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Self-guided tutorials from videos help users learn new skills and complete tasks
with varying complexity, from repairing a gadget to learning how to play an
instrument. However, users may struggle to interpret 3D movements and
gestures from 2D representations due to different viewpoints, occlusions, and
depth perception. Augmented Reality (AR) can alleviate this challenge by enabling
users to view complex instructions in their 3D space. However, most approaches
only provide feedback if a live expert is present and do not consider self-guided
tutorials. Our work explores virtual hand augmentations as automatic feedback
mechanisms to enhance self-guided, gesture-based AR tutorials. We evaluated
different error feedback designs and hand placement strategies on speed,
accuracy and preference in a user study with 18 participants. Specifically, we
investigate two visual feedback styles— color feedback, which changes the color
of the hands’ joints to signal pose correctness, and shape feedback, which
exaggerates fingers length to guide correction — as well as two placement
strategies: superimposed, where the feedback hand overlaps the user’s own, and
adjacent, where it appears beside the user’s hand. Results show significantly faster
replication time when users are provided with color or baseline no explicit
feedback, when compared to shape manipulation feedback. Furthermore,
despite users’ preferences for adjacent placement for the feedback
representation, superimposed placement significantly reduces replication time.
We found no effects on accuracy for short-time recall, suggesting that while
these factors may influence task efficiency, they may not strongly affect overall
task proficiency.
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1 Introduction

Online video tutorials are ubiquitous resources for people to learn new skills and tackle
tasks of varying complexity (de Koning et al., 2018; Mayer et al., 2020), from crocheting to
learning to play instruments. Many tutorials are filmed from the point of view of the person
demonstrating the task (Li et al., 2023). This perspective enables viewers to see specific hand
poses (e.g., sign language), hand movements (e.g., chopping an onion), or how to
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manipulate an object (e.g., device assembly). However, when
watching such tutorials on the 2D displays of desktop computers
or smartphones, it is difficult for users to interpret and mimic the
hand movements, gestures, and poses naturally performed in 3D.
This mismatch arises from various challenges, for example,
estimating depth and motion paths and speeds, dealing with
viewpoints that differ from the one in the video, or general
occlusion (Mohr et al., 2017).

Augmented Reality (AR) has the potential to alleviate this
challenge by enabling users to view complex instructions in a 3D
space. Showing users a 3D representation of the actions they have to
perform facilitates their understanding of depth and spatial
relationships (Krolovitsch and Nilsson, 2009), and provides a
more immersive experience (Brunet and Andújar, 2015).
However, providing only a 3D representation (e.g., showing a
hand pose to learn sign language) can be insufficient for users to
accurately mimic an action or learn a task. Without real-time
feedback (Herbert et al., 2018), users may not realize whether
they acted accurately, which impairs their performance.

To address this challenge, we explore how to best provide
real-time feedback for AR tutorials that involve complex hand
poses and gestures. Real-time feedback aims to increase users’
hand pose accuracy (e.g., reducing joint offsets), memorization,
and learning. Prior work provided users with live feedback that
guided them through tasks by displaying an additional pair of
hands in AR (Amores et al., 2015; Sodhi et al., 2013; Tecchia
et al., 2012). Those approaches, however, rely on live feedback
from a remote helper, limiting the availability of this type of
feedback. Our work explores ways to guide users without
requiring additional (expert) users to deliver the guidance.
We provide users who aim to mimic and recall complex
hand movements with different types of real-time feedback
on their accuracy. We hypothesize that visually displaying
errors directly on the source (i.e., the hand) will guide the
user’s attention to the task (Ozcelik et al., 2010), reduce
diverted attention between instruction and task, and improve
retention (Jamet et al., 2008).

We test different parameters for AR hand augmentations for error
feedback by identifying key modification dimensions based on prior
work. Specifically, we investigate two feedback styles designed to convey
performance errors, described in Section 3: (1) Color feedback, where
joint spheres change color to indicate correctness or incorrectness of
finger poses, and (2) Shape feedback, a novel condition where the shape
of the fingers is manipulated to exaggerate the correct pose and guide
adjustment (See Figures 1, 3). Additionally, we explore the optimal
placement of these augmented hands to guide users, exploring both
direct and indirect methods — either superimposed, directly over the
user’s own hands, or adjacent, displayed beside the user’s hands.

We evaluated the effectiveness and usability of different
feedback styles and placements for hand augmentations in a user
study with 18 participants. Participants were asked to perform hand
gestures from Portuguese Sign Language and Mudras, hand gestures
used in a traditional Indian dance. Participants were asked to
replicate the gestures as quickly as possible during one task, and
as accurately as possible during another task. Results show
significantly faster replication time when users are provided with
color feedback or no explicit feedback compared to shape
manipulation feedback, as well as faster times for superimposed
placement. Participants did, however, prefer adjacent placement of
the augmentations. In summary, we contribute:

• A set of novel hand augmentations for self-guided AR
tutorials, exploring two feedback styles (color and shape-
based) and two placement strategies (superimposed and
adjacent) for conveying performance errors;

• Insights from a user study (N = 18) assessing the impact of
different hand augmentation dimensions in gesture
replication speed, accuracy and user preferences.

2 Related work

AR has been shown to have a positive impact for instructional
guidance (Fidalgo et al., 2023) and immersive learning

FIGURE 1
Augmented reality view of a user replicating a hand gesture from a Youtube video. On the top, the user’s virtual hand shows Color Feedback: joint
spheres are shaded along a red-to-green gradient depending on how closely each joint matches the target. Red indicates large error, green indicates
near-perfect alignment. On the bottom, the hand shows Shape Feedback: finger segments are exaggerated in length based on error magnitude, forming
visual “error bars.” Both feedback types are shown in adjacent (beside user’s hand) and superimposed (overlaid on user’s hand) placements.
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environments in terms of task performance, reducing workload
(Tang et al., 2003), helping with structural perception (Gupta et al.,
2012), and preventing the systematic mislearning of content
(Büttner et al., 2020), providing similar learning outcomes
compared to video-based tutorials but with higher usability and
satisfaction (Morillo et al., 2020). In the following, we discuss related
work that aims to address the challenges of creating effective
AR tutorials.

2.1 Designing AR tutorials

Previous work has investigated how to effectively create AR
content and develop the appropriate tools for AR applications.
Huang et al. (2021) introduced an adaptive task tutoring system
for machine operations that enables experts to record machine task
tutorials via embodied demonstration. Their system adapted the
displayed AR content, adjusting the number of interface elements
based on user behavior. Liu Z. et al. (2023) proposed InstruMentAR,
a system that automates AR tutorial generation by automatically
recording user demonstrations and generating AR visualizations
accordingly. Their multi-modal approach provides haptic feedback
when a user is performing or is about to perform a mistake.

