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Introduction: Multilingual communication shapes education, culture, and
decision-making, However, we lack a clear picture of how native writing
systems influence visual processing.

Methods: We conducted virtual reality experiments comparing native Chinese,
Japanese, and English readers, who read both native and non-native scripts in
immersive VR settings.

Results:Native Chinese and Japanese readers read faster but weremore prone to
confusion with similar glyphs, while English readers took longer and struggled
with structural complexity. These patterns among native Chinese and Japanese
readers persisted even with non-native scripts.

Discussion:Our findings reveal a lasting visual divergence shaped by native-script
experience, offering guidance for VR interface design and script-sensitive
language learning tools.
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1 Introduction

Language, as an integral part of daily life, profoundly shapes human activities ranging
from communication and education to cultural exchange and decision-making. In today’s
multilingual societies, bilingualism or even trilingualism has become commonplace.
However, fundamental differences exist between second language (L2) learners and
native speakers in orthographic processing (Singhal and Meena, 1998), phonological
awareness (Akker and Cutler, 2003), and syntactic integration (Baker, 2010). These
differences are particularly pronounced between logographic systems (e.g., Chinese
Hanzi) and alphabetic systems (e.g., English), as they employ distinct visual encoding
strategies (Perfetti, 2007), imposing divergent cognitive demands on learners due to their
contrasting visual-spatial organizations.

Chinese, as a prototypical logographic system, manifests in the multi-dimensional
arrangement of components within a confined spatial unit. For instance, the Chinese
character赢 (yíng, “to win”) integrates five distinct radicals (亡, 口, 月, 贝, 凡) into a
cohesive 2D configuration. This spatial complexity starkly contrasts with the linear
sequencing of alphabetic systems such like English, where words expand horizontally
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through letter combinations (e.g., the English word “unbreakable”
elongates horizontally by combining the prefix un-, root break, and
suffix -able). Japanese further complicates this dichotomy by
blending logographic Kanji (adapted from Hanzi) with syllabic
Kana-a system historically derived from cursive simplifications of
Chinese characters during the Heian period (794–1185 CE).

To ensure cross-linguistic consistency in our experimental
design, we adopt a visually oriented definition of glyphs as the
minimal perceptual units in writing systems. A glyph may
correspond to: A single graphene (e.g., a Chinese Hanzi character
like水 shuı̌, “water”), Part of a graphene (e.g., diacritics in alphabetic
scripts), or A composed glyph combining multiple graphemes (e.g.,
English words like “experiment”). This framework allows systematic
comparison across languages:

• Chinese: Glyphs are defined as individual Hanzi (e.g., 赢),
each representing a unified visual unit.

• Japanese: Glyphs include both Kanji (logographic characters)
and Kana (syllabic symbols), treated as discrete
perceptual chunks.

• English: Glyphs are operationalized as whole words, reflecting
their linear composition from alphabetic graphemes.

To illustrate these structural differences, we developed a
comparative diagram, as shown in Figure 1. Such diversity raises
critical questions: How do orthographic variations influence visual
perceptual processing, and how might they inform the design of
language-learning tools in digital environments?

Existing human-computer interaction (HCI) research has
predominantly focused on alphabetic paradigms, despite the fact
that the majority of the world’s population is bilingual or
multilingual, surpassing the number of monolingual individuals
(Da Rosa et al., 2023). This gap is especially salient in immersive

technologies like virtual reality (VR), where depth perception and
spatial rendering may interact uniquely with the visual properties of
writing systems. For example, logographic characters, with their
compact 2D structures, likely require holistic visual processing (Tan
et al., 2005), whereas alphabetic words demand sequential decoding
(Dehaene et al., 2010). Meanwhile, although Japanese kana represent
syllables, L2 learners may perceive them as visual gestalts similar to
kanji, akin to Kanji, due to their visual chunking (Kosaka, 2023).
These observations underscore the need for a systematic framework
to compare cross-linguistic visual perceptual in digitally
mediated contexts.

Crucially, second language acquisition begins with zero
proficiency, meaning even among L2 learners, varying familiarity
levels lead to significant differences in language processing (Baker
and E, 2010). To account for this, participants self-assessed their
familiarity with Chinese, English, and Japanese through pre-
experiment questionnaires. We categorized proficiency into three
dimensions: native (L1), second language (L2), and no prior
exposure (LN). This approach ensures a comprehensive analysis
of how orthographic features impact individuals across
proficiency levels.

