colored (e.g., red) on the other side to enhance the
visibility of the folds to the HL2 camera and facilitate the automatic
validation process.

The numerical results demonstrate good performance of the
YOLOv8s model across all five origami models. The APval

50 values on
the validation set are consistently high, exceeding 0.98 for all models,
indicating that the model can accurately detect and classify the
folding stages. Similarly, the overall APval values for the validation
set remain above 0.94, reflecting robust performance across varying
IoU thresholds.

In the test set, the APtest
50 values slightly decrease, particularly for

the Box model (0.927), which suggests some challenges in detecting
this model’s folding stages under different conditions, such as
varying paper colors and lighting. The APtest for the Fly model
drops significantly, indicating difficulties with detection at higher
IoU levels. Nevertheless, the APtest values for all other models,
though slightly lower than the validation set, remain strong, showing
that the model generalizes well to unseen data.

4 Research design and methodology

The objective of this research was to explore the impact of deep
learning-based feedback within an AR application on the accuracy,
efficiency, and user satisfaction of origami folding. In order to do so,
we carried out a user study with 16 participants during which they all

experienced both conditions in a randomized, balanced order. The
results of this mixed-method study allowed us to better understand
the influence and limitations of the ML-based feedback) on origami
folding tasks previously used to study intricacies of manual skill
development (Chen et al., 2023).

4.1 Participants

The study involved 16 participants, hereinafter referred to as P1-
P16, in total recruited through the opportunity sampling method
from university students and staff. The youngest participant was 20,
and the oldest reported being 29 years old (M � 24.19, SD � 2.81).
Each participant has engaged in a series of origami folding tasks
under two conditions: with and without the assistance of deep
learning-based feedback.

To better understand the participants’ baseline familiarity with
origami, their prior experiences were grouped into four clusters, as
summarized in Table 2. The clustering process revealed that most
participants had some childhood exposure to origami (Figure 6),
though the depth of experience varied. Nine participants revealed a
general experience, aligning with the activity’s common
introduction during the early years. However, some recalled
specific motivations, such as therapeutic uses or entrepreneurial
activities, while others had minimal or no practical engagement.
These varying experiences may have influenced participants’
engagement with the AR origami system.

4.2 Experimental design and setup

A within-subject design was used to ensure that each participant
experienced both conditions (i.e., feedback and no feedback).
Participants folded four origami models with varying complexity
and with each model being folded in a balanced order utilizing Latin
square method. Furthermore, the balanced Latin square method was
also employed to determine the order of conditions, i.e., with and
without automated feedback, minimizing learning effects across
the trials.

A configuration file with the designed experimental setup was
prepared and uploaded to the AR system for each participant. The
software then accessed this information, demonstrating the desired
order of origami models for each user. A black desk placed nearby
and facing a uniformly colored wall was used for the experiment to
minimize the source of distraction in the background and strengthen
the contrast between the folding paper and the desk surface (see
Figure 1A). For coherency, the same paper and lighting conditions
are maintained throughout. The camera stream was recorded during
the experiment as a reference to assess folding quality.

4.3 Origami models

To evaluate our AR system’s effectiveness across various task
complexities, we selected five origami models, as illustrated in
Figure 7. One of the models, namely, (T) Bird, was used during
the training session with each participant as it provided a relatively
moderate challenge in terms of folding difficulty. The remaining

TABLE 1 Numerical results of YOLOv8s on the five origamimodels averaged
over all stages of folding.

Model/Dataset APval
50 APval APtest

50 APtest

Samurai Hat 0.995 0.966 0.973 0.934

Bird 0.988 0.968 0.969 0.896

Box 0.995 0.982 0.927 0.86

Fly 0.995 0.99 0.97 0.785

Yacht 0.994 0.945 0.985 0.925

1 https://origami.guide/
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models (A) (B) (C) (D) were folded by the participants in
randomized, balanced order.

These models were chosen to represent a range of folding
complexities, understood as the number of steps required for
their completion and folding difficulty. This approach aligns with
the existing definitions of task complexity in the context of AR
assistance systems, where the number of steps and their difficulty
can be considered key complexity indicators (Bock et al., 2024). By
varying the complexity of the origami models, we were able to assess
our system’s ability to support hands-on training across a broader
spectrum of origami folding tasks.

