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Efficient performance and acquisition of physical skills, from sports techniques to
surgical procedures, require instruction and feedback. In the absence of a human
expert, Mixed Reality Intelligent Task Support (MixITS) can offer a promising
alternative. These systems integrate Artificial Intelligence (AI) and Mixed Reality
(MR) to provide realtime feedback and instruction as users practice and learn skills
using physical tools and objects. However, designing MixITS systems presents
challenges beyond engineering complexities. The complex interactions between
users, AI, MR interfaces, and the physical environment create unique design
obstacles. To address these challenges, we present MixITS-Kit—an interaction
design toolkit derived from our analysis of MixITS prototypes developed by eight
student teams during a 10-week-long graduate course. Our toolkit comprises
design considerations, design patterns, and an interaction canvas. Our evaluation
suggests that the toolkit can serve as a valuable resource for novice practitioners
designing MixITS systems and researchers developing new tools for human-AI
interaction design.
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1 Introduction

Mixed reality (MR) technology can display interactive virtual content anchored to the
real environment (Milgram et al., 1995) This capability is suitable to offer instructions to
tasks situated in the real environment (Curtis et al., 1999). Such instructions can be
contextualized to users’ needs using artificial intelligence (AI), with examples including
early instances of AI such as rule engines (Feiner et al., 1993) andmore recent developments
such as large language models (LLMs) (Wu et al., 2024). AI has also been used to offer
personalized feedback in real world tasks through MR interfaces, leveraging sensing and
error detection techniques (Anderson et al., 2013). In this work, we refer to the class of MR
systems that display AI-generated instruction and feedback in a task situated in the real
environment as Mixed Reality Intelligent Task Support (MixITS). MixITS systems have
been proposed for several task domains including cooking (Sosnowski et al., 2023;Wu et al.,
2024), machine maintenance (Feiner et al., 1993), and fitness training (Anderson et al.,
2013; Mandic et al., 2023)

MixITS have the potential to improve user performance and facilitate physical skill
acquisition by overcoming limitations of other forms of instruction and feedback. Textual
and audiovisual formats, such as books and video-tutorials, lack personalization and
proactive interventions to prevent or correct user errors, all of which can be achieved
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with MixITS. Human coaches can benefit from the deployment of
MixITS systems as they allow tracking and realtime analysis of
multiple physiological and kinematic signals including full body
pose, eye-gaze, and heart rate (Bernal et al., 2022) which could go
unnoticed by humans. In the absence of a human expert due to
schedule, budget or geographical constraints, MixITS can act as an
automated coach to ensure consistent training and performance of
end-users.

MixITS could enable a large audience to acquire new physical
skills and perform tasks in the real world in a safe and precise
manner. However, research and design ofMixITS can be challenging
due to the inherited complexity of AI andMR technologies. Previous
research has identified challenges that AI introduces to HCI (Yang
et al., 2020), emphasizing the need for new design guidelines and
toolkits specific to AI-based applications. Separate studies have
pointed factors of MR that contribute to complexity in design,
such as understanding of users’ surroundings and relationships
between virtual and real elements (Freitas et al., 2020). Although
the existing AI (Amershi et al., 2019; Yang et al., 2020; Yildirim
et al., 2022; Feng et al., 2023; LaViola, 2017; Ultraleap, 2024; Meta,
2024; Apple, 2024; Microsoft, 2024; Council, 2024) provide a
useful starting point, considerably less research has been done on
design aids at the intersection of these technologies (Xu
et al., 2023).

In addition to the challenges inherited from AI and MR, the
application domain of task support situated in the real environment
adds another layer of complexity. Examples of critical design
decisions in MixITS include: How much guidance should be
provided to balance correct execution and learning? Should the
system always intervene in case of mistake, or should it balance the
negative impact on the outcome and keep the user focused on the
task? How to promote user trust on the system given the AI can
make mistakes and provide instructions that diverge from the users’
embodied knowledge of the task? Limited research has been done in
eliciting MixITS design challenges and developing structured design
tools in this domain are non-existent.

To fulfill this gap, we propose MixITS-Kit, a structured set of
design tools to tackle the complexity of MixITS at multiple
abstraction levels, contributing to faster developments in this
application domain. Our toolkit is comprised of three elements:

1. Interaction Canvas: a visual tool to streamline the analysis of
interactions between the users, system, and the
environment (Section 5.4).

2. Design Considerations: a catalog of high-level design
considerations in MixITS (Section 5).

3. Design Patterns: a set of lower level describing common
problems in MixITS, observed solutions, and application
examples to guide prototyping and development (Section 5.3).

We created MixITS-Kit based on observation and
documentation of eight low-fidelity MixITS prototypes developed
by 25 graduate students during a graduate 10-week human-AI
interaction (HAI) class. We used Don Norman’s Gulfs of
Execution and Evaluation model as the foundation for our
Interaction canvas that allows designers to analyze potential
interaction problems between the actors involved in a MixITS
scenario. The Interaction Canvas also enabled us to

systematically identify problems and corresponding design
solutions in the prototypes, facilitating design pattern elicitation
(Winters and Mor, 2009; Retalis et al., 2006; Borchers, 2000).
Through a reflexive thematic analysis (Braun and Clarke, 2006;
Braun and Clarke, 2024) of the projects, we distilled six overarching
design considerations for MixITS systems.

To evaluate the benefits and limitations of our toolkit, we
conducted a user study where a separate group of nine
participants used MixITS-Kit to solve a series of design
problems. This evaluation assessed ease of use, toolkit research
goals proposed in prior literature (Ledo et al., 2018), and
potential use as shared vocabulary. Our results demonstrate that
participants were able to utilize MixITS-Kit to propose multiple
solutions for common challenges in MixITS design. User feedback
also points to future work in an interactive version of our toolkit,
especially to streamline gulf analysis and navigation in the design
pattern catalog.

MixITS-Kit offers a structured set of tools that fulfill gaps in
existing design aids that consider only AI or MR alone and tackle the
unique challenges of task support situated in the real environment
from different levels of abstraction. MixITS-Kit contributes to
consolidating and disseminating design practices in MixITS
design, favoring faster development of better systems that can
help a broader audience to learn physical skills or perform real-
world tasks in a safe and efficient manner.

2 Related work

In this section, we review literature onMR task support, which is
similar to MixITS but lacks an AI component. We then focus on
prior research in MixITS systems, which addresses technical
challenges in underlying technologies but provides limited tools
for interaction design. Finally, we discuss methods used in earlier
work to derive design guidelines for human-AI interaction and
mixed reality design. While these tools are useful for MixITS design,
they overlook many unique problems of this domain, which we
address in later sections.

2.1 Mixed reality task support

Supporting users in tasks situated in the real environment has
been a long lasting motivation for MR research. A 1990 pioneer
study demonstrated the feasibility of usingMR to instruct workers in
an aircraft wiring assembly task (Thomas and David, 1992; Curtis
et al., 1999). However, evaluations showed no significant reduction
in task completion time. Research associated this result with the
need for improved instructional design, ergonomic issues and social
acceptance of the equipment—concerns that remain relevant today.

Later studies compared MR instructions with alternatives in
several real environment tasks. In a warehouse pick-up task,
researchers demonstrated improvements in task performance
when using MR instructions instead of paper and audio baselines
(Weaver et al., 2010; Schwerdtfeger et al., 2006). In a manual
assembly task, an MR instruction condition over performed
paper and 2D displays in terms of error rate and mental effort
(Tang et al., 2003). In a machinery repair task, MR instructions
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allowed mechanics to locate tasks more quickly and with less head
movement than when using a 2D display (Henderson and Feiner,
2010). ARDW designed and evaluated an MR system to support
printed circuit board testing (Chatterjee et al., 2022) and reported
reduced context-switching between instruction and the task,
significantly faster localization on the board, and highlighted the
need for fine alignment between virtual elements and
physical elements.

Tiator et al. (2018) proposed an MR instruction system to assist
climbers, highlighting benefits such as maintaining appropriate
challenge levels and documenting ascents. In Skillab (Shahu
et al., 2023), researchers combined MR instructions with haptic
assistance through electrical muscle stimulation in a floor
lamination task. Their system offered better user experience and
outcome quality than a paper-based baseline. Their prototype
identified the need to allow users to modify specific steps
according to their preferences and prior knowledge. This work
demonstrates the potential of combining MR instruction with
physical actuators and the need for adaptability. MR has been
used to support piano learning with positive effects on learners’
motivation, ability to read music scores, and play notes correctly
(Rigby et al., 2020). In the same study, researchers emphasize the
need of offering customization options to meet users’ preferences
and skill level.

These relevant studies and systems offer evidence of the
benefits of MR instruction for tasks situated in the real
environment and contribute to design considerations that
resonate with the ones derived from our own study. However,
they do not include the AI component present in the MixITS
definition. Our work corroborates previous findings, such as the
need to adapt to users’ preferences and skill level, and potential to
incorporate physical actuators and additional sensors missing in
current commercial MR devices. Differently from prior work,
MixITS-Kit adds to their design considerations by accounting for
the presence of AI in the design.

2.2 Mixed reality intelligent task support

More directly related to our work, a pioneer system proposed by
Feiner et al. (1993) presented a augmented reality (AR) interface
combined with a knowledge-base to automate the design of
instructions for maintenance and repair tasks. This is one of the
earliest examples of what we refer to in this paper as MixITS. Their
work identified potential for multimodal instructions and suggested
MixITS will become the preferable way to learn complex real
environment tasks in the future. More recent work in MixITS
include models of user-gaze behavior too estimate visual
attention and expertise level in cooking and coffee brewing tasks
(Yoo et al., 2023). ARTiST (Wu et al., 2024) used LLM few-shot
prompting to optimize the length and the semantic content of
textual instructions displayed in MR for two tasks—cooking and
spatial localization. This intervention alleviated participants’
cognitive load and improved task performance when compared
with unprocessed instructions. Also in a cooking task, Rheault et al.
(2024) proposed a MixITS that leverages action recognition, error
and object detection to intelligently provide instruction
and feedback.