Such systems rely on the creation of new content specific to AR.
Others have explored leveraging existing 2D video demonstrations
for synthesizing AR tutorials. Yamaguchi et al. (2020) created step-
by-step animations from video-based assembly instructions,
enabling users to see the extracted instructions overlaid onto the
current workpiece using an AR “magic mirror” setup. Similarly,
Stanescu et al. (2023) captured information about part geometry,
assembly sequences, and action videos from RGB-D cameras,
recorded during user demonstrations. They provide real-time
spatially-registered AR hints for each object part.

Besides assembly tasks, others have explored tutorials for tasks such
as painting, soldering, makeup, and decorating. Mohr et al. (2017)
extracted motion information from videos and registered these in the
user’s real-world object. Goto et al. (2010) and Langlotz et al. (2012)
leverage existing resources by rendering instructional videos in AR but
adapting the display position to the user’s viewpoint. Jo et al. (2023) also
explored different layouts to display instructional videos. They found
that dynamic layouts generally led to fewer timing and posture errors,
and that head movement during screen-based monitoring decreases
performance. Dürr et al. (2020) suggest that visualizations using
continuously moving guidance techniques achieve higher movement
accuracy with realistic shapes. Zagermann et al. (2017) also showed that
the impact of input modality and display size on spatial memory is not
straightforward, but characterized by trade-offs between spatial
memory, efficiency, and user satisfaction.

Besides video instructions, Rajaram and Nebeling (2022)
showed that enhancing paper-based AR interactions can benefit
learning and support students’ diverse learning styles. Nonetheless,
online content, including text descriptions and video tutorials,
usually requires existing knowledge to be understood (Skreinig
et al., 2022). Most current AR-based tutorial systems do not
provide real-time error feedback to users. This makes judging
whether certain tasks are performed correctly or where errors
occur is challenging. Our work aims to provide guidelines on
delivering such feedback to users for AR tutorials.

2.2 Gesture-based AR tutorials

Previous research explored communicating body movement
over distance for collaboration, assistance, training and guidance.
We focus on hand gestures given their practical and cultural
importance (Flanagan and Johansson, 2002).

Tecchia et al. (2012) used depth sensors to present local users
with gestural instructions from a remote expert in VR. Sodhi et al.
(2012) combined a low-cost depth camera and a projector to display
visual cues directly onto a user’s body. Their approach enhanced
user’s understanding and execution of movements, when compared
to animation videos on a computer screen. BeThere (Sodhi et al.,
2013) used mobile AR to render the remote participant’s hand in the
local person’s environment. These works rely on having a real-time
expert demonstrating the task and providing feedback, whereas we
aim for autonomous task guidance.

In the context of instrument learning, Torres and Figueroa (2018)
used 2D markers to render spatially annotated 2D cues on a guitar,
while Skreinig et al. (2022) generated interactive AR guitar tutorials
from tablatures. They captured user input by comparing the emmited
versus the expected sound while playing a chord, visually highlighting
the error region when a mistake occurred. They found that
highlighting the regions of importance on the fretboard helped
users understand finger placement better. Liu R. et al. (2023)
explored how to optimize body posture in piano learning by
superimposing hand postures of a pre-recorded teacher over the
learner’s hands. They evaluated the differences between the
recorded (student) and tutorial (teacher) movements through
discrepancy metrics. A pilot study suggested that discrepancy
displays result in more correct practicing of finger-refined
movements, with users preferring having motion overlay on a
single keyboard rather than separate keyboards. Zhou et al. (2022)
compared visual guidance from anMRmirror and a humanoid virtual
instructor with traditional screen-based movement guidance. They
found that seeing an overlaid body offers better acquisition
performance and a stronger sense of embodiment for upper-body
movement than traditional 2D screen-based guidance. Lilija et al.
(2021) embedded guidance directly into the user’s avatar to minimize
visual distraction, instead of relying on external cues such as arrows.
Through two experiments, they demonstrated that this technique
improves the short-term retention of target movement. Our work
explores how similar parameters (e.g., overlay vs. external cues,
feedback type) affect hand gesture-based tutorials.

Other work investigated how human dexterity is affected by
different hand visualization methods in VR. Voisard et al. (2023)
showed that hand visualizations with varying opacity influence the
motor dexterity of participants when they perform a task that
requires fine hand movements. They demonstrate the potential
advantages of less obstructive hand visualizations. Conversely,
Ricca et al. (2020), Ricca et al. (2021) showed that, although
users prefer to have a visual representation of their hands in VR,
they achieved similar and correlated performance without hand
visualizations for a tool-based motor task in VR. This showcases the
complexity of efficient representations of hands in the context of
guidance, depending on level of user expertise (cf. Knierim et al.,
2018), task type and objective.

Wang et al. (2024) identified four types of essential information
for visual guidance in this context of enhancing precise hand
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interaction in VR, including error (What’s wrong?), target (What is
correct?), direction (What way is it?), and difference (How far is it?).
Similarly, Yu et al. (2024) devised a design space for corrective
feedback focused on level of indirection (i.e., disparities between
current movement and target), feedback temporality and
presentation, information level and placement. We build on these
works and further investigate some of these dimensions in the
context of precise static gestures, specifically how hand feedback
influences task performance in AR, i.e., when people simultaneously
see their hand and the guidance.

3 Hand augmentations

We explore hand augmentations as a form of feedback
mechanism for gesture-based tutorials. All feedback types and
placements are depicted in Figure 1.

We aim to enable users to autonomously use the tutorials to
build their skills without needing other users or experts. Following
Endow and Torres (2021), we believe that tutorials using media such
as AR facilitate users’ learning process.

We consider the factors feedback type (color, shape) and
placement for the augmentations. We chose these parameters
based on previous research on information visualization and AR
to convey performance and errors. Note that we do not see those as
an exhaustive list of possible parameters and plan to explore a larger
design space in the future, such as textual hints and arrows (Oshita
et al., 2019), transparency levels (Barioni et al., 2019), rubber band
like augmentations (Yu et al., 2020) and trajectories (Clarke et al.,
2020), as suggested by Diller et al. (2024) in their survey on visual
cue based corrective feedback for motor skill training in MR.
Additionally, while we believe that our approach generalizes to
dynamic hand gestures, we hope to explore this aspect in the
future. We refer to the representation that shows the feedback as
target hands.