4.4 Task and procedure

The main task of the participants was to fold four origami
models of varying complexities. Each model was folded twice: once

with the machine-learning-based feedback and once without it,
resulting in the folding of eight origami models. The whole
experimental procedure consisted of three subsequent phases:

Training session: Participants folded a simple model ((T) Bird,
see Figure 7) using the AR system with and without deep learning-
based feedback to familiarize themselves with its features.
Experimental task: Each participant folded all four models (see
Figure 7) under both conditions (with and without feedback),
resulting in eight origami models (i.e., each model was folded
twice with and without feedback). After each condition,
participants completed two questionnaires to assess their
cognitive load (Hart and Staveland, 1988) and flow (Engeser and
Rheinberg, 2008) with and without machine-learning-based
feedback. The order of experiencing the conditions by the
participants (P1-P8) was balanced utilizing the Latin square
design. Post-assessment: After the task, participants took part in
a semi-structured discussion to assess their confidence,
understanding, and overall experience with the folding process.

4.5 Data collection and analysis protocol

During the user study, we collected quantitative data from the
HL2 headset that allowed us to obtain performance measurements,
further enhanced by qualitative information obtained through
questionnaires, participants’ feedback and our own observations.
In quantitative data included the task completion time, i.e., the time
taken to fold each model completely is recorded automatically from
within the AR system.

The accuracy and aesthetics of each fold were assessed by three
annotators who had not participated in the experiment and
independently assigned scores to the completed origami models
in a range of {0, 1, 2} based on video recordings of the final models.

TABLE 2 Participants’ familiarity with origami, based on prior experience revealed during interviews.

Type of experience Participants Description

General childhood
experience

P2, P4, P6, P7, P8, P9, P12,
P14, P15

Engaged in origami during childhood without recalling specific details or models

No or minimal experience P5, P10, P13 Little to no exposure to origami, limited to basic activities like folding paper planes

Specific childhood
experience

P3, P11, P16 Recalled detailed childhood engagement, including folding specific models (e.g., boxes in school, therapeutic
activities, or entrepreneurial endeavors)

Awareness without
experience

P1 Awareness of origami concepts but lacked practical engagement

FIGURE 6
Clustering of participants based on origami experience.

FIGURE 7
Five origami models: (T) Bird requiring 12 folds, (A) Samurai Hat requiring 11 folds, (B) Box requiring 19 folds, (C) Fly requiring 13 folds, (D) Yacht
requiring nine folds.
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Here, {0} denoted non-complete or wrongly folded model, {1}
denoted semi-correctly folded model, and {2} was given to
satisfactorily folded model. The final mark was taken as an
average of the three annotators’ scores.

To gather insights into the user experience:, we collected
qualitative data through a set of questionnaires. First, we utilized
the NASA Task Cognitive Load (NASA TLX) (Hart and Staveland,
1988) survey to gauge subjective cognitive workload during a given
task execution, which is an often used approach in AR research
(Dudley et al., 2018; Bozzi et al., 2023). While NASA TLX was
criticized for posing certain limitations (McKendrick and Cherry,
2018), we decided to use it as it provides a structured way to capture
crucial subjective qualitative insights concerning AR interface.
Second, we measured perceived flow levels, a metric indicative of
engagement and skillfulness in immersive interfaces (Engeser and
Rheinberg, 2008; Laakasuo et al., 2022; Tadeja et al., 2021b; Bozzi
et al., 2023). By combining these metrics, we aimed to ascertain how
the AR interface coupled with machine learning-based feedback
influences the overall user experience.

5 Results

Here, we present the results of the statistical analysis of the
gathered quantitative (i.e., task completion times and quantified

questionnaire responses) and qualitative (i.e., participants’ feedback
and comments as well as our own observations) data.

5.1 Task completion times

We analyzed the log-transformed task completion times using
the analysis of variance (ANOVA) test. The results showed
statistically significant differences ((F(1.0, 126.0) � 96.702, η2p �
0.434, p< .001)) between trials with and without feedback. The
results shown in Table 3 reveal that task completion took longer
when participants folded origami with automated feedback than
when folding without it. Specifically, the average time for task
completion with feedback was 478.27 [s] (SD = 202.25 [s]),
compared to 243.02 [s] (SD = 83.78 [s]) without feedback. This
difference highlights that integrating the feedback mechanism led to
longer task durations.