To facilitate the design and evaluation of MixITS systems, prior
work has also proposed technical platforms including open source
MR systems combined with vision and language models (Bohus
et al., 2024) and a visual analytics system (Castelo et al., 2023).
Although these platforms alleviate the engineering and data
analytics burden, they offer limited guidance to the user-centered
design of novel MixITS systems. Our work aims to address this gap,
providing a toolkit that is specifically designed for MixITS systems.
By doing so, we hope to encourage the development of more diverse
MixITS applications. Currently, very few such systems exist, limiting
our ability to evaluate them at scale. As more MixITS systems are
built and deployed, we will be better positioned to identify and
understand new real-world challenges as they emerge, furthering
our knowledge and improving future designs in this critical area of
human-AI interaction.

2.3 Designing with AI

Researchers have developed human-AI interaction guidelines
and explored the role of designers in AI teams through design
workshops, product reviews, and literature analyses. These studies
have also identified design challenges stemming from AI’s uncertain
capabilities and complex outputs.

For example, Amershi et al. (2019) developed 18 human-AI
interaction design guidelines, derived from over
150 recommendations from academic and industry sources, and
validated through evaluations including HCI practitioner testing.
The authors noted the need for specialized tools to address unique
design challenges in AI-integrated interfaces, particularly in
modeling interactions involving the physical context. A follow-up
study presents an evaluation protocol for human-AI interaction,
focusing on productivity applications such as document and slide
editors, search engines, email, and spreadsheet applications
(Li et al., 2023).

Delving into AI system design, Yang et al. (2020) identified two
key complexities that designers face: uncertainty about AI
capabilities, and varying complexity of the types of output AI
models generate. They proposed a four-level classification, with
level-four systems being the most challenging to design due to
continuous learning and adaptive outputs. MixITS systems fall
into this category. The authors suggest that existing design
methods are inadequate to address the range of potential AI
behaviors in real-world contexts for these complex systems.

Exploring how experienced designers use AI in enterprise
applications, Yildirim et al. (2022), found AI was used in both
UI design and higher-level systems and services. They identified
tools such as data-annotated service blueprints and wireframes that
designers use to work with AI. The study highlights the need for AI-
specific design tools, arguing that traditional UX practices require
adaptation to address the unique challenges and opportunities
presented by AI technologies.

Expanding on previous studies, Feng et al. (2023) conducted a
contextual inquiry with 27 industry UX practitioners, revealing key
challenges in AI integration. UX Practitioners encountered
difficulties in collaborating with AI teams in user-centric design
due to late involvement. Many struggled to communicate key AI
performance metrics such as accuracy. Explainability was also a
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concern, as unreliable AI behavior caused loss of user trust. To
mitigate these issues, authors introduced “AI model fidelity” and
“probabilistic user flows” to aid designers in AI application
development. They also noted the importance of involving
domain experts in collaborative human and AI design
approaches, even if they lack UX or AI expertise. These tools are
particularly relevant for MixITS systems, where AI behavior
uncertainty significantly impacts users.

While tools and guidelines from prior work provide valuable
insights for general AI interaction design, they overlook many of the
unique MixITS challenges derived from the combination of MR and
tasks situated in the real environment. For example, AI
understanding of the physical world might be misaligned with
the users’ embodied knowledge, resulting in incorrect
instructions. Another design problem not addressed by current
HAI guidelines is timeless and adequate modality for AI
interactions, that might ignore the real environment task at hand
is priority for the user. Informed by prior HAI research and careful
analysis of eight MixITS prototypes, our MixITS-Kit offers
specialized design tools for intelligent task support in mixed reality.

2.4 Designing with MR

Challenges of designing with MR described in literature (Ashtari
et al., 2020) include difficulty to anticipate users’ movements in the
real environment and dealing with distractions from the real
environment. Other studies highlighted the difficulties of aligning
physical and virtual elements spatially and semantically (Ellenberg
et al., 2023). To better support MR designers, industry and academia
have proposed design tools.

Industry practitioners have compiled valuable guidelines for
designing MR experiences. Guidelines such as “design to avoid
occlusion” and “design for the interaction zone” can help
designers to create more usable and comfortable interactions in
MR considering tracking limitations and user upper body reach
limits (Ultraleap, 2024). Recommendations range from spatial
layout to interaction such as “size and distance for proper depth
perception” and “give users (. . .) multi-modal input, such as hand
ray-and-speech input (. . .)” to help guide the design of MR
experiences (Meta, 2024). Best practices suggest displaying
content within the user’s field of view, supporting “indirect
gestures” (i.e., gestures executed in resting position), and
avoiding the display of overwhelming motion to “prioritize
comfort” (Apple 2024). Industry has also proposed design
processes and techniques for designing MR applications. Low
fidelity prototyping techniques such as “bodystorming,” (Burns
et al., 1994; Oulasvirta et al., 2003), i.e., manipulating low-cost,
tangible props that represent components of a MR application, are a
useful method to validate and refine early design concepts
(Microsoft, 2024). Acting out a scenario is recommended to gain
perspective on how a user would interact with an MR application
(Microsoft, 2024). Additional guidelines for frequent tests and
design iterations to better understand user behavior are also
suggested (Council, 2024; Meta, 2024). We incorporated these
techniques into the assignments for our design course to help
students prototype MixITS systems without feeling constrained
by current technological limitations or implementation challenges.

LaViola (2017), proposed practical guidelines for designing 3D
UIs—including MR interfaces—such as ergonomics and comfort
(e.g., “Design for comfortable poses”), user safety (e.g., “Provide
physical and virtual barriers to keep the user and the equipment
safe”), and interaction design (e.g., “Consider using props and
passive feedback, particularly in highly specialized tasks”). A
survey on human remote collaboration through MR reviewed
extensive research and identified design choices in local interfaces
that can be helpful in MixITS systems as well (Wang et al., 2021).
The same study presents a comprehensive list of technological
toolkits, but does not point to design toolkits. The domain of
human remote collaboration holds similarities to MixITS but the
substitution of the remote expert by and AI creates unique
challenges, for example, in modulating instruction and feedback
frequency and handling false positive error detection, motivating
our research on a specialized design toolkit, MixITS-Kit.

Previous research has identified design patterns through a
structured reflection on artifacts created during the iterative
development of a MR industrial safety training system (Rauh
et al., 2024). This approach aligns closely with our methodology,
as both rely on post-project reflection on project documentation to
extract design patterns relevant to the MixITS domain. However,
their study does not address the unique potentials and challenges
introduced by incorporating AI-driven instruction and feedback.

Valuable studies have devised guidelines at the intersection of
MR and AI, which is closely related to MixITS-Kit haven’t
concentrated the use case of real environment task support.
XAIR (Xu et al., 2023) is a design toolkit for explainable AI in
augmented reality (AR). It was developed through a
multidisciplinary literature review, surveys, workshops, and user
studies. It offers guidelines for determining when, what, and how to
explain AI outputs to AR users. While XAIR provides valuable
insights for integrating explainability into MixITS systems,
addressing factors like user cognitive states and environmental
context, our toolkit takes a broader approach to MixITS system
design challenges beyond explainability alone.

Following a review of 311 papers covering XR and AI,
published between 2017 and 2021, Hirzle et al. (2023)
identified research opportunities in the intersection of XR and
AI. Our work builds on Hirzle et al.’s recommendations for future
research by providing design tools to analyze human-AI
interaction challenges in XR, specifically in the context of
physical task guidance.

3 Methods

We aim to offer designers a structured toolkit for MixITS design
that helps to tackle interaction problems between the user, system,
and the real environment from multiple levels of abstraction. Prior
research has leveraged widely available products in well-
documented domains such as web search and recommendation
systems to iteratively derive human-AI guidelines (Amershi et al.,
2019). Unfortunately, this method is not directly applicable to the
MixITS domain at the moment, due to the scarcity of
documentation focusing on the design and the general
availability of products in this space, as presented in Section 2.2.
Another obstacle to the development of MixITS design tools is the
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engineering complexity, long development cycles, and high costs
associated with integrating AI into real-time MR applications.

To overcome the lack of availability of existing MixITS systems
their development costs, we adopted a middle-ground approach
using low-fidelity prototypes created by graduate students in a 10-
week long course. We employed techniques like bodystorming
(Burns et al., 1994; Oulasvirta et al., 2003), video prototyping
(Leiva et al., 2020), and role-playing (Svanaes and Seland, 2004)
to explore potential design challenges without full implementation.
This method yielded valuable insights, leading to high-level design
considerations and low-level solutions for identified problems
presented as design patterns. Furthermore, the focus on problem
definition and low-fi prototyping allowed us to propose design tools
that are agnostic to the current technological limitations. We base
our analysis methodology on prior research on design with AI
(Lupetti and Murray-Rust, 2024) while addressing common
challenges associated with using design workshops in research
(Elsden et al., 2020).

We structured the design course to address common challenges
associated with using design workshops in research (Elsden et al.,
2020). By coupling in-class discussions and multiple prototype
iterations, students engaged deeply with the material, resulting in
higher-quality outputs than would be possible in shorter, broader-
audience workshops. Students had dual motivations—enhancing
their knowledge of human-AI interaction and MR while meeting
academic requirements—which contributed to sustained

engagement and meeting objectives over the 10 weeks. The
structured assignment schedule with in-class presentations and
feedback not only facilitated a continuous data collection process
but also enabled systematic organization and allowed for deeper
analysis of the evolving design prototypes, reflecting the iterative
nature of the design process.