3.1 Feedback style

We explore providing feedback on users’ gestures in two
different styles, leveraging Color or Shape.

3.1.1 Color
We visualize the angular error for each joint through color,

i.e., the hand’s joints change color from green to red depending on
the accuracy of the joint position compared to a target gesture. In
other words, Color Feedback on the joints serves as a heatmap for
accuracy. We chose colors for their natural associations and
psychological effects. Jacobs and Suess (1975), and Spielberger
(1970) showed that higher state-anxiety is more associated with
yellow and red tones, compared to blue or green. Additionally, we
see the use of reds and greens associated with particular
connotations. For example, in many software interfaces and
applications, the color green is commonly used to signify success,
correctness, or a positive outcome, while red indicates failure, error,
or a negative outcome. Similarly, in heatmaps, green is usually
associated with lower magnitudes while red is associated with higher
magnitudes.

3.1.2 Shape
We provide users with Shape Feedback to indicate the accuracy

of individual gestures. The user’s fingers change in size to reflect
error magnitude. Effectively, each finger acts as an error bar,
elongating based on the magnitude of the error over that finger’s
joints. This technique is inspired by the work of Abtahi et al. (2022)
on Beyond Real Interactions, as well as distant reaching techniques
such as Go-Go (Poupyrev et al., 1996). Furthermore, it is inspired by
work of McIntosh et al. (2020), who scaled different parts of the
avatar’s body, including arms and fingers, to adapt to different tasks.
These approaches demonstrate the viability of using non-literal
augmentations for guiding motor tasks and user attention in
immersive environments. While we acknowledge that shape
feedback is a more abstract and novel design, we sought to
explore how such expressive techniques might support or hinder
performance in gesture learning tasks.

3.2 Placement

Besides the parameters of in-situ feedback, we explore where to
best place the target hands, i.e., the hands that display the feedback.
Previous work (Feuchtner and Müller, 2018; Liu R. et al., 2023;
Schjerlund et al., 2021) underscored the value of effective visual
placement. We explore two different placement strategies: 1)
adjacent and 2) superimposed.

The adjacent placement, represents an indirect mapping, where the
hands demonstrating a gesture (target hands) are shifted to the side of
the user’s hands, accompanying the rotation and translation of the
movement. This configuration is analogous to following a demonstrator
nearby and may involve additional spatial interpretation.

In contrast, the superimposed placement provides a direct
mapping, where the target hands are rendered directly on top of
the user’s own hands. This approach aims to minimize the need for
mental transformation, potentially making interactions more
intuitive by visually aligning the intended gesture with the user’s
own motion path.

Pilot tests helped refine both feedback styles, especially the
transformation parameters as described in section 3.3, to ensure
that people could visually interpret and decode the exaggerated
shape cues or colors during interaction.

3.3 Implementation

Users are presented with virtual hand gesture tutorials in AR
through aMeta Quest Pro headset. Our prototype software is created
using Unity3D.We first compute the error between users’ hand pose
and the target. We track the user’s hands in real-time using the
integrated tracking from the Quest Pro and compare the tracked
pose with the target hands displayed in the tutorial. To assess the
accuracy of the user’s hand movements, we calculate the angular
difference between each hand joint and its corresponding position in
the target gestures (see Figure 2).

This is calculated as the normalized dot product between the
quaternions representing each of the user’s hand joints and those
representing the target gestures. This feedback is delivered using one
of the hand augmentation styles previously discussed.
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For color feedback, the angular error drives a color interpolation
between green and red. We consider the joint to be in a correct
position when the difference in angle to the corresponding joint in
the target gesture is smaller than 2° and incorrect when it is larger
than 60°. We set intermediate thresholds between these extremes
(yellow at 8° and orange at 20°) to create a smoother color variation.

For shape feedback, we first compute an average error
magnitude over that finger’s joints, in degrees, and distribute this
over each finger segment (proximal, middle and distal phalanges).
The length of each finger segment is adapted by adding
cp(erroraverage − 2)[cm], if erroraverage ≥ 2, to the original finger
segment length, where c equals 0.01, 0.03 and 0.1 for the proximal,
middle and distal phalanges, respectively. These parameters were
chosen manually to provide a smooth adaptation, and result in an

added length of 0.14 cm per each degree of error above 2 deg (up to
8 cm when the average error magnitude for that finger is close to
60°). We only alter the length component of the finger (along
the x-axis).

Pilot tests informed the specific mappings described above
during development. Figure 3 illustrates these relationships.
Feedback for all types of hand augmentations is provided in
real-time.

4 Evaluation

We conducted a user study to understand how different
elements of AR hand augmentations showing error feedback
influence user’s performance and preferences. Specifically, we
aimed to answer the following research questions:

• RQ1: Can hand augmentations for error feedback, including
manipulations in color, shape and placement, expedite the
time needed to accurately replicate a demonstrated gesture?

• RQ2: Can hand augmentations for error feedback, including
manipulations in color, shape and placement, improve the
accuracy of gesture replication in a limited time period?

4.1 Experimental design

We use a within-subject design with two independent variables,
FEEDBACK STYLE with three levels (color feedback, shape feedback, no
explicit feedback), and PLACEMENT with two levels (adjacent,
superimposed), resulting in a total of six conditions. We
implemented color and shape feedback as described previously.
We further included a no-explicit feedback condition as a
baseline. For this condition, users only saw an AR hand
demonstrating the target pose but did not receive any feedback
on their own accuracy. As dependent variables, we measured the

FIGURE 2
Diagram comparing current and target hand poses. On the left, a
simplified hand model with an extended index finger represents the
current gesture. On the right, a similar hand model shows the index
finger arched downward, representing the target pose. Centered
between the two hands, a zoom-in detail focuses on the index finger
joint, visually superimposing both current and target finger
orientations. Angular differences between the two poses are marked
with labeled arcs, alfa C for the current joint angle and alfa T for the
target, showing the angular difference due to misalignment.