The range of completion times provides additional insights into
this disparity. The shortest observed time with feedback (191.04 [s])
was notably higher than the shortest time without feedback
(107.21 [s]). Similarly, the most extended task duration with
feedback (1229.36 [s]) was more than double the longest time
without feedback (572.70 [s]). This indicates that while the
automatic verification functionality offers detailed guidance, it
slows users down as they pause to process and respond to the

TABLE 3 The task completion times (i.e., origami folding) for each participant (P1-P16) measured in [s].

Participant No feedback With feedback

P1 228.83 315.66 273.75 214.94 396.83 578.66 221.94 245.77

P2 380.64 299.14 222.57 192.61 507.93 292.16 246.91 191.04

P3 237.82 144.50 183.17 123.62 409.04 340.55 573.68 286.56

P4 221.11 246.20 324.25 304.18 432.70 256.91 499.20 540.71

Participant with feedback no feedback

P5 337.60 759.19 315.83 411.78 344.78 246.54 196.43 174.77

P6 1229.36 719.57 622.24 536.24 391.96 287.56 243.40 270.76

P7 712.59 791.96 668.12 323.87 315.39 218.11 402.70 255.34

P8 485.95 391.57 533.06 707.22 169.57 192.59 210.07 204.38

Participant no feedback with feedback

P9 226.33 396.42 297.17 340.79 338.92 521.05 316.96 621.21

P10 212.25 182.06 107.21 127.95 461.57 233.74 214.84 211.33

P11 295.52 214.96 172.38 166.49 397.95 266.79 597.78 325.77

P12 279.80 232.07 371.78 367.00 614.70 348.39 510.36 518.33

Participant with feedback no feedback

P13 468.71 715.34 281.14 380.57 232.84 237.24 147.67 218.61

P14 1111.19 378.62 347.21 368.94 572.09 201.18 134.93 141.70

P15 646.87 374.47 728.62 472.52 303.94 183.31 214.24 194.66

P16 661.53 543.63 377.67 686.01 178.09 137.66 165.36 262.15
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feedback. This may particularly affect less experienced participants,
as evidenced by the larger spread of task times when feedback
was active.

In general, the analysis of task completion times suggests that
while potentially helpful in improving accuracy and fold quality, the
feedback system introduces additional overhead that extends task
duration in both experimental setups. Thus, repeating the origami
folding task under the automated feedback was still slower than
when ML-based verification was not used. Participants may have
needed to adjust their folding strategy or revise their actions based
on the system’s guidance, leading to longer times. The variance in
task duration (as indicated by the standard deviations) also points to
differing levels of dependency on the feedback, with some
participants taking longer to fold when the system was in place.

Overall, these findings indicate that while feedback is useful, its
integration should aim to balance guidance with efficiency, perhaps
by allowing more experienced users to skip certain steps or
streamline the validation process, especially when they previously
folded the same or similar models. It also underlines that to be a
robust alternative to a no-feedback system, further optimization in
both hardware and software apparatus is required.

5.2 Questionnaires results

The SFS Flow scores reflect the degree to which participants felt
immersed and engaged in the task (Table 4). For trials with and
without a feedback, the Shapiro-Wilk tests showed no significant
departure from normality, hence ANOVA was performed. Without
feedback, participants reported, on average, slightly higher flow
(M � 5.00) than with feedback (M � 4.72), although this
difference was also not significant
(F(1.0, 30.0) � 0.575, η2p � .019, p � 0.454). The slight drop in
flow when using feedback may indicate that the system’s
interventions occasionally interrupted the natural flow of the
task, especially for more experienced users who might prefer a
smoother, uninterrupted folding process. For less experienced
participants, the feedback may have introduced helpful pauses
that did not significantly detract from their engagement. At the
same time, in both cases, the participants reported relatively high
flow levels, with P1 and P3 reporting the lowest and highest scores of
40% and 97% under the feedback condition, respectively. This
demonstrates the participants’ engagement while using our AR
system (Tadeja et al., 2021a).