Class activities and assignments were designed with the
pedagogical goal of educating future AI researchers about
challenges in MixITS system design and exploring potential
solutions. The curriculum aimed to help students understand the
problem domain of human-AI interaction in MixITS systems, as
well as the challenges and complexities involved in developing
realtime, AI-supported interactive systems for task assistance.
Our local IRB approved the use of the assignment deliverables as
research data. Students provided informed consent for their
assignments to be used for research purposes after the academic
term ended and grades were submitted. One team of four members
did not consent to their assignment data being used for research so
we excluded their data from our analysis. Figure 1 shows the low-fi
prototypes produced by students.

3.1 Participants

The course had 29 graduate students from computer science,
engineering, and neuroscience at our university, divided into nine

FIGURE 1
Low-fidelity prototyping allowed students to iterate on the design of MixITS systems with a small budget. Students created cardboard props
representing real objects, such as a PCmotherboard for AI-assisted repair (a) and kitchen utensils for AI-assisted cooking (c). TheMR interface prototypes
used low-cost materials like paper labels to simulate virtual labels on a PCmotherboard (a). Students moved these props to prototype dynamic behaviors,
such as a virtual arrow pointing to parts of a PC (b) and tracking ingredients with bounding boxes made of straws (d), similar to low-fidelity paper
prototyping of mobile or web applications. They also used inexpensive materials to represent customized hardware, including a haptic feedback glove (e)
and a 360-degree camera headset (f). To simulate large outdoor environments, such as a four-way stop for an AI-supported navigation app for blind
users, students createdminiature versions using dioramas, figurines, and toys with extra sensors such as cameras embedded in paper hats. This approach
allowed them to enact full system functionality in a controlled, scaled-down setting that represented complex real-world scenarios (f).
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teams—seven teams of three members and two teams of four
members. Their diverse backgrounds produced teams with a
balanced understanding of AI, MR, and human factors. All
students were new to the MixITS application domain. We
consider our student pool to be representative of early-career
designers, engineers, and researchers new to the MixITS domain
but with prior AI, XR, and HCI experience acquired through courses
or research projects.

3.2 Apparatus

3.2.1 Syllabus and readings
The course syllabus included a variety of learning activities

designed to provide a comprehensive understanding of the
different aspects of designing MixITS systems. The activities
included lectures on topics such as introduction to AI and HCI,
design thinking, human-centered design, low fidelity prototyping
techniques, AI interpretability and explainability, human-AI
interaction, and ethics. In addition to lectures, the course
included frequent in-class discussions on selected readings.
Students wrote weekly reflections on assigned readings,
responding to three specific questions about each reading.
Students also commented on their classmate’s reflections. The
course included project-related checkpoints where students
presented their progress in class and received feedback from their
peers and the instruction team. Assignments were designed to align
with the lectures and readings to encourage students to apply the
material to their practical design challenges. A critical component of
the class was interactive activities earlier in the quarter, including
role-playing exercises with props, where students acted out physical
tasks (e.g., making coffee), played the roles of an AI agent and an
interface, to gain a hands-on understanding of the challenges and
considerations involved in designing MixITS systems.

3.2.2 Role-played MixITS scenario
The in-class coffee-making demonstration and role-play

scenario highlighted key challenges in AI-based MixITS systems,
providing students with a hands-on understanding of the
complexities involved in real-time AI instruction and feedback.
Several limitations of MixITS systems became apparent, including
action misinterpretation and inability to handle unexpected events
not present in the training data. The system’s failure to detect user
errors, such as adding salt instead of sugar, was also highlighted.
Timing and sequence issues in managing procedural steps, along
with environmental variables affecting object and action
recognition, further presented aspects to consider in developing
MixITS systems. The demonstration revealed how user expertise
levels and mental models can significantly influence their
interactions with AI systems. Novices and experts may approach
and respond to AI guidance differently based on their understanding
and expectations of the system’s capabilities. By confronting realistic
AI limitations, students were better prepared to design realistic and
robust MixITS systems in their projects.

3.2.3 Group project and assignments
The primary outcome of the course was a group project where

students designed and created low-fidelity prototypes of their

MixITS systems. The project was broken down into five bi-
weekly assignments. Students used tools such as empathy maps,
sketches, paper, and video prototypes of role-played scenarios for
their design assignments, which they presented in class for feedback.
They were expected to integrate the feedback into subsequent
iterations of their prototype. Written assignments for each
prototype stage involved design reflections, anticipated AI and
user errors with potential solutions, interface design elements,
user evaluation processes and outcomes, and more.

3.3 Procedure

Our human-AI interaction course focused on MixITS scenarios
was 10-week long with lectures of 1 hour and 15 min twice a week.
The syllabus included MR design, human-centered AI, and
prototyping techniques suitable. Throughout the course, each
team developed a low-fidelity MixITS system with an incremental
and iterative process. At the end of the course they evaluated their
prototypes with users. Students documented the entire process with
weekly assignments, in-class presentations, written reports and
recordings of user testing. This rich documentation was the
empirical basis to develop the MixITS-Kit.

3.3.1 Assignment 1 (explore)
In Week 2, Assignment 1, students analyzed a freely chosen

physical task using flowcharts and sketches that detailed the task
steps, required tools, expected outcomes, and surrounding
environment. Next, they created empathy maps to gain a deeper
understanding of their potential audience, adopting a user-centered
approach. Students then reflected on the challenges, benefits, and
risks of deploying an AI system to support users in the physical task.
Their reflections resulted in AI-based use cases to facilitate learning
and improve users’ skills along with suitable interaction modalities.
This assignment laid down the foundations for the next iterations.

3.3.2 Assignment 2 (empathize)
The second assignment focused on two primary objectives:

fostering empathy for potential users and deepening
understanding of a MixITS task from both user and AI
perspectives. This approach aimed to cultivate a more empathetic
and comprehensive design process, considering the viewpoints of
both the users and the AI system. Students participated in a role-play
exercise to simulate the interactions between a user, an AI system,
and the interface in a MixITS scenario (Section 3.2.2). This activity
incorporated established HCI methods such as the think-aloud
protocol (Ericsson and Simon, 1980) and bodystorming (Burns
et al., 1994; Oulasvirta et al., 2003). Through this hands-on
experience, students gained insights into the complexities of
human-AI interaction in a MixITS system, including the reality
of AI errors, and identified interface design challenges to address
these errors. Understanding the interface design challenges focused
on managing AI errors while balancing several key factors:
preserving user agency, minimizing cognitive load, reducing user
frustration, maintaining trust in the system, and preventing users
from disregarding the AI’s input altogether. This approach aimed to
help students recognize the various elements that need to be
considered while designing human-AI interfaces that effectively
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support users without compromising the overall user experience or
the system’s utility. For their submission, students recorded a
prototype walkthrough and provided a written reflection on their
prototype. This combination of practical demonstration and
analytical reflection allowed students to synthesize their learning
and apply it to their design scenario.

3.3.3 Assignment 3 (prototype)
Assignment 3 built upon the insights gained from the previous

two assignments, challenging students to prototype solutions for
their MixITS scenario. Rather than designing entire systems,
students narrowed their focus to critical aspects such as
managing AI errors, addressing user perception and trust, and
examining system design assumptions. Students created low-
fidelity prototypes of MR interfaces, employing a Wizard of Oz
technique (Kelley, 1983) to produce video prototypes. This approach
allowed them to explore design concepts without committing
prematurely to complex and time-consuming engineering, as
pointed in prior work on MR prototyping (De Sá and Churchill,
2012). They detailed the physical tasks in their scenarios by visually
mapping out step pre-conditions and task sequences, using the
provided drip coffee-making scenario as a guideline. Through this
assignment, students learned to appreciate the nuances of
accommodating task variations and error detection in AI-assisted
systems. They gained experience in balancing user needs with
system capabilities, and understood the importance of
considering execution uncertainties in their designs. This exercise
reinforced the complexity of creating intuitive, effective, and
trustworthy human-AI interactions in MixITS scenarios.

3.3.4 Assignment 4 (iterate)
Assignment 4 focused on the evaluation of the refined

prototypes, which now incorporated a simulated AI backend. The
assessment process involved instructors acting as users to test both
the interface’s effectiveness and its technical design. To challenge the
system’s robustness, instructors intentionally introduced errors
during testing when instructions were unclear or exposed to
safety risks (e.g., cooking burns), helping students uncover design
challenges relevant to real-world applications of MixITS systems.
Students were tasked with detailing their user study design including
tasks and metrics, writing reflective essays on their findings,
itemizing instructor feedback and brainstorming potential
solutions to observed interface failures. This reflective exercise
served to deepen their understanding of their designs and
provided valuable insights for future iterations of the projects.

3.3.5 Final assignment (reflect)
The final design project culminated in a comprehensive report

on the designed MixITS system. This report discussed the rationale
behind their designs, explored user benefits for learning new skills or
performing tasks, and offered a critical reflection on the system’s
strengths and weaknesses. Students also provided recommendations
for future designers working on similar projects. This final
assignment encapsulated the entire design journey, integrating
insights from previous assignments and incorporating feedback
from peers and instructors. The project served as a reflection of
their growth and understanding in designing AI-assisted
MixITS systems.

4 Data analysis

We analyzed all course data, including video prototypes and
accompanying written documentation produced by each team for
every assignment. We performed two types of analyses: 1) reflexive
thematic analysis (Braun and Clarke, 2006) which resulted in six
design considerations, and 2) design pattern elicitation (Winters and
Mor, 2009; Retalis et al., 2006; Borchers, 2000) which resulted in the
identification of 36 potential problems and example solutions.

4.1 Reflexive thematic analysis

We used the flexible qualitative approach of reflexive thematic
analysis, as formalized by Braun and Clarke (2006). This method
allows either inductive or deductive strategies (Braun and Clarke,
2024). We chose a deductive approach starting from goal-oriented
codes taken from the metacognitive questions in the assignments.
Braun and Clarke emphasize that reflexive thematic analysis can be
effectively conducted by a single analyst, and that inter-rater
reliability is not necessary for the method to be applied
rigorously (Braun and Clarke, 2006; Braun and Clarke, 2024;
Maxwell, 2010).