To address these questions, we designed a VR-based experiment
investigating how orthographic structures influence readability
across three languages: Chinese (logographic), English
(alphabetic), and Japanese (hybrid). Participants from these
linguistic backgrounds (L1, L2, and LN) performed character/
word recognition tasks under varying conditions of complexity
(stroke density/word length), structural similarity, and viewing
distance. During the experiment, we recorded error rates,
invisibility rates (failure to recognize glyphs), and task
completion times, followed by between-group effect analyses and
post hoc tests to identify influencing factors. Prior to
experimentation, we formulated the following hypotheses:

FIGURE 1
A Cross-Linguistic Comparison of Orthographic Structures.This figure illustrates the differences in visual structure among Chinese (logographic),
Japanese (logographic-syllabic), and English (alphabetic) writing systems. Chinese characters combine multiple components into a compact two-
dimensional form (e.g., the character使), exemplifying “structural complexity.” In contrast, English words extend along a horizontal axis by adding letters
in sequence, reflecting “sequential complexity.” Japanese incorporates both kanji and kana, offering a blend of visual and linear elements. In this
system, kana and individual English letters function as basic units without inherent meaning, whereas a single Chinese character or a complete English
word serves as the smallest meaningful unit. The concept of a “glyph” is introduced here as a unifying framework for cross-linguistic comparison.
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For Error Rates.

• H1: Native speakers (L1) exhibit lower error rates than non-
native users (L2/LN).

• H2: Structural similarity between characters increases
error rates.

• H3: Higher glyph complexity (stroke count/word length)
increases error rates.

• H4: Font style variations influence error rates.

For Invisibility Rates.

• H1: Native speakers (L1) exhibit lower invisibility rates than
non-native users.

• H2: Structural similarity increases invisibility rates.
• H3: Higher glyph complexity increases invisibility rates.
• H4: Font style variations influence invisibility rates.

For Task Completion Time.

• H1: Native speakers complete tasks faster than non-
native users.

• H2: Structural similarity increases completion time.
• H3: Higher glyph complexity increases completion time.
• H4: Font style variations influence completion time.

We selected virtual reality (VR) over traditional screens or
augmented reality (AR) for its ability to isolate and control
experimental variables. Unlike traditional displays, which are
influenced by user-specific factors such as height, viewing habits,
and ambient distractions, VR allows precise standardization of
visual stimuli while eliminating extraneous environmental
interference. By creating a controlled immersive environment, we
aimed to explore how cross-linguistic orthographic differences lead
to distinct visual perceptual demands. Our findings inform the
development of educational strategies and interface designs that
facilitate more efficient L2 acquisition for non-native learners.

This study bridges linguistics and HCI, offering novel insights
into adaptive multilingual systems that accommodate the structural
diversity of global writing systems.

2 Cross-linguistic cognitive differences
in native vs. non-native language
processing

2.1 Cognitive and behavioral disparities in
L1 vs. L2 processing

Research comparing native (L1) and second language (L2)
processing has evolved significantly since the late 20th century.
Early studies emphasized cultural schemata and prosodic awareness
as critical factors in L2 comprehension. For instance, L2 readers
perform better with culturally familiar content (Singhal and Meena,
1998), while non-native users adapt their language structures when
interacting with AI assistants, prioritizing clarity over fluency (Wu
et al., 2020). Prosodic processing further differentiates L1 and
L2 users: native listeners leverage stress patterns for rapid

semantic parsing (Akker and Cutler, 2003), whereas L2 learners
struggle with prosodic cues due to interference from their
L1 rhythmic patterns (Baker, 2010; Kawase et al., 2025).

Advancements in cognitive psychology and educational
technology have shifted focus to orthographic differences
between writing systems. Studies highlight that L1 and L2 readers
exhibit distinct processing strategies rooted in graphemic familiarity,
the visual recognition of writing units. For example, Lee and
Fraundorf (2019) found that font legibility significantly impacts
L2 learners’reading efficiency, while Gauvin and Hulstijn (2010)
showed that degraded typography disproportionately hinders non-
native speakers. These findings underscore the role of visual
ergonomics in L2 acquisition.

Orthographic layout parameters, such as spacing and text
directionality, further modulate cross-linguistic processing. While
word spacing improves comprehension for L2 readers of Chinese
(Bassetti, 2009), script directionality (e.g., left-to-right vs. right-to-
left) shows negligible transfer effects in L2 English reading
(Fernandez et al., 2023). Collectively, these studies reveal that L1-L2
disparities arise from both macro-level factors (cultural schemata,
prosody) and micro-level visual properties (typography, layout).

2.2 Glyph perception in logographic vs.
alphabetic systems

Glyphs—the minimal visual units of writing systems—serve as
critical interfaces between orthography and cognition. Unlike
morphemes or graphemes, glyphs emphasize visual form over
linguistic meaning, making them pivotal for investigating cross-
linguistic perceptual differences.

Logographic systems (e.g., Chinese Hanzi) compress semantic
complexity into spatially nested structures. Despite increased stroke
density, complex characters like贏 (yíng, “to win” show no significant
impact on comprehension (Fu et al., 2025), suggesting holistic visual
processing dominates. In contrast, alphabetic systems (e.g., English)
exhibit sequential complexity: longer words like “unbreakable” linearly
integrate morphemes, requiring incremental decoding that amplifies
cognitive load (Hyönä et al., 2024). This dichotomy reflects
fundamental differences in visual information encoding: logographic
systems prioritize spatial efficiency, while alphabetic systems demand
temporal sequencing (Liversedge et al., 2024).