The SFS Anxiety scores reveal how anxious participants felt
while completing the task. Interestingly, participants reported lower
anxiety when feedback was active (M � 3.6) compared to no
feedback (M � 3.88). The Shapiro-Wilk test indicated a
departure from normality for the anxiety score in trials with
feedback. Consequently, an ANOVA could not be performed.
Instead, a Mann-Whitney U test was conducted, which showed
no statistically significant difference in the anxiety level
(U � 107.0, p � 0.431). The slightly lower anxiety under
feedback condition, with seven participants reporting a drop in
scores in comparison with no feedback (Table 4) suggests that
participants may have felt more confident in their folding
accuracy due to the system’s validation, even if the validation
process increased cognitive workload. This aligns with anecdotal
feedback, where some participants mentioned feeling more
comfortable and confident using the validation system.

The NASA TLX (Hart and Staveland, 1988) shown in Table 4 are
inconsistent with data drawn from the time analysis as the cognitive
load experienced during folding origami with and without machine
learning-based feedback was roughly similar. Overall, NASA TLX
scores indicate the participants’ perceived mental workload as
relatively high in all cases and conditions, ranging from
“somewhat high” [30 − 49] to “high” [50 − 79] (Prabaswari et al.,
2019) with both the lowest of 35.67/100 (P14) and the highest score
of 76.33/100 (P16) experienced with active feedback. The Shapiro-
Wilk tests indicated that there was no statistically significant
departure from normality. On average, the workload was slightly
higher when using feedback (M � 58.00) compared to no feedback
(M � 53.21). Analysis of variance (ANOVA) revealed that this
difference was not statistically significant
(F(1.0, 30.0) � 1.382, η2p � .044, p � 0.249). The higher
workload when feedback was present suggests that participants
found it cognitively more demanding to integrate and respond to
the system’s instructions. Moreover, the participants rated their
“performance” contributing more towards the overall cogitative load
in the no feedback condition (Figure 8), which suggests that
feedback gave them more comfort in assessing their own work.

TABLE 4 Questionnaire results of NASA TLX and SFS indicating relatively
high levels of cognitive load (Prabaswari et al., 2019) and flow (Tadeja et al.,
2021a) experienced by the participants.

Participant TLX SFS flow SFS
anxiety

# [0–100] [1–7] [1–7]

Automatic Feedback no yes no yes no yes

P1 55.33 67.00 3.90 2.80 2.50 3.50

P2 75.00 74.00 3.80 3.90 3.00 4.00

P3 51.00 51.00 7.00 6.80 6.00 4.50

P4 48.33 70.00 3.80 4.40 3.50 3.00

P5 49.00 63.00 4.70 4.20 5.00 3.50

P6 54.67 48.00 6.30 5.40 3.00 2.50

P7 62.00 56.33 5.90 6.70 6.50 7.00

P8 36.67 39.33 6.10 5.60 4.50 2.50

P9 50.00 62.33 3.40 3.50 2.00 2.50

P10 59.67 58.00 4.80 3.60 3.50 3.50

P11 36.00 50.00 4.10 4.60 4.50 5.00

P12 63.33 66.67 5.20 4.60 3.00 3.00

P13 44.00 62.67 5.90 4.50 4.50 4.50

P14 72.33 35.67 5.10 5.40 3.50 2.50

P15 48.00 47.67 4.40 4.70 3.50 3.50

P16 46.00 76.33 5.70 4.80 3.50 2.50

M 53.21 58.00 5.00 4.72 3.88 3.6

SD 10.78 11.53 1.03 1.05 1.18 1.18

p-value 0.249 0.454 0.518
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However, the fact that this increase was not significant suggests that
the feedback system added some complexity but not enough to
overwhelm most of the users.

From the analysis of the questionnaires, we draw conclusions
that are threefold. First, the feedback system added a limited amount
of cognitive load, as indicated by the higher NASA TLX scores when
the system was used with feedback. While the increase was not
significant, it shows that users needed to devote more mental effort
to follow the system’s guidance, possibly due to interruptions in their
natural workflow. At the same time, the users may feel more
frustrated when using the feedback during task repetition.
Second, the slight reduction in flow with feedback may indicate
that the validation process disrupted the seamless progression of the
task. More experienced users might have been affected by the
system’s frequent checks, which interrupted their folding rhythm.
Third, the system seemed to reduce anxiety among a considerable
number of participants, as they potentially felt reassured by the
feedback. This finding suggests that while the feedback may slow
down the task, it provides valuable reassurance, which can improve
the user experience.