FIGURE 3
Side-by-side visual explanation of how angular error maps to two feedback types. The left panel shows a horizontal angular scale with key marks at
2°, 8°, 20°, and 60°, each mapped to a specific color in a gradient — green at 2°, yellow at 8°, orange at 20°, and red at 60° — representing the Color
Feedback style. The right panel displays corresponding finger segments for each of those error values, with gradually increasing finger lengthsmatched to
a linear function. The segment length increases up to amaximumof approximately 8.12 cm (keeping constant after that - from60 degrees onwards),
illustrating how Shape Feedback visually exaggerates the magnitude of error by elongating fingers proportionally.
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time (recorded in milliseconds, reported in seconds) needed to
replicate a gesture with a fixed target accuracy on our first task
(RQ1), and the minimum average replication error in degrees
reached during and after training over a fixed short period of
time for the second task (RQ2). Additionally, we collected
subjective ratings on perceived task load using a subset of
questions from the NASA task load index (TLX) questionnaire
(Hart and Staveland, 1988), users’ ability to understand the hand
augmentation using a subset of questions from the System Usability
Scale (SUS) (Brooke et al., 1996), and distraction using an additional
question. Questions were answered on a seven-point Likert scale,
from Not at all (1) to Extremely (7) for the NASA TLX, or Strongly
Disagree (1) to Strongly Agree (7) for the SUS. Our final post-task
questionnaire can be found in Table 1. We note that we chose to
exclude questions on time demand (TLX) and system-related
usability questions (SUS) since these were not directly relevant to
the individual augmentations and since including all questions
would have significantly increased the duration of the study
(already at 90 min). We did not compute the full SUS score
since we are not evaluating a system.

Additionally, we conducted semi-structured post-experiment
interviews to collect additional qualitative feedback. During the
interviews, we showed participants representative illustrations of
each of the six conditions they experienced, and asked them to rank
these by preference, as well as inquiring about their reasoning
behind preference.

4.2 Tasks

Participants were asked to perform two different tasks, which
align with our two research questions on replication speed (RQ1)

and replication accuracy (RQ2). The tasks are depicted in Figures 4,
5. For Task 1, the goal was for participants to replicate a set of
consecutive different gestures as fast as possible. Participants were
shown different gestures and had to reach an average joint accuracy
of 2°. We chose a 2 deg error threshold based on pilot tests: when
using 1.5 deg, pilot testers struggled to get the gestures correct; a
3 deg threshold led to gestures being marked as correct even though
they were qualitatively different. We found 2 deg to balance
difficulty and success rate. The error was calculated as the
average of individual joint rotations.

For Task 2, the goal was to replicate a gesture as accurately as
possible within a fixed time period of 10 s. Participants would
repeatedly see individual gestures three times and were asked to
replicate them to the best of their abilities. Between the trials, they
took a 10-s break. After the third break, they were asked to replicate
the same gesture frommemory, i.e., without seeing the target gesture
and without any feedback. We used a mix of gestures, including
gestures from Portuguese Sign Language and Mudras Indian dance,
in a total of 30 different randomized gestures (see Figure 6). Gestures
were selected to include subtle variations that may appear similar but
are distinct (i.e., there is no ambiguity in recognition). This ensured
that participants could accurately perform different fine-
grained gestures.

4.3 Procedure

Participants first completed the consent form and
demographic questionnaires. Prior to the main task,
participants were given a short presentation explaining each
feedback style to ensure they understood how to interpret
both color and shape cues. Participants then completed a

TABLE 1Questions included in the questionnaires tomeasure subjective task load [NASA TLXHart and Staveland (1988)], hand augmentations usability [SUS
Brooke et al. (1996) and Distraction], and preferences (semi-structured interview).

Questions

TLX1: How mentally demanding was this task?

Perceived TLX2: How physically demanding was the task?

Task TLX4: How successful do you think you were in accomplishing this task? (Note: here 1 is Perfect and 7 is Failure)

Load TLX5: How hard did you have to work for accomplishing this task?

TLX6: How insecure, discouraged, irritated, stressed and annoyed were you by performing this task?

SUS1: I think I would like to use this system frequently

SUS2: I found the system unnecessarily complex

Hand Augmentations’ SUS3: I thought the system was easy to use

Understanding SUS9: I felt very confident using the system

SUS10: I needed to learn a lot of things before I could get going with this system

Distraction: I was distracted by the actions of the system

I1: What was the reasoning behind your preference scheme? Can you tell me about positive and negative points?

Interview I2: What improvements do you think we could do to our visualizations?

I3: Do you have any ideas for cool visualizations besides what you experienced with using color and length?

I4: What application scenarios would you see this being useful in?
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short tutorial in which they were introduced to each feedback
condition, including shape feedback. During this familiarization
phase, participants were able to freely interact with the system
and ask questions to clarify any uncertainties. This introduction
aimed to reduce confusion and support consistent interpretation
across conditions. Afterwards, they performed Task 1 (“as fast as
possible”) under all six conditions, counterbalanced using a Latin
square. The procedure is illustrated in Figure 4. At the beginning
of the task, participants were instructed to place their hand
within a specified area on the table, in a relaxed position. The
same position was maintained during each break. After receiving
initial instructions, they were presented with the first target
gesture and prompted to replicate it. Upon successful
replication at target accuracy (maximum average angular error
of 2°), participants took a 10-s break. This process was repeated
for three additional different gestures under the same condition,
followed by the post-condition questionnaires. After a 1-min rest
period, the entire task was repeated for five more conditions, each
involving four additional different gestures.

Participants then took a 5-min break and continued with Task 2
(“as accurate as possible”). Participants’ initial poses and
instructions were similar. For each condition, participants had to
replicate the same gesture as accurately as possible three times, each
within a 10-s time interval. Afterwards, they replicated the gesture a
fourth time without any visual guidance, followed by the post-
condition questionnaire. Each condition included a
different gesture.

After completing all conditions, we asked participants for their
preference ranking and conducted the semi-structured interviews.
The experiment took approximately 90 min per participant, and
participants were compensated with a 30 Amazon gift card.

4.4 Participants and apparatus

We ran an a priori power analysis using G* Power 3.1 (Faul et al.,
2009) to determine an appropriate sample size. We chose two effect
sizes, f = 0.25 and f = 0.5, corresponding to small and medium effect

FIGURE 4
Timeline diagram illustrating the structure of Task 1, where participants replicate hand gestures as fast as possible. The process consists of four
cycles. In each cycle, the participant first sees a target gesture (black hand image), and at the same time sees feedback (white hands with visible finger
joints). Below, a blue bar indicates the participant replicates the gesture, trying to match it to a fixed accuracy threshold. After each successful replication
(for corresponding duration), a Break period is shown in grey. This cycle repeats for four gestures. A horizontal black time arrow at the bottom shows
progression through the experiment. Timing is adaptive: measurement ends once the participant reaches the required accuracy.