Our analysis followed the 6-stage procedure proposed by Braun
and Clarke (2006), Braun and Clarke (2024). First, the analysis was
conducted by one of the authors who did not have any classroom
role or interaction with the student teams. This data analyst started
by familiarizing themselves with the assignments. The initial set of
codes was based on the metacognitive (Flavell, 1976) components in
the assignments—design challenges, decisions, trade-offs, and
recommendations for future designers. Following the initial
coding, the analyst developed a set of themes. These were
presented and discussed with the teaching team, to ensure they
were coherent to the classroom experience and captured insights
gained during the design course. The discussion resulted in a final set
of themes that are named and reported in Section 5 as design
considerations.

4.2 Design pattern elicitation

Drawing inspiration from previous work on design pattern
elicitation (Winters and Mor, 2009; Retalis et al., 2006; Borchers,
2000), our method to elicit MixITS design patterns consisted of, (1)
compiling case studies, (2) identifying common functionalities, (3)
decomposing the functionalities into triplets of context, problem,
and solution, and (4) refining the triplets by detailing, merging,
splitting, and removing. The eight prototypes were used as case
studies, represented by written reports and video recordings. We
reviewed the reports and watched the videos for each prototype, to
compile a coarse list of 63 functionalities identified across the eight
prototypes. Each of the 63 functionalities was broken down into
triplets of context, problem, and solution. Following that, the
63 triplets were labeled with one of the eight Interaction Gulfs
presented in Section 5.2. The Gulf labels abstract the details of the
context and for this reason the full context description was omitted
from Table 1. The gulf labeling step involved identifying the actor
(Human or AI) and the target (Human, AI, or the Environment) of
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TABLE 1 The initial 36 MixITS Design Patterns in the Problem-Solution format tuple and grouped by Interaction Gulf.

Gulf ID Problem Example Solutions

H-Ex-E Human Execution on the
Environment

1 Environment
Understanding

Provide additional information about a real environment element
E.g., descriptive labels registered to unfamiliar components of a PC.

2 Risk Awareness Highlight potentially dangerous real environment elements before the user executes the step
E.g., MR arrows and audio warning about a hot pan nearby

3 Step Preconditions Notify the user about an unfulfilled precondition of the next step
E.g., A spoken instruction to the user to tune their guitar before starting practice

4 Procedural Knowledge Provide instructions with written text and speech
E.g., Speech synthesis and MR text/visuals instructing the user on how to operate a rice cooker

5 Spatial Knowledge Visually demonstrate the trajectory of an action or the direction of the relationship between two
elements
E.g., Animated MR arrow moving between sockets to guide PC cable re-connection

6 Body Movement Visually demonstrate body movement or pose with an animated 3D body, video, or image
E.g., Animated MR hand to demonstrate how to play a lead passage on the piano.

7 High User Workload Provide virtual functionalities that aid in the task execution
E.g., Timer to keep track of cooking time

8 Virtual Environment
Clutter

Hide virtual overlay
E.g., A voice command to hide or dim MR labels on objects in a repair shop

9 Real Environment
Clutter

Indicate real environment elements that can be removed from the workspace
E.g., Register MR labels to indicate a utensil is not needed for a recipe and can be stored

10 Lack of Focus Highlight a single real environment element
E.g., Complement instructions by pointing anMR arrow to a PC component that should be connected

H-Ev-E Human Evaluation of the
Environment

11 Expected Task Result Describe the expected outcome of an entire task
E.g., Image of the dish the user wants to prepare

12 Task Result Provide a comprehensive report of the final product of the task, explaining inconsistencies and
suggesting corrective actions
E.g., Superimposed MR model of a correctly assembled PC over the user’s assembly to visually
highlight discrepancies

13 Task Performance Provide a comprehensive report of the user performance throughout the task, explaining mistakes
and suggesting technique improvements
Line plot on an MR panel showing user tempo accuracy, highlighting mistakes with audio samples,
and suggesting tailored training for those passages

14 Task Progress Inform task completion progress
E.g., MR panel with a checklist of steps

15 Expected Step Results Describe the expected outcome of a step of the task
E.g., Image of herbs diced or chiffonade as required by the recipe

16 Step Results Inform the user of an inconsistency in the step outcome and recommend correction based on the
impact
E.g., Interrupt (if allowed) the user during incorrect chord play and show an image of the correct
music sheet.

17 Tool Operation Demonstrate the correct operation of the physical tool and contextualize mistakes by overlaying
content on the tool
E.g., Overlay MR numbered labels on the guitar neck to display the correct chord shape

18 Causal Chain Review previous step records with the user to identify undetected circumstances that caused
inconsistencies in outcomes
E.g., Engage in a conversation with the user to reason about pieces of evidence after analyzing a crime
scene

19 User Frustration Reassure the user, offer instructions to correct performance or outcome issues, and alternative
courses of action
E.g., Synthesize reassuring speech and corrective measures in a calming tone after the user drops a
bowl of ingredients

20 Spatial Knowledge Visually demonstrate the trajectory of a previously executed step or the relationship between two
elements involved in a previous step
E.g., Demonstrate the trajectory a suspect may have followed to enter a crime scene based on the
evidence

(Continued on following page)
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the interaction. Additionally, the actor’s goal and the target’s means
to enable the user to accomplish their goals, in the execution cycle,
and the actor’s interpretation of the target’s feedback, in the
evaluation cycle, were labeled. Our experience, repeating this step
for each of the 63 triplets, resulted in theMixITS Interaction Canvas,

a design tool to support Interaction Gulf analysis, described in more
detail in Section 5.4. After a deep reflection phase followed by
discussion among the authors, we refined the labels and combined
redundant triplets to generate a final set of 36 emerging design
pattern triplets reported in Section 5.3.

TABLE 1 (Continued) The initial 36 MixITS Design Patterns in the Problem-Solution format tuple and grouped by Interaction Gulf.

Gulf ID Problem Example Solutions

H-Ex-AI Human Execution on AI 21 Dismissal Allow users to dismiss AI system functionalities easily
E.g., “Thanks, I can take it from here.” – User

22 Activation Allow users to request AI system functionalities easily
E.g., “CookGPT (activation keyword), how much olive oil should I use?” – User

23 Scoped Activation Allow users to easily request AI system functionalities directly related to a virtual or real
environment element
E.g., MR buttons, linked to music sheet sections, offering guidance upon tapping

24 Task Obstruction Support interaction modalities that do not obstruct user interactions with the real environment
E.g., speech, eye gaze, adaptive UI, tangible inputs

H-Ev-AI Human Evaluation of AI 25 Tracking in Progress Inform the user about the parts of the environment being tracked and the expected end time during
tracking
E.g., MR frame that moves along the environment as the system is scanning and reconstructing
specific parts of the environment

26 Chain-of-Thought Allow user-system dialogue by explaining the system’s decision-making process and enabling user
inquiries or counterarguments
E.g., Engage in a conversation with the user to explain the reasons why the system is suggesting an
alternative theory to explain a crime

27 System Focus Inform the user of the system’s focus shift to a specific area within the physical environment
E.g., An MR icon around the user’s hands, while they are mixing ingredients to communicate to the
user the system, is aware of the action

28 Privacy Request explicit user authorization for the acquisition of personally identifiable information
E.g., Clearly display the terms of use and obtain explicit user consent to collect data about the user’s
home

AI-Ex-E AI Execution on the
Environment

29 Act on the Environment Coordinate with IoT devices to change the environment towards the user goal
E.g., The system requests a smart traffic light, after considering everyone’s safety, to turn red so the
user can cross the street.

AI-Ev-E AI Evaluation of the
Environment

30 Limited Spatial
Awareness

Environment modeling from spatial data captured through multi-view RGB, depth-cameras,
LiDAR, or millimeter wave radars
E.g., A 360-degree camera attached to the MR HMD.

31 Step Results User feedback to improve the system’s assessment of a specific task step outcome locally in the
session
E.g., The AI misclassifies a chord as a mistake due to background noise, but after the user corrects the
system, it recalibrates the microphone

32 Procedural Knowledge Allow users to analyze outcomes of past instructions to correct the system’s procedural knowledge
base
E.g., The user informs the system about an incorrect ingredient in the recipe, prompting the system to
update the recipe accordingly

33 Environment Model Situated user feedback to correct mistakes in the system’s environment model
E.g., hand gestures to annotate artifacts of misclassification or 3D reconstruction in the system’s
environment model

34 Task Progress User feedback to update task progress in case of undetected step completion
E.g., The user informs the system via speech that they have already mixed the necessary ingredients,
which was not previously detected by the system

AI-Ex-H AI Execution on Human 35 Instructional Language Rephrase instructions to facilitate understanding when users demonstrate doubt after receiving
guidance
E.g., In a PC repair scenario, replace a technical term (CPU Cooler) with lay terminology (fan
attached to the metallic grid)

AI-Ev-H AI Evaluation of Human 36 Goal Infer user goals based on explicit inquiries or implicit analysis of their actions in the real
environment
E.g., Initially, the system assumes the user is playing song A, but upon hearing the first notes, it
identifies the song as B and updates the instructions
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5 MixITS-kit design toolkit

From the analysis of the extensive documentation of
the interactive design process of MixITS prototypes during
the course, we distilled six design considerations for the
design of future MixITS systems. We encourage readers
to consider the similarity of their project domain to
MixITS (Section 3.3) to judge their “proximal similarity”
(Campbell, 1986) before transferring our findings to their
particular cases (Polit and Beck, 2010). The design
considerations are detailed in the following subsections and
summarized in Figure 2.

5.1 Themes and design considerations

The design considerations expand existing human-AI
design guidelines by considering adaptive AI, multimodal
reasoning, and context-aware interaction. These principles,
while drawing from prior AI and MR guidelines, uniquely
address real-time physical task support challenges. By
emphasizing user state inference, environmental adaptation,
and diverse interaction modalities, they bridge digital
interfaces and physical tasks. The considerations recognize
MixITS systems as operating at the intersection of AI, HCI,
and physical performance, requiring nuanced application of
cross-domain principles to enhance system efficacy and user
experience.