Overall, the questionnaire results suggest that while the feedback
system does introduce some cognitive overhead and can interrupt
flow, it may also positively contribute to users’ confidence by
reducing anxiety. To further improve the system, adjustments
could be made to streamline the feedback process, reducing its
impact on cognitive load and flow while maintaining its beneficial
effects on user confidence and overall experience.

5.3 Machine learning feedback accuracy

We present in Table 5 average folding accuracy scores across
four different origami models: (A) Samurai Hat, (B) Box, (C) Fly,
and (D) Yacht. We populated Table 5 based on the experimental
outcomes under the condition in which the participants were
assisted with a machine-learning-based validation mechanism
(feedback) integrated with the AR interface. Three evaluators
non-directly involved in the capturing of experimental data
conducted the accuracy and aesthetics assessment, assigning a

score from the set of {0, 1, 2}, with {2} representing the
satisfactorily folded model, {1} denoted semi-correctly folded
model and {0} denoted non-complete or wrongly folded model.
These results illustrate how effective the automatic validation
process was in ensuring the accuracy of the folded models.

We can observe a general trend where more origami models
requiring more folds tend to lead to lower accuracy. However, the
latter is not strictly dependent on the number of folds, as models
with fewer stages and more intricate folds like the (A) Samurai Hat
can still result in lower accuracy. This finding is consistent with prior
work indicating that both the number of steps (e.g., folds) and their
difficulties can contribute to the overall complexity of AR-based
guidance (Bock et al., 2024). In terms of the origami model, we can
observe the following.

• (A) Samurai Hat: the average scored accuracy was 1.33.
Despite having a moderate number of folding stages,
participants show the lowest level of performance.

• (B) Box: the average accuracy for this origami model was 1.40.
This model has more stages, which increases the likelihood of
errors, but the accuracy is comparable to simpler models like
the (C) Fly or (D) Yacht. This suggests that participants may
struggle similarly with models of different complexity levels
due to specific challenges rather than just the number of stages.

• (C) Fly: the accuracy for this origami model was 1.44, which is
higher than that of both (A) Samurai Hat and (B) Box.While
this model has more folding stages than Samurai Hat, its
design does not have folds that are complicated and hard to
demonstrate on the animations (like tucking the paper inside),
which improves the overall accuracy.

• (D) Yacht: with the fewest number of stages, this origami
model obtained high average accuracy of 1.54. This suggests
that simpler models are easier to execute with higher precision,
as fewer steps result in fewer opportunities for errors.

What is worth noticing is that longer task completion times, as
seen in Table 3, may lead to slightly better accuracy scores. For
instance, participants who scored 2.00 on the (A) Samurai Hat (P6)
or (D) Yacht (P1) took more time to fold the models, indicating that
taking more time to complete the task could result in fewer errors.
Furthermore, the NASA TLX scores shown in Table 4 suggest low to
no correlation with accuracy scoring as indicated by Pearson
correlation coefficient of r � 0.26. This suggests that the cognitive
load experienced by the participants did not influence the accuracy
of their origami folds.

5.4 Users’ feedback, comments and
observations

The feedback from 16 participants who used our AR-based
system for origami folding provides insights into the strengths and
areas for improvement in the user experience. The comments have
been organized by theme, highlighting various aspects of the
system’s performance. We also discuss the observations of
participants’ respective behaviors made during the experiments.

Feedback on the validation process. Several users raised
concerns regarding the validation process. P1 expressed a

FIGURE 8
The weighted (leftmost) average and “raw” NASA TLX scores
using box plots with lower scores indicating better outcomes. The
most visible difference is the higher perceived temporal demand and
frustration when folding the origami models with
automated feedback.
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desire to see both the initial and final stages of a fold, preferring
to play the animation only when needed. He also felt that the
validation process should focus on key milestones rather than
every minor step. P1 also noted a lack of trust in the system,
stating that when the machine flagged an error, he did not
question his own actions but simply retried the step repeatedly.
P9, P13 and P15 echoed this sentiment, finding that the
validation would be helpful but did not meet expectations in
its current form. On the other hand, P14 felt more comfortable
and confident using the validation system, suggesting that it
provided a positive sense of guidance and facilitated a period of
contemplation during the process.

Some participants suggested that the validation process should
be optional or more flexible. P3 and P11, both with experience in
origami, suggested that users should be able to skip certain steps,
particularly smaller, repetitive actions. P11 also found the validation
frustrating, as he felt it slowed down experienced users who already
knew how to fold the model.