L1 background further modulates glyph perception. Pae and Lee
(2015) found that Chinese-native speakers exhibit heightened
sensitivity to typographic distortions in English, likely due to
their reliance on holistic glyph recognition. Such findings align
with Kosaka (2023), which attributes L2 learners’gestalt-like
processing of Japanese Kana to visual chunking strategies. These
studies collectively suggest that L1 orthographic experiences shape
visual processing biases, with logographic learners favoring global
features and alphabetic learners focusing on local details.

2.3 Synthesis and research positioning

Early foundational work on immersive text interaction, such as
Billinghurst et al.’s evaluation of wearable information spaces in
head-mounted displays (Billinghurst et al., 1998), laid the
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groundwork for understanding spatial presentation and readability
in virtual environments. Building on this, prior research in virtual
reality and augmented reality human-computer interaction has
advanced our understanding of text rendering in immersive
interfaces. These studies have examined font properties (e.g.,
Font, Text size and Letter-spacing (Oderkerk and Beier, 2022;
Minakata and Beier, 2021)), display thresholds such as device
resolution and viewing distance (Zhou et al., 2024; Jessner, 2008;
Rahkonen and Juurakko, 1998), layout considerations including
interface composition and perspective (Rzayev et al., 2021), and
extreme reading conditions like reading during head or bodymotion
(Matsuura et al., 2019). However, most experiments have involved
monolingual, native speakers. Consequently, it remains unclear
whether these design guidelines apply to non-native speakers,
who employ fundamentally different perceptual strategies when
processing text.

Similarly, behavioral and cognitive psychology has generated a
rich literature on L1-L2 differences in glyph perception and reading
patterns. Examples include eye-tracking studies of saccades, skips
(Cui, 2023), and regressions to orthographic research dating back to
the early 2000s (Perea and Rosa Martínez, 2000). However, these
insights have seldom been translated into concrete
recommendations for immersive interface or educational design.

Together, these gaps point to two critical shortcomings:

• Monolingual bias in VR-HCI: Existing immersive-text
experiments focus on native speakers in their first language,
overlooking how non-native perceptual biases might alter
optimal typography and layout strategies.

• Theory-practice divide: Cognitive-psychology findings on
L2 glyph recognition and reading behavior rarely inform VR/
AR interface frameworks or second-language pedagogy, leaving a
void between laboratory insights and real-world design.

Our study addresses these shortcomings by:

• Quantitative VR experiments with L1 and L2 users:We decouple
pure glyph perception from higher-level comprehension within a
controlled VR environment, capturing native and non-native
participants’intuitive responses to minimal visual units across
logographic and alphabetic scripts.

• Practical design and pedagogy recommendations: Our
findings yield actionable guidelines for immersive font and
interface designers, as well as curriculum developers in
second-language education, thereby closing the loop
between cognitive theory and applied VR-HCI practice.

Through this targeted exploration of glyphs as the smallest
visual units, we provide a foundational perspective to guide
future work in both VR-HCI and language learning-enhancing
readability, reducing perceptual load, and improving learning
outcomes across diverse linguistic populations.

3 Experiment

We examined how glyph complexity and similarity affect
legibility for native (L1) and non-native (L2, LN) speakers at four

distances in a VR environment using Oculus Quest 3. Participants
(Japanese, English, Chinese) completed trials in their L1 and a
randomly assigned L2. Glyphs were categorized by complexity
(stroke count or word length) and similarity (structural
resemblance). Glyphs were systematically selected from four to
five predefined pairs per category (each pair consists of two
characters/words) with left/right positions randomized to prevent
memorization.

To minimize order effects, participants were randomly assigned
to forward (0.5 m→10 m) or reverse (10 m→0.5 m) sequences, with
equal group sizes. Trials varied fonts and distances (0.5, 2.5, 5, 10 m),
with participants selecting prompted glyphs via Quest Touch Pro
controllers. Finally, we analyzed error rates, invisibility rates, and
task completion time to assess how glyph properties, font, and
distance affect visual perceptual performance.

3.1 Apparatus

The experiment used an Oculus Quest 3 with Elite Strap,
featuring dual LCDs (2064 × 2208 px, 25 ppd, 90 Hz). The VR
environment was built in Unity 3D on aWindows 11 PC with a 13th
Gen Intel i7-13700HX, 32 GB RAM, NVIDIA RTX 4060 Laptop
GPU, and a 512 GB SSD. To maximize clarity, we ran the headset
tethered via Oculus Link in Ultra quality with 8 × MSAA,
TextMeshPro signed-distance-field fonts, and dynamic resolution
disabled, maintaining 25 ppd at all distances. Participants used
Quest Touch Pro controllers, selecting options with the triggers
or indicating visual difficulty via the grip button. The virtual text box
dynamically followed the camera, maintaining a set distance that
automatically adjusted with camera movements, minimizing fatigue
and allowing a relaxed posture.