FIGURE 5
Timeline diagram illustrating the structure of Task 2, where participants replicate hand gestures as accurately as possible. Each trial is 10 seconds
long. The participant sees a Target gesture (black hand image) and corresponding Feedback (white hand pair) during the first three trials. Each is followed
by a Break period shown in grey. In the fourth trial, both the target and feedback are absent (black rectangles), and the participant must recall the gesture
frommemory. Accuracy ismeasured for each trial, with the final trial labeled “Measure Accuracy on Recall.” The entire sequence is organized along a
horizontal time axis with consistent 10-second intervals.
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sizes, respectively, to determine the appropriate range for the sample
size. We set an alpha error probability of α � 0.05 and a power of
β � 0.8. Since each condition consists of 1 or 4 trials (for Replication
Accuracy and Replication Time respectively), we tested setting the
number of measurements in G* Power from 6 to 24 (4 *
6 conditions). The number of groups was dependent upon the
within-subject factors, which, in the case of our experiment, was
6. Finally, the correlation among repeated measures was left at the
default value of 0.5. The power analysis revealed that we would need
12 participants to obtain a medium effect size. We also considered
prior similar experiments [e.g., (Sodhi et al., 2012; Fidalgo et al.,
2023; Schjerlund et al., 2021)], which had a similar number of
participants.

We recruited 18 paid participants (10 male, 8 female), all
students and research assistants from various fields of study or
staff from a local university, with an average age of 26 years
(SD � 4.0). Participants had different levels of experience with
using both AR (M � 2.5, SD � 1.15) and VR (M � 3.0,
SD � 1.19), and were not familiar with Portuguese Sign Language
(M � 1.1, SD � 0.24) or Mudras Indian Dance movements
(M � 1.1, SD � 0.47), on a scale from (1) low proficiency to (5)
high proficiency. Based on self-reports, all participants had normal
or corrected-to-normal vision, with 2 participants wearing contact
lenses and 10 wearing glasses. None of the participants reported any
color deficiencies; one participant was left-handed.

The study was conducted in a quiet experimental room. The AR
scene was rendered using Unity 2020.3.14f1 and a Meta Quest Pro
head-mounted display. The Meta Quest Pro headset was tethered to
a desktop PC using Oculus Link to reduce latency and ensure a
stable, high-performance setup. While we did not explicitly monitor
tracking accuracy during the study, we conducted the experiment in
a controlled, well-lit space with no visual clutter, and visually
monitored hand tracking throughout. We also calibrated the

physical space before each session to ensure hands were
consistently recognized and accurately placed. These accuracy
levels were deemed sufficient for the static hand pose replication
task used in our experiment. Our apparatus ran on a Windows
10 PC with a 12th Gen Intel(R) Core(TM) i7-12700H processor and
an NVIDIA RTX A1000 graphics card.

5 Results

We analyzed both the performance data and subjective measures
using a series of 2 × 3, two-way repeated-measures ANOVAs with
Aligned Rank Transformation (ART) applied Wobbrock et al.
(2011), as data violated the normality assumption (Shapiro-Wilk
test p< .05). The two within-subjects factors were Feedback Style
(3 levels: None, Color, Shape) and Placement (2 levels:
Superimposed, Adjacent). We apply Greenhouse-Geisser
correction when the equal-variances assumption is violated
(Mauchly’s test p< .05). We tested for main effects of feedback
style and placement, and conducted pairwise post hoc comparisons
with Bonferroni adjustment within that factor, collapsed across the
other, when a main effect was found. The statistical analysis was
performed using the IBM SPSS software, and the ARTool for
Windows Wobbrock et al. (2011). In the following, we report
significant differences across the independent variables. Note that
subjective preferences in Section 5.3 were analyzed separately using
Friedman’s ANOVA, treating the six feedback-placement
combinations as a single 6-level factor, and applying 15 pairwise
Wilcoxon signed-rank tests (Bonferroni corrected). All results are
illustrated in Figure 7.

In summary, we found that shape feedback increases the time it
takes to replicate a gesture compared to color feedback or no explicit
feedback. Results also show that participants are faster to reach

FIGURE 6
Complete list of gestures participants needed to perform during the experiment. All participants experienced the same 30 gestures: 24 during Task 1
(4 trials × 6 conditions) and 6 during Task 2, randomized across participants.
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target accuracy with superimposed feedback placement than with
the target hands adjacent. Interestingly, subjective preferences show
that participants preferred color feedback paired with adjacent

placements, even though this resulted in slower replication speed.
Additionally, neither feedback type nor placement affect replication
accuracy on short-term recall.

FIGURE 7
Composite chart displaying results from hand gesture replication tasks, including replication time, accuracy, subjective preference, NASA TLX
workload subscales, and system usability subscales, with comparisons across feedback types and placements. All plots use color and pattern coding: teal
for color feedback, blue for shape, purple for no feedback, and striped bars pattern for adjacent vs circle pattern for superimposed placements.
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5.1 Performance

Performance data is illustrated in Figures 7.1,7.2, and
summarized in Table 2. We replaced outliers further than two
standard deviations from the global mean by the global mean for
that condition. These corresponded to approximately 4% and 6% of
the total collected data for replication time and accuracy (both for
accuracy on recall and accuracy loss), respectively. We performed
pairwise post hoc tests with a Bonferroni adjustment of α � 0.008
(6 pairwise comparisons).

5.1.1 Task 1 - replication time
Results indicate a main effect on replication time for FEEDBACK

(F1.726,122.574 � 18.901, p< .001, η2p � 0.21), and PLACEMENT

(F1,71 � 25.173, p< .001, η2p � 0.262), and an interaction effect of
both factors, FEEDBACK * PLACEMENT

(F2,142 � 7.748, p< .001, η2p � 0.098). Post-hoc tests showed that
replication time was significantly lower for both color feedback
(M � 7.71, SD � 9.11) and no explicit feedback
(M � 7.89, SD � 8.94), when compared to shape feedback
(M � 16.61, SD � 22.86), both p< .05. Having color feedback
did not yield significantly different performance compared to
having no explicit feedback during the task, while shape feedback
actually increased the time needed to reach target accuracy. Post-hoc
tests also revealed having the target hands in a superimposed
placement (M � 8.24, SD � 9.22) significantly reduces replication
time compared to adjacent placement (M � 13.24, SD � 19.83),
p< .001. Accuracy was constant at 2°, as this was controlled for
in the task.

5.1.2 Task 2 - replication accuracy
For the accuracy on short time recall reached on Task 2,

statistical analysis did not indicate a main effect for either
FEEDBACK (p � 0.973), or PLACEMENT (p � 0.797), nor for their
interaction FEEDBACK*PLACEMENT (p � 0.858). Participants’ average
accuracy was comparable across all conditions
(M � 2.93, SD � 1.11). Replication time was constant at 10 s, as
this was controlled during the task.