5.1.1 Teaching and directing
We observed that design choices typically aligned with two

main goals: teaching skills or directing tasks. Skill-focused
MixITS aimed to empower users for independent future
ability, implementing pedagogical interventions and assessing
learning outcomes. Task-directing MixITS focused on either
meeting outcome specifications or guiding users through
precise steps. These two approaches differed in their user
assumptions and environmental focus.

5.1.1.1 Teaching-focused
MixITS prioritized learning over task completion, sometimes

interrupting activities for educational purposes. For example,
PianoMix interrupted a user’s session to correct technique errors,
even when the technique did not adversely affect the musical output.
ARCoustic modulated feedback and modeled user emotions to
maintain motivation, reflecting research on engagement and
learning outcomes (Harp and Mayer, 1997; Erez and Isen, 2002).
These designs also allowed users to select instructional preferences
and performance metrics self-assessment. Surprisingly, teaching
MixITS often lacked safety features and assumed well-controlled
environments. They also provided fewer opportunities for users to
correct AI mistakes, presuming an “ideal” system state and superior
AI knowledge.

5.1.1.2 Task-directing
MixITS assumed higher user expertise in real-world settings.

These designs allowed users to provide feedback on AI
mispredictions (RealityFix and ChefMix), and were more
considerate of AI interruption frequency and task disruption.
Some systems prioritized task continuity over immediate error
correction. User agency was preserved by allowing reasonable
improvisation within task steps (CrossReality and ARCoustic).
Intervention decisions resembled those proposed by Horvitz
principle (Horvitz, 1999). Safety was a key focus, with designs
signaling potential hazards (Cookbot and ChefMix).
CrossReality even included the ability to request external
medical assistance.

When designing MixITS systems, it is crucial to distinguish
between teaching and directing goals, as this choice significantly
impacts design decisions. Teaching MixITS should consider
prioritizing learning outcomes, ensuring safety even in controlled
environments, and incorporating pedagogical interventions (Choi
et al., 2014; Laurillard, 2013) derived from research on Intelligent
Tutoring Systems (Brown and Burton, 1978; Anderson et al., 1985).
In contrast, directing MixITS should consider balancing task
continuity with error correction, preserving user agency within
task parameters, allowing users to correct AI mistakes, focusing

FIGURE 2
Six MixITS Design Considerations produced by a reflexive thematic analysis of data collected in the design course. Section 5 presents the
considerations in detail.
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on real-world safety, and document processes for future auditing
and improvement, especially in industrial contexts. Both types of
systems need to consider AI interruption frequency, user expertise
levels, and feedback mechanisms. While incidental learning may
occur in task-directing MixITS (van Asselen et al., 2006; Tresselt and
Mayzner, 1960), clearly defining the primary goal as either teaching
or directing would lead to more optimized and effective designs
tailored to their specific purposes.

5.1.2 Interaction timing
MixITS systems were designed with either proactive or reactive

interaction styles. Proactive systems offered unsolicited guidance,
while reactive ones responded to user requests. This choice was
influenced by user expertise, some metric of criticality (e.g., user
safety and impact on the task outcome), and perceived user
workload. For instance, a system for blind users proactively
intervened in dangerous situations (CrossReality), whereas a
piano-learning system reactively provided feedback when
requested (PianoMix). Students recognized the challenge of
balancing proactive interaction frequency with user agency. To
address this issue, designs like MusIT, a guitar-teaching
prototype, allowed users to adjust the intervention frequency
according to their preferences. Students designed interventions
for three key phases: before, during, and after tasks. Before-task
interventions typically included feature tutorials (ChefMix) and
procedure summaries (Cookbot and ARCoustic). During-task
interventions ranged from minimal guidance (PianoMix and
ARCoustic) to critical mistakes or safety alerts (Cookbot). Post-
task interactions offered performance reports and outcome
assessments. To address interaction frequency concerns, some
designs, like MusIT, accumulated recommendations for periodic
or end-of-session reports, demonstrating how temporal alignment
can optimize user experience.

Designers should consider balancing proactive and reactive
interactions and their frequency based on user expertise, task
criticality, and workload. Simultaneously, they need to be
mindful of how interaction frequency impacts user workload,
fatigue, and error rates. A flexible system would allow users to
adjust AI intervention frequency and tailor interactions to specific
task phases, which can help personalize the experience and retain
user agency.

Optimizing interaction frequency can avoid disrupting task flow
while maintaining system usefulness. System actions, if aligned with
task execution, would minimize disturbance, and implementing
feedforward techniques for “before-task” interactions would help
users anticipate consequences. Interactions that are too infrequent
might lower the system’s usefulness with suboptimal results and
inefficiencies. This resonates with the guideline to “time services
based on context” by Amershi et al. (2019) for non-MixITS systems.
Existing guidelines on mixed-initiative systems (St. Amant and
Cohen, 1997; Allen et al., 1999), utility concepts (Horvitz, 1999),
and contextual timing of services offer valuable insights that
complement our design considerations. The implications of
unsolicited assistance for learning have been explored in the
intelligent tutoring systems domain as the “assistance dilemma”
(Koedinger and Aleven, 2007). Frameworks such as XAIR (Xu et al.,
2023) can provide specific guidance on timing AI explainability
effectively.

5.1.3 Error handling
Students identified errors in user-environment interactions via a

simulated walkthrough with a task flowchart analysis that
highlighted steps, outcomes, and required resources. Cognitive
walkthroughs and prototype testing revealed potential errors in
user-AI interactions and AI’s perception of the environment.
This process uncovered potential errors in MR interface
interactions, AI predictions, and environmental changes. Four
themes emerged from students’ error-handling strategies.

5.1.3.1 Prevention
Prototypes demonstrated strategies involving users in decision-

making. MusIT incorporated a feedback loop where the AI
prompted the user for confirmation of critical information before
performing tasks like optical character recognition (OCR) on user-
shared documents. ChefMix had two error prevention features: one
allowing users to notify the system about unfulfilled step
preconditions before executing an AI-instructed step, and
another where the AI preemptively detected unfulfilled
preconditions overlooked by users. These approaches showcase
collaborative user-AI error mitigation methods.

5.1.3.2 True positives
Teams implemented various strategies for handling AI and user

errors. When AI detected its ownmistakes, RealityFix acknowledged
and apologized, while Cookbot implemented a collaborative
problem-solving approach initiated by the user describing the
problem. For user errors detected by AI, PianoMix and
ARCoustic could interrupt tasks and provide immediate
corrections, ensuring proper practice. ChefMix went further by
incorporating emotional state management before guiding users
through corrections, aiming to reduce frustration and enhance the
learning experience. These approaches indicate the goal to increase
transparency, build user trust, and improve error handling in AI-
user interactions.

5.1.3.3 False positives
We identified strategies for handling AI false positives in error

detection. PianoMix enabled users to dismiss incorrectly identified
errors, maintaining user control over task disruptions. ARCoustic
implemented an interactive approach where users could counter-
argue AI-detected mistakes and add an explanation to correct the
AI’s understanding, offering a way to override the system’s false
positives and provide data for future refinement of the algorithm.
Notably, no features were identified where AI could judge user-
detected errors as false positives, suggesting a prioritization of user
agency in error handling. These approaches indicate a balance
between AI assistance and user control in error management.

5.1.3.4 Intractable errors
Teams devised various strategies to handle errors that went

undetected by both users and AI during the task. Cookbot offered a
user report feature for post-task issue reporting to developers, which
can assist future system updates. RealityScan had an AI feature
supporting users in deductive thinking, enhancing error log quality
through collaborative error detection. Fail-safe mechanisms were
included on Cookbot and ChefMix, allowing users to manually shut
down the system, clean the work area, and start again. CrossReality
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focused on user safety, incorporating shortcuts and safeguards to
trigger external support like medical help when necessary.

5.1.3.5 Design considerations
Designers should consider prioritizing error prevention and

comprehensive error handling. This could be done by
incorporating proactive strategies, such as feedback loops for user
confirmation of critical information and preemptive detection of
unfulfilled preconditions for a specific task. Feedforward techniques
that allow users to anticipate the consequences of their actions have
been shown to significantly decrease errors by enhancing user
understanding of the system’s behavior and potential outcomes
(Coppers et al., 2019; Muresan et al., 2023; Artizzu et al., 2024).
Error handling mechanisms need to address both AI and user
mistakes, including AI acknowledgment of its errors, user-
initiated problem-solving, AI interruption for immediate user
error correction, and related impact on learning and flow.
Emotional regulation features can enhance the learning
experience by reducing user frustration during corrections. The
design should consider user agency in dismissing false positives and
the ability to provide feedback to the AI without making it
burdensome. Post-task error reporting could help address
undetected issues while helping improve the overall system.
Depending on the context, fail-safe mechanisms like manual
system resets and safety triggers for external support can be
integrated. Overall, there is need for designs to balance AI
assistance with user control, prioritize transparency to build trust,
and ensure adaptability to various error scenarios in physical task
contexts. With a human-in-the-loop, designers can enable users to
guide and correct AI behavior in realtime, thus enhancing the
system’s adaptability and reliability over time. Designers can
additionally leverage prior research on human errors that
provides useful taxonomies and approaches to handle skill-based,
knowledge-based, and perceptual errors (Shappell and Wiegmann,
2000; Norman, 1981).