3.1.1 Text size
To ensure consistent testing conditions, the text size in virtual

reality was fixed in this experiment. The font height was set to
70 mm. To address concerns regarding resolution consistency and
maintain visual quality, dynamic resolution scaling was activated in
this experiment. Dynamic resolution adjusts the rendering
resolution in real-time based on GPU load, balancing
performance and visual clarity. By enabling dynamic resolution,
we effectively minimized dependency on the device’s fixed pixel
density (ppd), as the system dynamically adapts resolution to
maintain optimal clarity under varying conditions. Prior to the
experiment, a pre-test was conducted to verify that the text clarity at
all of distance met the visual requirements for the
experiment demand.

3.1.2 Virtual environment
We created a 14 × 2.5 × 2.5 m virtual VR corridor environment

using three different languages (Chinese, Japanese, and English) and
a virtual text box measuring 570 × 200 mm. Based on previous
research (Jankowski et al., 2010), the background of the text box was
set to black with 50% transparency, and the text color was white. The
text box displayed either two characters (Chinese/Japanese) or two
words (English). Additionally, a prompt box, positioned below the
user’s camera view, randomly indicated one of the characters or
words displayed in the text box. Participants used the trigger buttons
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on the left and right Quest Touch Pro controllers to select whether
the prompted character or word was on the left or right side of the
text box. The scene was lit with directional lighting to ensure
adequate illumination. A schematic of the scene is shown in Figure 2.

3.2 Participants

We recruited 30 participants through flyers and social media,
including 10 native Chinese speakers (6 males, 4 females), 10 native
Japanese speakers (5 males, 5 females), and 10 native English
speakers (7 males, 3 females).Each linguistic group of participants
was further divided into two subgroups, with 5 participants assigned
to the forward distance order and 5 participants assigned to the
reverse distance order. To control for the potential influence of font
on different age groups, as highlighted in Calabrese et al.’s research
on MNREAD Acuity Charts across various age ranges (8-16, 16-40,
and over 40 years) (Calabrèse et al., 2016), we aimed to maintain age
consistency among our participants. Consequently, all participants
were aged between 20 and 40 years. Of these, eight had no prior
experience with VR headsets, while 22 had used VR headsets before.
All participants had normal or corrected-to-normal vision, with
11 having normal vision, two wearing contact lenses, and
17 wearing glasses.

3.3 Design

We used a between-participant design. The four independent
variables were as follows:

• Glyph Complexity and Similarity (11 groups for Japanese,
9 groups for Chinese, and 7 groups for English)

• Fonts (6 types)
• Distance (4 distances)
• Native language (3 types).

3.3.1 Glyph complexity and similarity
Because this experiment does not consider the participants’

language abilities, we used pseudo-text as the content, following the
approach used by Wang et al. (2020), and Zhou et al. (2024) in their
studies on the legibility of Chinese characters (Hanzi) in VR
environments. This approach to pseudo-text was first defined by
Wilks (1987) (Wilks and Fass, 1992) that allows researchers to focus
on aspects such as font legibility, text formatting, and visual ergonomics,
without the confounding effects of semantic content. We organized the
materials into two main dimensions: first by complexity, and then by
similarity within each complexity level.

3.3.1.1 Complexity classification of Japanese, Chinese, and
English characters

Hiragana, Katakana, and Kanji are classified as block characters,
whereas English consists of linear characters. For block characters,
complexity is primarily determined by the number of strokes, with a
higher stroke count indicating greater complexity. Although other
methods exist for calculating character complexity, such as
combining stroke count with factors like skeleton length (i.e., total
stroke length) (Bernard and Chung, 2011), slices (Majaj et al., 2002), or
the square of the symbol’s perimeter divided by the “ink” area
(Vildavski et al., 2022), this experiment employed a method that
combines stroke count with ink area to determine the complexity of
Japanese and Chinese characters (Kanji and Hanzi).

Considering the subtle differences between the Chinese Hanzi
and Japanese Kanji, the Japanese Kanji materials used in this
experiment were sourced from the commonly referenced
Japanese Kanji database (based on the Cabinet notification of
30 November 2010), while the Chinese Hanzi were sourced from
a GitHub Chinese character database. The stroke count for each
character was determined, and the pixel value at 100 pt was
calculated using Python’s Pillow library. Character complexity C
was calculated as shown in Equation 1:

C � NUMBER

μnumber

×
PIXEL

μpixels
(1)

FIGURE 2
Schematic of the experiment scene. This figure illustrates the virtual environment in which participants viewed a text box containing either two
Chinese/Japanese characters or two English words at varying distances (0.5 m, 2.5 m, 5 m, and 10 m).
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Because the raw C distribution was strongly right-skewed (median
≈ 2.79 for Chinese, ≈ 2.27 for Japanese; 75th percentile ≈ 3.66 for
Chinese, ≈ 2.99 for Japanese), we converted C to a log2 scale and

applied equal—width binning at log2C � −1, 1, 2 (corresponding to
C � 0.5, 2, 4) to derive intuitive, data—driven complexity tiers. The
complexity of all characters (including Japanese Kanji, and Chinese

TABLE 1 Character Glyph classification by feature and similarity across Chinese, Japanese, and English.