Additionally, we evaluate the relative accuracy loss over
conditions by comparing the maximum accuracy reached during

the first 3 trials (where participants could see the target and the
feedback) with the accuracy on the fourth trial (where participants
replicate based on recall only). Statistical analysis did not indicate a
main effect for either FEEDBACK (p � 0.704), or PLACEMENT

(p � 0.805), nor for their interaction FEEDBACK*PLACEMENT

(p � 0.698). The average relative accuracy loss from training to
recall was comparable across all conditions (decreased accuracy
by M � 44.8%, SD � 55.03%).

5.2 Subjective ratings

Results on the subjective scales for NASA TLX and SUS
questionnaires, for both Task 1 and Task 2, are illustrated in
Figures 7.4, 7.5, respectively. We performed pairwise post hoc
tests with a Bonferroni adjustment of α � 0.008 (6 pairwise
comparisons).

5.2.1 Task 1 - replication speed
For the NASA TLX questions answered concerning Task 1

(replication speed), we observed no significant effect of either
feedback or placement in either of the subscales.

Only the SUS subscale on learning (“I needed to learn a lot of
things before I could get going with this system”) showed a main effect
for feedback (F2,34 � 3.642, p � 0.037, η2p � 0.176). However, post
hoc tests did not show significant differences on pairwise
comparisons.

5.2.2 Task 2 - replication accuracy
For Task 2 (replication accuracy), results on NASA TLX

subscales revealed a statistically significant effect of feedback on
frustration, (F2,34 � 3.385, p � 0.046, η2p � 0.166). However, post
hoc tests did not show significant differences on pairwise
comparisons.

We also found a significant effect of both feedback
(F2,34 � 4.107, p � 0.025, η2p � 0.195) and PLACEMENT

(F1,17 � 5.214, p � 0.036, η2p � 0.235) on physical demand. Post-
hoc tests showed that having shape feedback made the task
physically less demanding (M � 2.6, SD � 1.7) than having no
explicit feedback (M � 2.4, SD � 1.7), p = 0.016. Post hoc tests

TABLE 2 Summary ofmeans and standard deviations for both tasks: Task 1 - Replication Time - and Task 2 - Replication Accuracy - both for short time recall
and over trials.

T1: Replication time
(seconds)

T2: Replication accuracy (degrees)

Condition Placement M SD Overall Recall

M SD M SD

Color Superimposed 7.56 9.25 2.58 0.92 2.63 0.96

Adjacent 7.87 9.30 2.81 1.17 2.88 1.70

Length Superimposed 10.17 10.69 2.88 1.21 2.97 1.77

Adjacent 23.05 29.31 3.19 1.29 3.39 1.46

None Superimposed 6.97 7.64 2.67 0.71 2.71 1.10

Adjacent 8.81 10.42 2.69 0.72 3.03 1.24
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also revealed that participants rated physical demand higher for
conditions with superimposed placement (M � 2.7, SD � 1.7) than
with adjacent placement (M � 2.4, SD � 1.8), p = 0.008. Having
both the target hands superimposed to the user’s hands and shape
feedback made the task of training to replicate a gesture based on
recall physically more demanding. Nevertheless, small differences
might make them negligible in practice.

We also found an interaction effect FEEDBACK*PLACEMENT on
mental demand (F2,30 � 4.233, p � 0.024, η2p � 0.220). While
none of the posthoc tests revealed statistically reliable differences,
this might indicate that certain combinations of feedback and
placement could induce higher cognitive load than others.

For the SUS questions, similarly to Task 1, we only found a
significant effect of FEEDBACK on the SUS subscale for learning.
(F2,34 � 3.381, p � 0.046, η2p � 0.166). Post hoc tests revealed
that participants rated higher in how much they needed to learn
before they could get going with the task for conditions where they
had shape feedback, compared to receiving no feedback, p = 0.011.

5.3 Subjective feedback

To complement our quantitative findings, we conducted semi-
structured post-experiment interviews to collect additional
qualitative feedback. During the interviews, participants were
shown representative illustrations of each of the six feedback-
placement conditions they experienced. They were asked to rank
these combinations by preference and explain their reasoning,
including perceived benefits, drawbacks, potential improvements,
and application scenarios for the feedback mechanisms experienced.

We leverage these qualitative insights to contextualize the
quantitative results reported in Section 5. For example, while
color feedback with adjacent placement was statistically the most
preferred condition, participants’ explanations provide insight into
why this was the case, highlighting the perceived intuitiveness and
clarity of color cues. On the other hand, shape feedback’s low
rankings are supported by participant comments describing
confusion and lack of directional guidance. This alignment
supports the validity of our findings and offers design-relevant
nuance beyond statistical significance.

We gathered participant reasoning to supplement and interpret
the quantitative results. The comments bellow, though not
exhaustive, highlight recurring user experiences that can inform
design considerations and future work; we use N � X to indicate
how many participants expressed similar remarks.

5.3.1 Preferences
We asked participants to think about their preferences over the

whole experiment and perform a sorting task. Most participants
(N = 12) preferred color feedback paired with adjacent placement as
their favourite, and shape feedback with superimposed placement as
least favourite (N = 10). We treated participants’ general preferences
as a single 6-level factor (six different feedback-placement
combinations). Statistical analysis with a Friedman’s ANOVA
showed significant differences in the ranking of participants’
general preferences, X2(5) � 25.655, p< .001). Post hoc analysis
with Wilcoxon signed-rank Tests with Bonferroni correction
(adjusted α � 0.0033 to account for 15 pairwise comparisons)

revealed color feedback paired with adjacent placement was
preferred when compared to color feedback paired with
superimposed placement, p � 0.003, shape feedback paired with
superimposed and adjacent placement, p< .001 and p � 0.001
respectively, and to having to no explicit feedback with adjacent
placement, p � 0.001. Figure 7.3 illustrates participants’ subjective
ranking scores for order of preference for all conditions (1-6 from
best to worst).

5.3.2 Feedback type
When asked to explain their reasoning for ranking preferences,

participantsmentioned that the colored joints were “useful” (N = 5) and
“intuitive” (N = 3). Nevertheless, some participants (N = 3) mentioned
that the colored joint feedback could be distracting, making them focus
more on getting all the joints correct (green) instead of focusing on the
gesture itself (P6: “When feedback was removed [I] did not remember
[the] actual gesture anymore”). Most participants justified their least
favorite choice by describing the shape feedback as “confusing” (N = 7)
and “not useful” (N = 3). It did not indicate which direction to move to
reach the correct position, so participants needed to proceed on a trial-
and-error basis (N = 4).