5.1.4 Sensors and actuators
Some MixITS prototypes showcased enhanced sensing and

actuating capabilities beyond standard MR headsets. ChefMix
installed fixed cameras in the environment, providing a third-
person view to reduce occlusions and improve physical
environment modeling. CrossReality, focusing on assisting blind
users in street crossing at a stop sign, developed a system that
coordinated with smart city devices like traffic lights and vehicles.
Their prototype included wearable devices using haptic stimuli for
guidance and an augmented cane with buttons for user input,
enabling effective interactions in noisy environments without
relying on audio feedback. These enhancements show the
potential for MixITS systems to integrate with broader
infrastructures and adapt to diverse user needs and
environmental challenges.

Future MixITS systems should consider integrating IoT and
robotics to enhance environmental interaction capabilities.
Augmented tools with embedded sensors could provide precise
task guidance, while leveraging existing 3D mapping data could
enhance spatial awareness. A wearable ecosystem could provide
physiological data for personalized guidance, and networked
expertise could offer real-time access to specialized knowledge

and potentially reduce AI errors. Bodily control technologies like
Electrical Muscle Stimulation (EMS) (Nith et al., 2024; Shahu et al.,
2023) and Galvanic Vestibular Stimulation (GVS) (Sra et al., 2017;
Byrne et al., 2016) could add to user path guidance, potentially
reducing workload and enhancing performance. Designers need to
address challenges such as sensor obstruction, particularly as MR
headsets block facial expressions, necessitating alternative methods
for emotional state inference. Leveraging existing technologies and
infrastructure can help overcome current limitations in AI and MR
technologies, enabling more sophisticated user-environment
interactions in task guidance.

5.1.5 Evolving context
One of the major benefits of MixITS systems over other types of

guidance such as video tutorials, beyond realtime feedback, is their
potential for adaptability. MixITS systems are expected to generalize
beyond rigid instructions and seamlessly adapt to the user’s context
and ability. ChefMix and ARCoustic used human reactions as a
shortcut to infer contextual changes, bypassing pure machine
perception. They detected important changes through shifts in
facial expressions and gaze patterns, prompting proactive system
responses. The prototypes also adapted their interaction modes to
environmental changes. For instance, ARCoustic typically provided
feedback after listening to a user’s guitar performance, but in noisy
settings, it temporarily switched to demonstrating song passages and
allowing for user self-assessment.

AI can allow systems to learn and refine based on user
experience and feedback (Ouyang et al., 2022). When designing
MixITS systems, designers should consider: implementing adaptive
learning based on user feedback; utilizing multimodal AI to process
various data types for comprehensive reasoning; inferring user
workload and interaction capacity through multimodal analysis
(Liu et al., 2024); detecting changes in manipulated objects for
contextual adaptation; and leveraging diverse hand grasps to
enable a range of interaction possibilities ranging from single-
finger gestures to graphic grasp-centered interfaces (Sharma
et al., 2021; Aponte et al., 2024). These considerations allow for
more responsive, context-aware systems that can adjust their
guidance methods based on user needs and environmental factors.

5.1.6 Building trust
In the context of physical task guidance, research indicates the

importance of trust for effective human-AI interaction (Haesler
et al., 2018; Eyck et al., 2006). Students addressed this by
incorporating trust-building features into their prototypes.
Cookbot, ARCoustic, and MusIT allowed users to report AI
mistakes, enabling system adaptation and fostering a sense of
user influence. ARCoustic and MusIT explained errors and
recommendations to the users, while Cookbot and ChefMix used
MR visuals to show tracked environmental elements, enhancing
transparency. These approaches, aligned with frameworks like XAIR
for explainable AI in AR (Xu et al., 2023), aimed to establish
two-way communication between users and the system, to foster
long-term trust development. Explainability is a key factor in trust-
building, that aligns with Amershi et al.’s guideline to clarify system
actions (Amershi et al., 2019). Cookbot and ARCoustic visualized
task progress and allowed users to fast-forward or return to a specific
step of the task procedure, enhancing user control. Addressing
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privacy concerns, students recognized the sensitive nature of
multimodal data collection in MixITS systems. PianoMix
implemented informed consent procedures, while other projects
proposed visual indicators for active data collection and measures to
protect bystander privacy, demonstrating awareness of ethical
considerations in AI-driven task guidance.

While not unique to MixITS systems, designers should focus on
building trust through transparent decision-making, error
reporting, and system adaptation. Explainable AI using visual
cues to demonstrate awareness and reasoning, should be
considered. Enhancing user control with task navigation and
progress visualization can help with user agency and associated
trust. Prioritizing privacy through clear consent procedures and data
collection indicators can help users feel comfortable using a MixITS
system. Clearly communicating system capabilities and limitations
can help set accurate user expectations, particularly as questions
about artificial general intelligence arise (Terry et al., 2023). This
consideration resonates with the guideline to “Make clear what the
system can do” from (Amershi et al., 2019). Designing adaptive
systems that adjust guidance methods based on user feedback and
environmental factors can help ground the systems into the user’s
immediate context. These considerations can create trustworthy,
transparent, and effective MixITS systems that balance advanced
capabilities with user-centric design.

5.2 Gulfs of execution and evaluation in
intelligent mixed reality

Donald Norman’s Gulfs of Evaluation and Execution (Hutchins
et al., 1985; Norman, 1986; Norman, 2013) have been instrumental
for HCI researchers and practitioners in understanding the
challenges users encounter when interacting with systems
(Vermeulen et al., 2013; Hornbæk and Oulasvirta, 2017; Muresan
et al., 2023). The gulf of execution refers to the gap between a user’s
intended action and the options a system provides to perform that
action. A small gulf indicates that the system’s controls align well
with the user’s intentions, making it easy to use. A large gulf of
execution means the system’s interface poorly matches the user’s
goals, making it difficult to accomplish tasks.

The Gulf of Evaluation is the gap between how a system presents
its state and how a user interprets it. A small gulf of evaluation
means users easily understand the system’s feedback and current
state. A large gulf of evaluation indicates users struggle to accurately
interpret the system’s state, leading to confusion or errors.

We apply Norman’s gulfs to identify and analyze interactions in
a MixITS system, which includes the new element of the physical
environment and changes the system from the traditional
deterministic system to an AI-based probabilistic one. In a
MixITS system, users need to convey their intentions to both the
AI (system) and the physical environment simultaneously. This dual
interaction can create two distinct gulfs: (1) Gulf of Human
Execution on AI (H-Ex-AI) occurs when users struggle to
communicate their intentions to the AI system, and (2) Gulf of
Human Execution on Environment (H-Ex-E) which arises when
users face challenges in physically executing their intentions in the
real world. For example, in an AI-assisted rock climbing system, a
climber might intend to reach a misidentified hold on a path

suggested by the AI. They need to indicate this mistake to the AI
(H-Ex-AI) to allow it to update its suggested path, perhaps through
gaze or gesture, while also physically moving their body to grasp a
different hold (H-Ex-E) that is more within reach.

After taking action, users must interpret feedback from both the
system and the physical environment. This dual interpretation can lead to
two distinct gulfs: (1) Gulf of Human Evaluation of AI (H-Ev-AI) which
occurs when users struggle to understand or interpret the feedback
provided by the AI system; and (2) Gulf of Human Evaluation of
Environment (H-Ev-E) which arises when users face challenges in
perceiving or interpreting the results of their actions in the physical
world. Continuing the rock climbing example, after reaching for a hold,
the climber needs to process the AI’s feedback about their technique or
next move (H-Ev-AI), perhaps displayed through MR visuals or audio
feedback. Simultaneously, they must evaluate their physical position and
stability on the wall (H-Ev-E).

We can consider MixITS systems as mixed-initiative systems
(Horvitz, 1999) where the AI backend can behave as an agent and
initiate interactions with the user and the physical environment.
This mixed-initiative perspective leads to four additional Gulfs: Gulf
of AI Execution on Human (AI-Ex-H), Gulf of AI Execution on the
Environment (AI-Ex-En), Gulf of AI Evaluation of Human (AI-Ev-
H), and Gulf of AI Evaluation of the Environment (AI-Ev-E).
Figure 3 shows all the eight Gulfs of a MixITS application.

We treat the physical environment as a passive entity affected by
user and AI actions, rather than as an active participant. This
simplification keeps our design toolkit focused and practical,
avoiding the complexities of fully modeling environmental factors.

5.3 Design patterns

Novice MixITS designers may struggle to apply general AI and
MR guidelines to specific projects. Without a shared vocabulary
between designers and AI developers, there is a risk of
misinterpretations, redundant problem-solving, and inconsistent
designs, impacting user memorability and experience Winters
and Mor (2009). We propose design patterns to bridge this gap,
offering concrete solutions as examples that can help mitigate the
“cold-start” problem Winters and Mor (2009) and facilitate
designers and researchers to build upon and expand our set.

We chose not to report pattern frequency to avoidmisleading readers
to think some patterns are more relevant than others (Maxwell, 2010).
Our focus is on establishing a taxonomy of key challenges in MixITS
design and suggesting examples of AI and MR solutions. We encourage
the reader to determine which patterns are transferable to their needs
(Campbell, 1986; Polit and Beck, 2010). The 36 patterns, grouped into
eight interaction gulfs presented in Table 1, offer a foundation for future
refinement as the MixITS community grows.

5.4 Interaction canvas

In the design pattern elicitation process (Section 4.2), we
classified 63 interaction problems into one of eight interaction
gulfs (Section 5.2). This exercise led to the creation of the
Interaction Canvas (Figure 4), a visual tool to streamline the
analysis of Gulfs of Execution and Evaluation in MixITS
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systems. We present this Canvas as a tool to help designers
visualize their thought processes and communicate effectively
when analyzing interaction gulfs in MixITS systems. To use the
Canvas, designers fill in the blank spaces at the edges of the
canvas and answer: (1) who is the actor initiating the interaction,
the AI-MR system or the human? (2) what is the target of the
interaction, the AI-MR system, the human or the environment?
Once the actor and target of the interaction are defined, the
designer should focus on the execution cycle at the upper half of
the Canvas and reflect on: (3) what is the actor’s goal in the
target? (4) what are the means provided to the actor by the target?