Language Feature Similarity Character sets

Japanese Kana Similar (J1) ぬねびひラうソンバパ

Dissimilar (J2) おすフナとトゆンラガ

Kanji(C≤ 0.5) Similar (J3) 人入八入丁了士土力刀

Dissimilar (J4) 山小二又三女大上才十

Kanji(0.5<C≤ 2) Similar (J5) 究完査直没沿板牧固囲

Dissimilar (J6) 呉茶呂皇果直徒逆造挑

Kanji(2<C≤ 4) Similar (J7) 説設関開親頻載戦寧箋

Dissimilar (J8) 格唇渇夏瘍棄徳質塊圏

Kanji(C> 4) Similar (J9) 議譲麗麓闇簡謄騰鶴鶏

Dissimilar (J10) 瞳襲騒麗露璽欄覇観覆

Mixed Dissimilar (J11) 人お矢ソ質三襲ナ護技

Chinese Hanzi(C≤ 0.5) Similar (C1) 丁了刀刁入人厂广

Dissimilar (C2) 乃了一乙入卜工之

Hanzi(0.5<C≤ 2) Similar (C3) 朵朶伶冷匂勾氷永

Dissimilar (C4) 汽冉沁由冰决忾汴

Hanzi(2<C≤ 4) Similar (C5) 萎萋設説董堇間問

Dissimilar (C6) 鹀奠鸿葛齊疸感庸

Hanzi(C> 4) Similar (C7) 麤龘穲穳饕餮魑魉

Dissimilar (C8) 賽闋孽镰鵚騙麋譨

Mixed Dissimilar (C9) 丁魑乃觧了鸿魑尤

English 0–3 letters Similar (E1) no on me he cat cap
on or run ran

Dissimilar (E2) go he on me to up
cat dog sky big

4–8 letters Similar (E3) bare bear seam seem script scrip
bread break dream dram

Dissimilar (E4) duce bear green sight script crept
animal beauty gallery kitchen

over 8 letters Similar (E5) reference preference demonstration determination
illustration imagination consideration conversation

implementation improvisation

Dissimilar (E6) rehabilitation disappointment communication accomplishment
encouragement documentation conference magnificent

appreciation conference

Mixed Dissimilar (E7) for reference on magnificent
cap determination sky accomplishment

to preference
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Hanzi) was compiled and categorized into four levels: C≤ 0.5 (very
simple), 0.5<C≤ 2 (simple), 2<C≤ 4 (complex), and C> 4
(very complex).

The complete character dataset, processing code, and output
results are publicly available on Open Science Framework (OSF) for
verification. For linear characters, represented by English words
composed of letters, we categorized the words into three groups
based on length: short (up to 3 characters), medium-length (four to
eight characters), and long words (9 or more characters). This
classification method aligns with the approach used by Jukka
(Hyönä et al., 2024) in their study on complexity categorization
for Finnish, an alphabetic system.

3.3.1.2 Similarity classification of Japanese, Chinese, and
English characters

Within each complexity level, characters were further divided
into similar and dissimilar groups. Character similarity was
classified into two levels: Similar, and Dissimilar. As block
characters, Chinese characters (Kanji and Hanzi) were evaluated
based on structural resemblance and stroke count. We defined the
similarity of Chinese characters (Kanji and Hanzi) as follows: similar
characters typically share similar shapes and structures, with stroke
differences of no more than two. Dissimilar characters, on the other
hand, often have different shapes and structures, with stroke
differences greater than two.

Hiragana and Katakana, on the other hand, differ in stroke style,
with Hiragana featuring more curves owing to its cursive nature,
while Katakana contains more straight lines. Therefore, we defined
the similarity of Kana characters as follows: given the simplicity and
similar stroke counts of Kana characters, their similarity is primarily
determined by the order of strokes.

English words, composed mainly of roots and affixes, especially
in longer words, were grouped based on the similarity of their roots
and affixes. Specifically, similar words share similar roots (with
length differences of no more than three letters) and affixes and are
of comparable length, while dissimilar words differ in both roots
and affixes.

To minimize participant fatigue and ensure diverse presentation
of stimuli, we randomly displayed five different sets of glyphs within
each classification group. Based on the complexity and similarity
categorizations, the glyph conditions are organized as follows:

• Japanese: 11 groups (complexity × similarity)
• Chinese: 9 groups (complexity × similarity)
• English: 9 groups (complexity × similarity)

Table 1 lists character sets categorized by complexity and
similarity (e.g., stroke count, structural resemblance) for each
language, with “Similar” and “Dissimilar” groups defined
according to the specific characteristics of each language.