5.3.3 Placement
Most participants expressed their preference for having the

hands adjacent to theirs (N = 10), mentioning how it enabled
them to see their hand clearly, using the adjacent target as a
reference and the feedback for corrections (P18: “We want to
remember, so colored joints really help a lot - if fingers drift you
see the joint changing and come back to previous position. In this
case, [it is] better to have an adjacent target because you want to see
the feedback. Same for shape, useful to see the target hand as high
level and then use feedback for drifting.”) However, some
participants preferred a superimposed placement, stating it was
easier to follow (N = 4), and mentioned how they could quickly
and intuitively replicate the base pose by looking at the
superimposition of the target on their hand, and then use the
feedback for smaller corrections (P9, P18), without their eyes
needing to go back and forth (P8).

P18 expressed how having a superimposed target hand only,
with no feedback, did not give enough confidence on how correct the
movement was, but that they “liked the simplicity of the implicit
feedback.” Some participants also expressed how the combination of
length extension or color with superimposed placement could be
overwhelming, as there was “too much happening” (N = 7).

5.3.4 Improvements
Participants suggested applying color to the whole hand or

selected zones such as individual fingers instead of joints (N =
8). Most participants also mentioned that they would have liked to
see color integrated with length (N = 7), with most mentioning how
having the finger error bars always red gave them a constant negative
impression (N = 9). It would have been nice to include some more
explicit cues on which direction they should move (P4, P16).
Participants also suggested the inclusion of sound effects (P13),
haptic feedback (P8), multiple perspectives of the user’s own hands
(P8, P13), or integrating more gamification (“User is gradually
rewarded for correct behaviour: Color the full finger or parts of
the hand when mostly right, kind of level unlock,” P7).

Frontiers in Virtual Reality frontiersin.org11

Fidalgo et al. 10.3389/frvir.2025.1574965

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1574965


5.3.5 Potential applications
Participants mentioned that they would find gestural feedback

useful for applications such as teaching physical tasks where
dexterity matters (N = 3), mentioning domains such as music
e.g., learning to play the piano (P4, P5), playing the guitar (P11),
or music conducting (P13); entertainment (puppet shows, P16) and
shadow play (P16, P18), and in training workers on how to handle
machinery in industrial settings (P15). Participants also mentioned
its usefulness for learning language-based gestures (N = 6), although
our profile questionnaire asking if they were familiar with Sign
Language might have prompted this.

P8 and P9 also mentioned that such approaches could be useful
in the context of interaction with new technologies, such as XR
Gaming (“[In AR/VR] this could be part of the game instructions,
when we need especial gestures,” P8 and “the new Apple Vision Pro
for learning how to control the headset,” P9).

Finally, some participants mentioned extending a similar
approach to full-body movements and posture feedback would be
interesting. The context of sports (P3), dance and choreography
practice (N = 3), and physical therapy and rehabilitation (N = 6)
were mentioned, with P17 pointing out that this could “Reduce the
need for one-on-one therapy”. Participants also mentioned the
usefulness in general medical applications and surgery (N = 4).

6 Discussion

We investigate the impact of different feedback forms and
placements on users’ performance and subjective experiences in a
gesture replication task.

We observed that participants performed significantly faster
when provided with color or no explicit feedback compared to shape
feedback (RQ1). This suggests that while color cues or the absence of
explicit feedback may facilitate faster task completion, shape
feedback seems to introduce cognitive load or uncertainty, thus
impeding performance. This is also reflected in participants’
comments expressing frustration and confusion.

Furthermore, our results demonstrate that the placement of
target hands relative to the user’s hands also impacts replication
time. Participants replicated gestures more quickly when the target
hands were superimposed rather than adjacent to their own hands.
This finding suggests that superimposed placement may offer
perceptual advantages or facilitate spatial coordination, enabling
users to align their movements with the target more efficiently.

Interestingly, the preference for superimposed placement does not
align with subjective interview preferences. While some participants
preferred this configuration due to its perceived ease of use, most
highlighted the benefits of adjacent placement for providing clear visual
reference points and facilitating feedback interpretation. This
discrepancy might be because an adjacent placement mimics the
real-life paradigm for seeing a demonstration, which creates a sense
of familiarity that influences preference. The fact that participants were
significantly faster (38%) when seeing the target gesture superimposed
on their hand, but still preferred the adjacent placement, which
underscores the complexity of introducing new interaction
paradigms and how familiarity plays a role in user experience.

This divergence between performance metrics and subjective
preferences highlights a critical tension in interface design:

optimizing for efficiency does not always align with what users
find intuitive or comfortable. Participants’ preference for adjacent
placement, despite its lower performance, may be shaped by
perceptual familiarity and reduced cognitive demand during
interpretation. The adjacent configuration aligns with established
interaction metaphors - such as observing a demonstrator beside
oneself - which may feel more natural, particularly for novice users.
In contrast, the superimposed view, while more efficient, may
demand greater perceptual adaptation. As an example, Van
Beurden et al. (2011) found that while device-based interfaces
scored higher on perceived performance, gesture-based interfaces
were preferred for their hedonic qualities and fun. Indeed, prior
work on gesture-based interfaces (Norman, 2010) suggests that
learning curves and usability trade-offs are central in shaping
user preferences, particularly when novel interaction paradigms
are introduced. Future studies could explore how these
preferences evolve over time and how training or increased
exposure may shift the balance between efficiency and user
comfort, and whether indirect mappings may offer retention or
transfer benefits in more complex gesture learning tasks.

Additionally, while our study did not directly measure cognitive
load beyond the NASA-TLX mental demand subscale, we did
observe an interaction effect between feedback type and
placement on reported mental effort. Although post hoc
comparisons were not statistically significant, this finding may
indicate that certain combinations of feedback and placement
introduce greater cognitive burden. One possible explanation is
that shape-based feedback, particularly in adjacent placements,
may require more visual interpretation and impose higher
attentional demand due to the spatial separation between the
user’s hand and the provided feedback. This aligns with prior
work suggesting that spatially incongruent or complex visual
feedback can increase cognitive processing load in AR/VR
environments (Makransky et al., 2019; Cañas et al., 2005). As we
did not design our study to isolate cognitive mechanisms, these
results need to be interpreted cautiously. However, future research
could more systematically examine the cognitive cost of different
feedback strategies using complementary methods such as eye
tracking, dual-task paradigms, or physiological measures (e.g.,
EEG, pupillometry).