(5) did the actor accomplish the goal? Next, designers can focus
on the bottom half of the Interaction Canvas and answer: (6)
what are the feedback signals emitted by the target? (7) How did
the actor interpret those signals? (8) Did the actor understand the
target state correctly?

6 Evaluation

To evaluate MixITS-Kit, which comprises the six design
considerations, 36 design patterns, and the interaction canvas, we

FIGURE 3
When applying DonNorman’s Gulfs of Execution and Evaluation (Norman, 1986; Norman, 2013) toMixITS systems, we identify eight Gulfs that occur
during interactions between the Human user, AI-MR system, and the Real Environment.

FIGURE 4
The MixITS Interaction Canvas can help designers identify interaction problems leading to the Gulfs of Execution and Evaluation between the AI
system, Human users, and the Environment. Designers can use this visual tool by filling out the blanks, in gray text for both the questions and the gulfs.
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conducted an asynchronous take-home study (Ledo et al., 2018)
with eight participants. They were required to complete three tasks
using the different components of MixITS-Kit to improve a fictional
MixITS app for novice indoor rock climbers (ClimbAR). We
gathered data from their work, including artifacts, feedback, and
survey responses. The study was approved by our local IRB and
participants provided informed consent before proceeding with the
study tasks. Participants were compensated for their time.

6.1 Participants

We recruited eight participants (4F, 3M, 1NB; age range 18–33), all
students from different departments of our home university who had
prior experience with MR and AI. None of the participants were part of
the human-AI interaction design course used for our initial data
collection. We consider this participants are representative the target
audience of MixITS-Kit, early career engineers and designers who have
some technical experinece but are new to the MixITS domain.

One was a master’s student, two were PhD students, and five
were undergraduate students. Participants self-reported their
expertise levels in designing AI, MR, and MixITS systems using a
Likert scale (1 = “Never designed such a system,” 5 = “Expert”). The
mean self-reported expertise levels were as follows: 2.4 in AI (SD =
1.1), 2.7 in MR (SD = 1.2), and 2.0 in MixITS (SD = 1.0). We asked
participants about their awareness of existing design toolkits for AI,
MR, and MixITS. For AI, the most frequently mentioned toolkits
were PyTorch (mentioned four times), TensorFlow, scikit-learn, and
the Gemini API (each mentioned twice). For MR, the most
commonly mentioned toolkits were MRTK (four times) and
Unity AR Foundation (5 times). When asked about design
toolkits for MixITS, participants either did not mention any (five
times) or mentioned technical MR toolkits (three times).

6.2 Apparatus

The study was conducted remotely and asynchronously.
Participants completed the tasks using a popular online slide
authoring tool. We shared a digital version of our MixITS-Kit
with participants using the same online platform. The Interaction
Canvas was shared as a slide embedded in the main study slide
deck containing Figure 4, the design patterns were shared as a
PDF version of Table 1, and the design considerations were
shared as slides with visuals and summaries from Section 5.
We collected feedback and surveys using forms in the same
online platform.

6.3 Procedure

Our procedure combines a walkthrough demonstration with a
take-home study, similar to previous toolkit evaluations (Ledo et al.,
2018). We instructed participants to work directly on the slides so all
the changes were tracked. Each of the eight participants were
randomly assigned to a unique condition starting at one of the
eight MixITS gulfs and later encountering two other conditions
varying gulf direction and actors least one change in the gulf

direction and actor. This balancing strategy ensured every
participant encountered every actor and every gulf direction.

Before participants proceeded with the actual study tasks, they
were presented with introductory slides. These included one slide
about Don Norman’s principles of design (Norman, 2013), one slide
with the definition of MixITS, and one slide describing the tools in
our MixITS-Kit. Following this introduction, additional slides
introduced the fictional setting of the study. This warm-up phase
concluded with thirteen slides providing a walkthrough
demonstration (Ledo et al., 2018) of how to accomplish a task
similar to the upcoming task using MixITS-Kit. Each participant
received a unique warm-up example different from the subsequent
experimental tasks.

In the first task (Task 1), participants received a fictional error
reported by the user. We created errors contextualized in the
experimental scenario and based on one of the eight MixITS
interaction gulfs according to the condition (Table 1).
Participants described the user’s issue by filling out the canvas
(Figure 4), selected and justified a related interaction problem
from Table 1, and proposed a solution using the associated
design pattern. Participants detailed the solution by including
text descriptions and a sketch image. This task assessed whether
participants could effectively navigate design pattern catalog to
identify a similar problem, use the canvas to analyze that
problem, and apply a suitable design pattern to solve the
reported issue. Task 1 is a realistic problem-solving scenario
aided by our design toolkit, which is a relevant real-world UX
design task suitable for our evaluation goals (Ledo et al., 2018;
Alexander et al., 1977).

In the next task (Task 2), participants reviewed Task 1 solutions
from other participants, ensuring they faced a scenario not
previously encountered in either Task 1 or the warm-up phase.
Given only the solution text description and sketch image, they had
to identify which design pattern from Table 1 their peer applied,
which then would help identify the associated gulf and problem.
This exercise aimed to assess whether participants could recognize
patterns in their peer’s work, indicating the potential of MixITS-Kit
as a shared language for MixITS designers and developers. Task 2 is
a realistic pattern-matching exercise, requiring participants to
interpret an existing solution using the toolkit’s vocabulary—a
practical UX design task aligned with our evaluation goals (Ledo
et al., 2018; Alexander et al., 1977).

In the final task (Task 3), participants revised their Task
1 solution using a design consideration (Section 5) most relevant
to their original scenario. All considerations were used at least once,
with “Interaction Timing” and “Error Handling” used twice due to
their complexity. This task aimed to explore how the design
considerations can influence and creatively expand MixITS
solutions. Participants completed a survey after this task. Task
3 involves creatively iterating on an existing solution using our
toolkit, fostering essential UX design skills and supporting our
evaluation goals (Ledo et al., 2018; Alexander et al., 1977).

6.4 Data collection

In the productive tasks (Tasks 1 and 3), participants were asked
to rate their level of agreement with various statements using a
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5-point Likert scale. The statements focused on Learnability (“It was
easy to learn how to use the toolkit.”), the toolkit’s effectiveness as a
shared vocabulary (“I can easily communicate using the vocabulary
of the toolkit.”, “I can easily understand the vocabulary of the
toolkit.”), and the research goals of the toolkit as proposed by
Ledo et al. (2018) (“It would take me longer to solve the task
without the toolkit,” “The toolkit helped me to identify paths of
least resistance in the design process,” “The toolkit will help to
empower future designers,” “The toolkit integrates well with
current practices in design,” and “The toolkit helped me to create
a novel design.”). We also asked participants whether they found the
toolkit too abstract and high-level, too low-level, or at an appropriate
level of abstraction for productive tasks 1 and 3. We measured task
completion time by summing the time intervals participants spent
on tasks 1 and 3, as recorded in the slide change history. Task
2 evaluated participants’ ability to correctly identify design patterns
used by other participants. Therefore, we recorded only the names of
recognized patterns and whether they matched the originally
intended ones.

6.5 Data analysis

We analyzed the medians and median absolute deviations of the
questionnaire responses and task completion times. Additionally, we
examined the ratios of responses from the questionnaires, toolkit
abstraction level feedback, and the correct recognition ratio from
Task 2. One of the authors analyzed the solution descriptions and
visuals from tasks 1 and 3 using the same pattern mining method
employed in Section 5.3.

6.6 Results

The median task completion times in minutes were: Task 1 (M =
27.0, MAD = 9.0), Task 2 (M = 1.0, MAD = 0.5), and Task 3 (M =
8.5, MAD = 3.5). Participants generally responded positively to

MixITS-Kit, as shown in Figure 5. Participants recognized the
potential of MixITS-Kit to serve as a shared vocabulary among
designers. However, they found it harder to communicate using
the vocabulary (M = 4, MAD = 1) than to understand it (M =
5.0, MAD = 0.0). Participants considered it easy to learn
MixITS-Kit (M = 4.0, MAD = 0.5). Regarding the level of
agreement with sentences related to (Ledo et al., 2018) toolkit
research goals, participants rated creative support (M = 4.0,
MAD = 0.0), integration with current design practices (M = 4.5,
MAD = 0.5), empowering designers (M = 4.0, MAD = 0.0),
supporting paths of least resistance (M = 4.0, MAD = 0.0),
time-efficiency (M = 4.5, MAD = 0.5). Regarding the level of
abstraction, one of the participants (P9) considered the toolkit
too abstract for the task (12.5%), in contrast to the other seven,
who considered the components to be at appropriate levels of
abstraction (87.5%).

In Task 1, two of the eight participants applied design patterns
from gulfs different than anticipated and provided justifications
that did not align with the defined gulf concepts, indicating a
mistake. In Task 2, all participants correctly identified the actor
and target in their peers’ solutions. Four participants successfully
recognized the correct design pattern, while five identified the
correct gulf. One participant misidentified the pattern, and three
incorrectly identified the gulf. Overall, half of the participants
accurately identified the exact design pattern used in their
peer’s solution.

Participants identified the most challenging aspects of learning
the canvas and design patterns for Task 1, including“It was harder to
identify the gulf.” - P9 and “Understand the mapping between the gulf
concepts and the terms in the toolkit” - P10. When asked for open-
ended feedback on the canvas and design patterns in Task 1,
participants said, “I thought the toolkit was very useful to
standardize problems in AI-MR apps, and the design patterns
seem pretty comprehensive to me.” - P1, “adding an ‘Other’
section would allow developers to potentially communicate about
rarer cases” - P4, “An interface that integrates both parts would make
it easier to cross-reference.” - P6, “I used the problem list to identify a

FIGURE 5
Participant agreement levels (5-point Likert scale) with statements about the Design Toolkit.
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problem that matched that one in the case, and then that helped me
understand better how to fill each gulf” - P10.