3.3.2 Fonts
Regardless of the medium, fonts can have a significant impact

on the legibility of characters or text within a passage.
Mainstream typefaces are typically classified as serif or sans-
serif categories and further differentiated by weight, such as light,
medium, or heavy. Given the vast number of font variations and

the significant stylistic differences between languages, we selected
the universally adopted Google Noto fonts (Sans, SansJP,
SansCN, Serif, SerifJP, SerifCN). This font was chosen for its
consistent style across different languages and its broad adoption.
The font classifications utilized in our study are presented
in Table 2.

3.3.3 Distance
Alger highlighted that in VR, information should not be

placed at distances less than 0.5 m or more than 20 m.
Therefore, we defined four distances within the virtual
environment: 0.5 m (D1), 2.5 m (D2), 5 m (D3), and 10 m (D4).
These distances correspond to: the minimum distance at which
characters are still recognizable, a comfortable reading distance for
nearsighted individuals, a suitable reading distance for farsighted
individuals, and the maximum distance at which character outlines
are barely distinguishable.

3.3.4 Native language
Participants were evaluated on three language categories:

native (L1), second (L2), and unfamiliar (LN). Standard
definitions apply to L1 and L2 (Jessner, 2008). For cases where
Chinese was unfamiliar to some Japanese and native English
speakers, we designate it as LN, following conventions in
previous studies (Rahkonen and Juurakko, 1998; Gardner,
1983). Prior to the experiment, participants self-assessed their
proficiency in L1, L2, and LN using a four-tier scale based on
familiarity with Chinese characters (Hanzi), Japanese Kanji and
Kana, and English words. A response of “none-do not recognize
any characters” led to classification as LN.

Based on these classifications, participants were grouped as
follows: Chinese (CL1 for Chinese native speakers, CL2 for
Chinese second-language learners, and CLN for those unfamiliar
with the Chinese), Japanese (JL1, JL2, JLN), and English (EL1, EL2,
ELN). The final distribution of participants by language proficiency
was: Chinese (CL1: 10, CL2: 13, CLN: 7), Japanese (JL1: 10, JL2: 19,
JLN: 1), and English (EL1: 10, EL2: 20, ELN: 0).

3.4 Task

As shown in Figure 2, The task required participants to identify
the character or word displayed in the prompt box and determine its
position (left or right) within the text box on the glyph canvas. For
example, in the Chinese experiment, the character “饕” appears in
the prompt box and is positioned on the left side of the canvas
displaying “饕餮”, prompting a left trigger press. Similarly, in the
Japanese and the English experiments, “ラ” and “bare” are
positioned on the left, necessitating the same selection. This
setup enables the assessment of language-specific glyph
recognition across diverse linguistic backgrounds.

3.5 Procedure

Participants were welcomed, briefed on the purpose and
procedure, and gave informed consent in accordance with the
Institutional Review Board of Hokkaido University. As
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TABLE 2 Font classification by type, weight, and language-specific fonts.

Font type Font weight Font name Abbreviation

Sans Thin Noto Sans-Thin(EN) SaT

Noto Sans-Thin SC (CN) SaT

Noto Sans-Thin SC (JP) SaT

Middle Noto Sans-Medium (EN) SaM

Noto Sans-MediumSC (CN) SaM

Noto Sans-MediumJP (JP) SaM

Black Noto Sans-Black (EN) SaB

Noto Sans-BlackSC (CN) SaB

Noto Sans-BlackJP (JP) SaB

Sans-serif Thin Noto Serif-Thin (EN) SeT

Noto Serif-ExtraLight SC (CN) SeE

Noto Serif-ExtraLightJP (JP) SeE

Middle Noto Serif-Medium (EN) SeM

Noto Serif-MediumSC (CN) SeM

Noto Serif-MediumJP (JP) SeM

Black Noto Serif-Black (EN) SeB

Noto Serif-BlackSC (CN) SeB

Noto Serif-BlackJP (JP) SeB

FIGURE 3
Experiment Flow and Task Flow Diagram This figure illustrates the overall flow of the experiment, starting with the introduction and consent signing,
followed by practice sessions, themain tasks in L1 (native language) and L2/LN (non-native language), and concluding with participant feedback. The task
flow section on the right details the specific steps participants followed during each trial, including reading the glyph prompt, selecting the matching
glyph using the Quest Touch Pro controllers, and taking breaks between sets of trials.
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compensation, each participant received a QUO card valued at JPY
1,000 upon completing the experiment. They then completed VR
training and a pilot session until proficient with the HMD and Quest
Touch Pro controllers.

The experiment was conducted in Japanese, Chinese, and
English. Each participant performed one comprehension task in
their L1 and one in a randomly assigned non-native language (L2 or
LN). For each language, 10 native and 10 non-native participants
(5 from each of the other two groups) were split into forward
(D1→D4) or reverse (D4→D1) distance orders.

In the main task, participants completed one trial for each
combination of 4 distances (0.5, 2.5, 5, 10 m) × 6 fonts × glyph
groups (JP = 11, CN = 9, EN = 7), completing the single experiment
in approximately 10–15 min to avoid fatigue or cybersickness
(sickness symptoms tend to increase after 10 min of VR
exposure) (Saredakis et al., 2020), with a 10 s rest every 50 trials.
Glyph pairs (similar/dissimilar) were displayed at the set distances,
and participants selected the matching glyph via controller triggers;
they used the grip button to indicate visual difficulty. After a 2–3min
break, they repeated the task in the second non-native language.
Total experiment time was within 30 min.