Furthermore, our study did not find significant effects of feedback
type or placement on replication accuracy (RQ2), suggesting that these
factors may not strongly influence the fidelity of gesture replication in
short-term recall tasks. This finding implies that while feedback and
placement strategies may impact task efficiency and user experience,
they may not necessarily affect the quality of task performance.

While our study focuses on short-term gesture replication as a
proxy for early-stage learning, the long-term implications of
continuous feedback need further exploration. Over-reliance on
visual guidance may hinder the development of autonomous
gesture performance, especially if users become dependent on
external cues. This concern echoes findings in the AR literature,
where persistent visual overlays have been shown to narrow
attention and reduce awareness of physical context—a
phenomenon known as attentional tunneling (Tang et al., 2003;
Syiem et al., 2021). Some participants in our study also described
continuous feedback as distracting, suggesting that more adaptive or
phased feedback strategies may better support learning. Techniques
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such as faded feedback (Goodman and Wood, 2009) or error-based
scaffolding (Finn andMetcalfe, 2010), explored in different contexts,
may encourage gradual internalization of gestures and improve
long-term retention. Future work should investigate how gesture
training systems can balance immediate guidance with long-term
skill independence.

6.1 Design guidelines

We offer preliminary guidelines for designing effective AR
tutorials based on the previous discussion. These are informed by
the observed findings, though we caution that user preferences and
task contexts may influence their applicability.

6.1.1 Color feedback
Color feedback, which uses color transitions (e.g., red to green)

to signal gesture angular correctness, can help users quickly detect
and respond to errors. It was associated with faster task completion
in our study, suggesting it may be well-suited for tasks that demand
quick, responsive correction. However, its effectiveness may depend
on users’ familiarity with such visual encoding.

6.1.2 Shape feedback
Shape exaggeration may help visualize error magnitude,

particularly for more ambiguous gestures. However, participants
in our study found it less efficient, potentially due to the cognitive
effort required to interpret the exaggerated shapes. Clear directional
cues are necessary tomitigate this issue and improve interpretability.

6.1.3 Placement
Adjacent placement was preferred for its clarity, supporting

users to easily compare their movements with the intended gestures
without obscuring their view. Alternatively, superimposed
placement led to faster performance but was not as well-liked,
indicating a trade-off between efficiency and user comfort. These
preferences suggest placement should be adapted to user needs and
task requirements, potentially being more effective for tasks
requiring high precision and rapid skill acquisition.

6.1.4 Ergonomics
The study findings emphasized that while feedback type and

placement significantly speed up task completion, they do not
compromise the accuracy of gesture replication. Despite the
operational benefits of superimposed feedback, many users prefer
adjacent placement due to its straightforward nature, which
underscores the importance of aligning tutorial design with user
comfort to enhance efficiency and engagement. Designers should
consider ergonomic and perceptual load when implementing these
cues, especially for sustained use in learning environments.

6.1.5 Complexity trade-offs
Our findings suggest that balancing between adjacent and

superimposed feedback based on task complexity and user
experience can lead to more effective and satisfying educational
experiences in AR settings. We recommend designers balance
clarity, efficiency, and user preferences when selecting feedback
and placement modalities in order to optimize learning outcomes.

6.2 Limitations and future work

6.2.1 Design space
When creating our design space, we chose Color and Placement

as factors, as these are commonly used to provide error feedback for
data visualizations and 2D interfaces (e.g., color: heatmaps;
placement: error indicators next to UIs); and Shape to cover for
beyond-real interactions, as typical in XR environments [e.g., shape:
body part elongation McIntosh et al. (2020); Poupyrev et al. (1996)].
We chose these augmentations as a starting point for our
investigation due to the ubiquity of their 2D counterparts. We
acknowledge, however, that the space of possible augmentations
is significantly larger, and could include other factors such as motion
paths, speeds, sound alerts, and other sensory feedback (haptics:
texture, pressure, temperature).

6.2.2 Long-term learning
Our work currently focuses on improving gesture replication

through a static hand pose replication task, which we use as a proxy
for the initial stages of learning during a gesture-based tutorial.
While our study suggests that feedback and placement may not
necessarily impact the overall quality of task performance on short-
term recall, results might be different when considering long-term
learning. Future work could investigate whether hand
augmentations may inadvertently lead to users over-relying on
this form of guidance in the long term, hindering their
autonomy in performing tasks when continuous visual cues are
unavailable. Additionally, as some participants noted during the
interviews, continuous feedback can be distracting, removing focus
from the actual gesture replication. Hence, we should carefully
consider the potential impact of continuous and dynamic
feedback on overall learning retention.

6.2.3 Static vs. dynamic gestures
We focus on replicating a static hand pose in terms of the

accuracy of the hand pose itself. We believe that those cover a large
space of tutorials and applications. However, many actions exist that
rely on dynamics and handmovement.We hope to expand our work
to those areas, for example, by providing feedback on motion paths
and speed.

6.2.4 Tracking
Our motion capture method relies on the Quest Pro’s in-built

hand tracking, which is unreliable when gestures have intricate poses
with obstructed fingers. In our study, this mostly led to challenges
when participants noticed that their virtual hands did not match
their actual hands perfectly. This problem makes generating
accurate automatic feedback even more difficult, especially when
considering more complex tasks that include hand-object
interactions, where full portions of the hand might be occluded.
We hope to leverage higher-accuracy marker-based motion capture
systems in the future.

6.2.5 Multi-modal feedback
Finally, our approach focuses primarily on visual cues. Future

work could explore integrating other modalities, such as audio and
haptic sensations (Schütz et al., 2022; Cho et al., 2024), including
pressure, texture, and temperature changes. For example, texture
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and temperature changes could be particularly relevant in
surgical training.

7 Conclusion

We explored different automatic feedback mechanisms through
hand augmentations to enhance gesture-based tutorials in AR
environments. Through a user study with 18 participants, we
evaluated different styles of hand augmentations, combining different
types of feedback at different placements. We observed that participants
performed significantly faster when provided with color or no explicit
feedback than shape feedback, indicating the potential cognitive burden
introduced by manipulating shape. Our study did not find significant
effects of feedback type or placement effects on replication accuracy,
suggesting that while these factorsmay influence task efficiency, theymay
not strongly affect overall task proficiency in the short term. Interestingly,
while having the target hands in a superimposed placement significantly
reduces replication time, most participants preferred adjacent placement,
highlighting its clarity and facilitation of feedback interpretation. In light
of our findings, we are optimistic that advancing hand augmentation
technologies in AR will significantly streamline user interactions and
enhance learning outcomes, paving theway formore natural and effective
learning virtual environments.
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