When asked for open-ended feedback on the design
consideration in Task 3, participants said, “I think Task 2 and
3 were a lot more straightforward than the first task! After
gaining familiarity with the design recommendation, I also found
it easier to proceed.” - P8, “Maybe it’s just me being not creative
enough, but it’s still a little bit difficult to come up with a very novel
design using the guidance in my scenario” - P7 (“Sensors and
Actuators” and Human Execution on the Environment), “I used
the design recommendation to find a pattern that aligned with the
goal stated on it.” - P6, “I thought the design recommendations were
great guidelines to help find solutions to the proposed problems. It was
especially interesting that they addressed both the AI and XR aspects
of design, since most toolkits I’ve seen/used only work with one of
those aspects.” - P1.

7 Discussion

MixITS-Kit consists of three interconnected components: an
Interaction Canvas for analyzing execution and evaluation gulfs, a
set of six user-centered design considerations, and a set of 36 low-
level design patterns with example solutions. This structure can
support designers throughout the development process, from
conceptual analysis to practical implementation. Here we discuss
our results, the synergy between the toolkit components, and their
overall implications for the landscape of HAI.

7.1 Positive impacts of MixITS-Kit

One of the main findings from our evaluation was the high level
of performance demonstrated by participants. Six out of eight
participants successfully completed Task 1. In Task 2, all
participants correctly identified the actors and targets, while half
accurately recognized the design pattern used by their peers.
P8 reported increased self-efficacy in Tasks 2 and 3 compared to
Task 1, attributing this improvement to their growing familiarity
with the process. Participants achieved these results with only a brief
demonstration and minimal instruction during the 1-h evaluation.
Given the inherent complexity of the MixITS domain and the
challenges faced by participants in the formative class, we
consider these results promising. This indicates that MixITS-Kit
effectively distills prior design experiences, guiding novice designers
through the complexities of MixITS.

Our evaluation results show general participant agreement that
MixITS-Kit achieved the toolkit research goals proposed by Ledo et al.
(2018). We attribute these results to the combined use of the toolkit
components that helped participants to tackle MixITS design problems
from different levels of abstraction. The design patterns with example
solutions provided an accessible starting point, helping participants
overcome the “cold-start” (Winters andMor, 2009) problem and begin
iterating on their own solutions earlier. P6 effectively used the problem
column of the catalog to find a design pattern that matched their case in
Task 1. P1 highlighted the value of having standardized problems in the
AI-MR domain. These observations emphasize the value of our
cataloged problems, perhaps more so than the solutions, as solutions

may significantly change with technology, but the core problems
remain consistently relevant and future-proof.

As illustrated in Figure 6, P6 utilized descriptive AR labels
(H-Ex-E-1) with instructional guidance on crashpad importance,
aligning with “Teaching and Directing.” After considering “Build
Trust,” P10 incorporated an AI-generated explanation for the goal
inferred by AI (AI-Ev-H-36). These are examples that the high-level
considerations can inspire changes in previously proposed solutions.
We speculate that takin our considerations in the early stages of
MixITS development can strengthen the design and avoid drastic
changes later on, possibly reducing rework.

Participants 1 and 6 observed strong synergy among the toolkit’s
components. By approaching the design patterns with a specific
consideration in mind, they successfully identified a solution. For
the problem in Task 1, P6 utilized the design pattern catalog as a
reference to complete the canvas. These examples illustrate how
designers can benefit from the integrated synergies in MixITS-Kit,
rather than relying only on the isolated use of its components.

Our results suggest that our toolkit could offer shared
vocabulary among designers, as participants found its language
easy to communicate with and understand. The proposed design
patterns further contribute to a shared vocabulary. As suggested by
Alexander et al. (1977), design patterns externalize and document
recurrent design decisions to foster a shared vocabulary, enabling
collaborative and iterative refinement of solutions. Task 2 further
supports this, with all participants successfully identifying the actor
and target in the interactions.

7.2 MixITS class reflection

The extended 10-week course, compared to a short-term workshop,
provided the instructional team with deeper insights into effectively
teachingMixITS system design principles. This format revealed common
challenges, knowledge gaps, and misconceptions faced by novices. A key
hurdle was shifting from this technology-driven mindset to a user-
centered approach. Students particularly struggled with selecting
appropriate interaction modalities, effective task segmentation,
considering multiple task completion paths, and anticipating potential
user and AI errors.

Role-play exercises with the Wizard of Oz technique allowed
participants to understand user needs and technology limitations of
AI and mixed reality. These test exercises revealed user difficulties such
as misunderstanding the system’s capabilities, performing unintended
actions, attempting to interact with non-existent features, and trying to
communicate with the AI as if it was another human. This didactic
intervention proved effective in changing students’ mindsets from
technology-centered to user-centered. As students’ understanding of
user needs grew, they started to propose features grounded in user
behavior rather than solely technological feasibility. This evolution in
approachmarked a significant and desirable shift that was evident in the
final project designs.

Our toolkit developed from these insights and can help designers
avoid common technology-centric pitfalls such as overreliance on
touch interfaces, voice commands without context awareness, or
assuming constant internet connectivity. Overall, the toolkit
encourages designers to transcend established AI interaction
paradigms, moving beyond simple prompting or screen-based
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interfaces towards a more holistic, embodied, and multi-modal
approach essential for MixITS systems.

8 Limitations and future work

8.1 Curricular bias

We adopted an in-person classroom approach as a method for
collecting instances of MixITS system designs and accompanying design
processes. Among the limitations of this methodology choice are the

particular perspectives onMixITS design arising from the choice of topics
covered in class, selected reading material, the presentation approach of
the class content in lectures and activities, proposed prototyping tools,
and assignment requirements. Even though the teaching team made a
continuous effort to foster discussions acknowledging multiple
perspectives on the MixITS domain, we recognize that our teaching
approach may have introduced its own biases. Moreover, we
acknowledge that while the participants in our formative study and
evaluation represent early-career designers, engineers, and researchers
who would useMixITS, future work should expand theMixITS-Kit with
data collected from more experienced professionals in the industry.

FIGURE 6
(A) In Task 1, participants used Interaction Canvases to identify a Gulf on fictional-user issues. (B) They then referred to Table 1 to find a problem that
most closely matched their scenario and identified the applicable Design Pattern. (C) In Task 3, they revisited their initial solution through the lens of a
Design Consideration. P6 used descriptive AR labels (H-Ex-E-1) with didactic instructions on the importance of crashpads and their use, considering
“Teaching and Directing”. After reflecting on “Build Trust”, P10 added an AI explanation to the goal inferred by AI (AI-Ev-H-36).
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8.2 Interactive MixITS-Kit

Using our Toolkit, novices in the MixITS domain were able to
analyze interaction problems from a user perspective, propose
solutions, and refine them within an hour, including the initial
onboarding. However, our evaluation revealed areas for
improvement in the Canvas and a need to lower the current
threshold of the toolkit. Participants reported difficulties in
identifying the gulfs (P4, P5, and P9) and suggested adding more
detailed examples (P10) and clearer instructions (P4).

To address these issues, future work could involve
developing an interactive version of MixITS-Kit, as suggested
by P6. An integrated web platform that connects a browsable
design pattern catalog with the interaction canvas would
facilitate the use of strategies similar to those employed by
P1 and P6, taking advantage of the synergy between toolkit
components. This interactive version could also integrate data
from user testing logs or the open-source MixITS database
(Bohus et al., 2024) to ground designers’ analyses, akin to
(Castelo et al., 2023) but with a focus on interaction design
rather than modeling.

8.3 Expanding MixITS-Kit

Our Design Pattern catalog is intended as a starting point, and
we encourage others to replicate our methodology, refine our
patterns, and add new ones. Re-purposing design patterns from
related areas like mixed-initiative systems and intelligent tutoring
systems could grow the list of MixITS design patterns. As consumer-
grade MixITS products emerge, their inclusion as case studies will
also help broaden the analysis pool, as seen in other design
guidelines derives from web search, activity tracking, or
recommendations (Amershi et al., 2019). In this work, we
refrain from including MixITS solutions we implemented in
the past or hypothetical ones not proposed by students.
Consequently, some patterns presented in a gulf might also be
relevant in another. For example, H-Ev-E-17 (Tool Operation)
could easily be applied to the gulf of execution to instruct users on
how to operate a tool. We encourage designers to consider the
potential for re-purposing patterns across different gulfs,
interpreting them from the perspective necessary for the
design of their specific MixITS systems.

Our MixITS design patterns are derived from low-fidelity
prototypes. Even though these designs are plausible, the course
did not focus on the engineering challenges of such systems
which have been explored in prior work (Bohus et al., 2021;
Anderson et al., 1985; Andrist et al., 2019; Castelo et al., 2023). As
the realtime task guidance field evolves, implementing these
patterns in productive systems and evaluating their
effectiveness with real users will be crucial to validate their
practicality, along the lines of an evaluation of existing
systems by Amershi et al. (2019).

Another promising direction for future work is to broaden
our formative and evaluative scope to include experienced
designers and industry professionals. Their insights would
help us refine the toolkit to match the needs of experts; while

also providing a valuable comparison to the findings we obtained
from early-career designers.

9 Conclusion

In this work, we proposed an interaction design toolkit to
support the design of AI systems for intelligent task support in
mixed reality (MixITS). Drawing from MixITS prototypes
developed during a 10-week graduate course on human-AI
interaction, we derived six design considerations, an accompanying
set of 36 design patterns, and an interaction canvas to help analyze and
identify gulfs of execution and evaluation between the three
MixITS entities of the user, the AI, and the environment. Our
work aims to inspire and support the design and development of
MixITS systems that blend the digital and physical worlds,
creating situated and context-aware learning and task
guidance experiences. Successfully tackling design challenges
in the MixITS domain can play a significant role in ensuring
that the transformative potential of AI is accessible to a wider
range of users by augmenting the process of skill acquisition.
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