Following HMD removal, participants provided subjective
feedback. Figure 3 illustrates the overall flow and task steps. All
behavioral measurements, participant demographics, and
representative recordings of the experimental procedure are
available in the supporting data repository on the OSF.

3.6 Data collection and analysis

3.6.1 Data collection
We assessed accuracy by comparing each selection (left/right)

with the glyph shown and the prompt. Incorrect choices defined the
Error Rate, while grip-button presses on entirely illegible glyphs
defined the Invisibility Rate. Selection latency was recorded as Task
Completion Time.

Participants used the Quest Touch Pro triggers to select the
matching glyph, guessing when it was unclear but still visible and
pressing the grip button when it was unreadable. The system logged
glyph distance, font, response type (left, right, invisible), and
completion time for every trial.

In total, we gathered 12,960 valid trials: • Japanese: 11 glyph
groups × 4 distances × 6 fonts × 20 participants = 5,280 • Chinese:
9 glyph groups × 4 distances × 6 fonts × 20 participants = 4,320
• English: 7 glyph groups × 4 distances × 6 fonts ×
20 participants = 3,360.

This dataset provides a comprehensive view of participants’
performance and visual perceptual processes.

3.6.2 Data analysis
We collected error rates, invisibility rates, and task completion

times. Because the task was simple and both error and invisibility
events were rare, traditional regression models would yield
unreliable estimates. We therefore used SPSS’s Generalized Linear
Model (GLM) framework (an ANOVA within the generalized linear
model class) to evaluate between-group differences and performed
post-hoc pairwise comparisons using both Tukey’s HSD and
estimated marginal means (EMM), excluding effects with

negligible η2. Significant interaction effects were further examined
using error-bar plots and interaction graphs to visualize key trends
and to mitigate challenges posed by sparse error data.

Task completion times served as supplementary measures. We
again applied the GLM to assess group effects and conducted
Tukey’s HSD and Estimated Marginal Means (EMM) for post-
hoc analysis, omitting effects with negligible η2. For significant two-
way interactions, we visualized the observed trends; for more
complex three-way interactions, we fitted linear mixed-effects
(LME) models. By integrating GLM results, LME analyses, and
visualizations, we explored potential reasons why certain language
groups performed better or worse under specific interaction
conditions. Statistical significance was set at p< .05 . All GLM
and LME outputs, as well as supporting analysis scripts, are
available at the OSF.

4 Result

To minimize individual-difference errors and keep the task
straightforward, we simplified the design so that even LN
participants (with no language background) could succeed
through careful observation. We examined all incorrect and
invisible responses and recorded task completion times to ensure
data reliability and rule out accidental touches. Because correct
responses predominated, error and invisibility rates were low-
violating the homogeneity-of-variance assumption in our GLM
ANOVA. These rare events, however, are critically informative.
Therefore, we applied Estimated Marginal Means (e.g., pairwise
comparisons) and Post Hoc Tests (e.g., Multiple Comparisons),
complemented by visualizations and practical interpretation, to
deliver a comprehensive and nuanced analysis.

However, since the study involves four distance levels, each
representing distinct sensory experiences, treating distance as an
independent parameter for analysis might lack interpretative value.
To address this, and to focus more closely on glyph characteristics,
we further conducted between-group effect tests across different
languages and distance levels. The results are categorized and
discussed based on language and distance.

4.1 Error rates

While the experiment included a large number of trials overall,
the distribution of trials across multiple conditions (e.g., Glyph,
Font, and Native) resulted in relatively few trials for each specific
combination of variables. Combined with the low overall error rates,
this can be considered a low-event-rate design rather than a
traditional small-sample experiment. The total number of errors
under different distances and conditions is summarized in Table 3.
In Table 3, “Errors” represents the total number of errors for each
distance, while the “Glyph” column lists values for each language in
the order of C1–C9, J1–J11, and E1–E7. To enhance readability,
similar glyphs are highlighted in bold (C1, C3, C5, and C7 for
Chinese; J1, J3, J5, J7, and J9 for Japanese; and E1, E3, and E5 for
English). The “Font” column lists values for fonts in the order of SaB,
SaM, SaT, SeB, SeM, and SeE/SeT (SeE for Japanese and Chinese,
and SeT for English). The “Native” column lists values for native
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speakers in the order of Chinese, Japanese, and English participants,
while “Total” represents the total number of trials for each distance.

From Table 3, it can be observed that error rates for Chinese and
Japanese primarily occur under the D4 distance condition. In
contrast, English experiments exhibit lower overall error rates,
with slightly higher rates under D1 and D4.