Visual and interaction challenges Several users highlighted
visual issues with the system. P4 noted that it was difficult to
distinguish between one part of a folded paper and overlapping
sections. P11, while experienced in origami, found it challenging to
see fold lines clearly, which made it hard to assess whether a fold was
done correctly.

Participants also noted interaction challenges, particularly with
the buttons used for validation. P6 described the button as “not
responsive,” while P7 suggested that a built-in validation system
would be more intuitive, allowing users to check their work without
needing to move their hands or head excessively. Participant
P13 indicated that the verification step was less physically
comfortable and proposed that it be executed automatically,
obviating the need to use a button.

Animation and user preferences Several users provided
suggestions regarding the animation and user interface. P2 and
P15 requested a clearer indication of where folds should occur,
suggesting the inclusion of dotted lines or visual guides on the paper
itself. P1 that the system should display both the initial and final
stages of a fold, with P1 emphasizing that animations should only
play when necessary. P15 also recommended unifying symmetric
folds to improve clarity.

In terms of animation control, P5 and P14 preferred automatic
animation, while P3 and P11 expressed a desire to skip steps if
needed. Moreover, P2 hoped for user interface elements that more
clearly indicated where each fold should be made, further enhancing
the system’s guidance.

5.4.1 Observations of participants’ behaviors
Nearly all participants made errors in the final step of the model

(A) Samurai Hat, which involves tucking paper inside the model. This
may be attributed to the animation, which does not clearly
demonstrate this action. Furthermore, when users fail the
validation too many times, they tend to lose trust in the system,
believing it is malfunctioning rather than recognizing their own
mistakes. Also, some participants attempted multiple consecutive
steps at once, which frequently led to validation errors. In
addition, participants varied in their folding techniques. Some
folded the paper while holding it in the air, while others validated
the steps by holding the paper in their hands. Occasionally, validation
was performed with the paper pressed flat on the desk. Moreover, in
non-validation (no feedback) mode, some participants watched
several steps ahead before beginning to fold and then attempted to
complete these steps all at once.

6 Discussion and further work

The findings from this study reveal key insights into the
performance and usability of our AR-based origami folding
system, highlighting several areas for improvement. Central to
these observations is the interplay between system reliability, user
trust, and task complexity, which significantly influenced user
engagement and accuracy.

A recurring issue was the loss of trust in the validation system
due to repeated failures. Participants who experienced multiple
validation errors attributed these issues to the system, leading to
frustration and disengagement. This highlights a critical relationship
between feedback reliability and cognitive load. As shown by the
increased perceived cognitive load (Figure 8), unreliable feedback
not only undermines user confidence but also diminishes the
system’s intended utility. To address this, future iterations must
prioritize consistent feedback mechanisms that enhance trust and
foster sustained engagement.

The observed challenges in the interaction between users and the
validation system, such as improper handling of paper during validation
and suboptimal camera positioning, underscore the importance of user-
centered design in AR applications. The HL2 camera’s positioning
above the user’s eyes often resulted in misaligned or incomplete views,
particularly when users looked down. This observation emphasizes the
need for dynamic camera calibration or augmented detection
algorithms capable of compensating for varied perspectives, ensuring
robust performance regardless of user behavior.

TABLE 5 Accuracy assessment by three evaluators for each participant. Rows represent origami models and their corresponding averages. Columns
represent participants (P1-P16) with their average scores.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 Avg

(A) 1.00 1.00 1.33 2.00 1.33 2.00 0.00 0.00 2.00 1.67 0.00 1.33 2.00 1.67 2.00 2.00 1.33

(B) 1.00 1.67 1.33 1.33 1.00 2.00 1.00 1.00 1.33 1.67 2.00 1.00 2.00 1.00 2.00 1.00 1.40

(C) 1.33 2.00 2.00 0.67 2.00 1.00 1.00 1.00 2.00 2.00 0.67 0.67 1.67 1.00 2.00 2.00 1.44

(D) 2.00 1.67 2.00 1.00 1.00 1.67 0.67 1.00 2.00 2.00 1.67 1.67 1.33 1.00 2.00 2.00 1.54

Avg 1.33 1.58 1.67 1.25 1.33 1.67 0.67 0.75 1.83 1.83 1.08 1.17 1.75 1.17 2.00 1.75
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The complexity of the models, measured by the number of
folding stages, had an impact on accuracy. Simpler models, such as
the (D) Yacht, which had fewer stages, tended to result in higher
accuracy scores. In contrast, more complex models like the (B) Box
and (C) Fly, with a greater number of stages andmore intricate folds,
led to lower accuracy. This suggests that model complexity should be
assessed not just by the number of steps but by the intricacy of
individual folds, as errors often occur during symmetric or multi-
fold steps. Moreover, the tendency of users to skip ahead during
folding underscores the need for adaptive guidance that aligns with
individual user preferences and expertise levels.

Scalability also emerged as a consideration for the system, given
the need to acquire real images for each origami model and step. To
address this, we streamlined the annotation process using the
Segment Anything model, significantly reducing manual effort.
While this approach improved efficiency, synthetic datasets
generated from the animation system could further reduce data
requirements. However, synthetic images may not fully capture the
complexities of real-world data, potentially reducing model
performance in real-world scenarios. Combining them with real-
world data and applying techniques like domain adaptation is often
necessary to ensure practical effectiveness (Man and Chahl, 2022).

This study acknowledges several limitations that could influence
the effectiveness and utility of the proposed AR-based origami
folding system.

First, while the NASA TLX is widely used, it has limitations in
capturing cognitive load nuances in AR contexts (McKendrick and
Cherry, 2018). Future work will incorporate physiological measures,
such as pupillary data, to better quantify cognitive demands (Chen
et al., 2011).

Second, the feedback system provided limited information
about fold correctness, potentially reducing its utility. Adding
detailed error feedback (e.g., mistake types and corrective steps)
could enhance user experience but requires research into optimal
delivery formats (e.g., audio, imagery, text, animations).
Additionally, the interplay between feedback mechanisms, the
AR interface, and device design may impact usability. Future
studies will explore these factors and alternative design
approaches.

Moreover, discrepancies between training data and real-world
conditions could affect model performance. While data
augmentation was used, the training set lacked variability in
hand visibility, background clutter, and object positioning, with
all origami samples presented flat on a table. This domain shift
might reduce feedback accuracy and user trust. Collecting data
during real folding sessions with diverse users could address this
but requires significant resources. Future efforts should focus on
gathering realistic datasets and evaluating model robustness under
varied conditions.

A limitation is also the system’s sensitivity to domain shifts, as
the training data primarily comprised controlled conditions with
uniform backgrounds and consistent lighting. Real-world
environments with varied lighting, cluttered backgrounds, and
diverse user behaviors (e.g., folding styles and hand positioning)
could degrade feedback accuracy. Future work should prioritize
domain adaptation techniques and incorporate more diverse,
realistic datasets to enhance model robustness and maintain
performance across different contexts.

Our findings suggest that while the validation system shows
promise, several improvements are needed. These include better
visual clarity (e.g., clearer fold lines and paper layer differentiation
during complex folds), more flexible validation (e.g., allowing step
skipping or milestone focus for advanced users), and improved
interaction design, including optimized camera positioning and
button layouts to minimize errors.

Finally, the small sample size limits generalizability but offers
valuable preliminary insights. Larger, more diverse participant
groups in future studies will help validate and refine the system.

Addressing these issues will increase user trust and usability,
balancing task complexity, time, and cognitive load to improve
performance in AR-supported origami folding.

7 Conclusion

This article aims to validate the ability of an ML-supported AR
application to enhance hands-on learning of a manual task. We
investigated this through a rigorous evaluation of its usability and
impact on learning outcomes. The findings contribute to the
broader understanding of how AR and ML can be leveraged to
support complex manual tasks in educational and
professional settings.

Our work illustrates that AR support, which provides
immersive and interactive experiences for training in various
domains, can be augmented by a machine learning model to
automate task evaluation upon completion. Similar to the
recent work of Chen et al. (2023), where origami serves as a
proxy task for studying the potential of teaching intricate
manual skills, our approach highlights the broader applicability
of AR-enhanced systems to hands-on tasks such as manual
assembly or maintenance processes. While promising, the
model may still lack accuracy and robustness, particularly when
dealing with variations in incorrectly folded patterns. Future
efforts will focus on improving the model’s resilience to these
variations.
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