4.1.1 English experiment
At the farthest distance (D4), only a main effect of Native

reached significance [F(2, 714) � 8.50, p< .01, η2 � 0.023). At the
intermediate distance (D3), we observed significant main effects of
Native [F(2, 714) � 5.312, p< .01, η2 � 0.015] and Glyph
[F(6, 714) � 4.703, p< .01, η2 � 0.038], as well as significant
Native × Glyph [F(12, 714) � 2.214, p< .05, η2 � 0.036] and Font
× Glyph [F(30, 714) � 1.575, p< .05, η2 � 0.062] interactions.
ANOVA results were examined separately for each viewing
distance. Under the closest distances (D1, D2), no main or
interaction effects reached significance (all p> .05), indicating
uniformly low error rates when stimuli were highly visible.

Under D3 and D4, both Post-hoc contrasts confirmed that
native English speakers (EL1) made significantly fewer errors
than both Chinese speakers (CL1) and Japanese speakers (JL1)
(MD< 0, p< .05).MD means Mean Difference, calculated as the
difference in error rates between groups.Since errors were coded as
“1” and correct responses as “0”, Comparing the former and the
latter, MD > 0 indicates a higher error rate in the former, and MD <
0 indicates a lower error rate.

Interaction effects (Glyph × Native and Font × Glyph) produced
more nuanced patterns under D3. Estimated marginal means
showed elevated error rates for visually similar glyph sets (E1:
p � .012, η2 � .012; E3: p< .001, η2 � .027; E5: p � .017,
η2 � .011). Specifically:

• For E1, JL1 had higher error rates than both CL1 and EL1
(JL1 vs. CL1/EL1: MD � 0.07/0.07, p< .05).

• For E3, JL1 and CL1 had higher error rates than
EL1 (MD � 0.07/0.10, p< .05).

• For E5, CL1 had higher error rates than
EL1 (MD � 0.07, p< .05).

These patterns suggest that logographic-language natives are
particularly prone to errors when encountering similar English
glyphs. Moreover, at D3, Serif Medium (SeM) and Serif Thin
(SeT) fonts further increased error rates for E3 glyphs relative to
other glyphs (all MD> 0, p< .05).

In summary, at close viewing distances (D1, D2), error rates
remain uniformly low regardless of glyph or font. As viewing
distance increases (D3, D4), however, a native-language effect
becomes apparent, with English natives making fewer errors than
Chinese and Japanese natives. This gap is especially pronounced at
D3, where the combination of visually similar glyphs and Serifthin
font details disproportionately disrupts participants from
logographic backgrounds (CL1 and JL1). We can speculate that
logographic-language natives may be processing English text in a
manner more akin to symbolic scripts.

4.1.2 Japanese experiment
ANOVA results were examined separately by viewing distance.

Under the farthest distance (D4), there were significant main and
interaction effects for Glyph
[F(10, 1122) � 10.495, p< .01, η2 � 0.086], Glyph × Native
[F(20, 1122) � 1.902, p< .05, η2 � 0.033], and Glyph × Font
[F(50, 1122) � 1.637, p< .01, η2 � 0.068]. At the intermediate
distance (D3), Glyph [F(10, 1122) � 2.674, p< .01, η2 � 0.023]
and Glyph × Native [F(20, 1122) � 1.777, p< .05, η2 � 0.031]
remained significant. Under D2, only Glyph reached significance
[F(10, 1122) � 2.047, p< .05, η2 � 0.018], and at the closest
distance (D1), both Glyph [F(10, 1122) � 2.302, p< .01, η2 �
0.020] and Glyph × Native [F(20, 1122) � 1.718, p< .05, η2 �
0.030] were significant.

Overall, glyph identity was the primary driver of error rates.
Specifically, visually similar glyphs consistently produced higher
error rates than non-similar ones, with this effect most pronounced
at greater distances. For example, under D4 the non-similar glyphs

TABLE 3 Error distribution across different distances, glyphs, fonts, and native languages.

Language Distance Errors Glyph Font Native Total

CN D1 14 1,1,6,0,5,0,0,1,0 0,0,5,1,4,4 7,3,4 918

D2 16 1,1,0,4,3,3,2,1,1 2,3,2,2,6,1 7,4,5 918

D3 26 3,0,5,4,8,0,6,0,0 2,8,5,3,2,6 10,9,7 918

D4 85 2,0,17,8,25,5,23,4,1 13,16,19,13,15,9 46,20,19 918

JP D1 17 2,0,4,1,3,0,0,0,3,3,1 5,3,1,4,3,1 6,4,3 1122

D2 12 1,0,1,0,1,0,1,0,5,0,1 1,3,3,2,1,2 7,5,0 1122

D3 22 4,0,5,0,5,0,2,0,4,1,1 4,7,6,2,2,1 11,7,4 1122

D4 89 11,0,4,0,16,1,16,4,21,16,0 19,9,11,19,13,18 22,33,34 1122

EN D1 15 1,1,7,0,5,0 3,2,4,2,3,1 4,6,5 714

D2 5 0,1,2,0,1,1 1,1,1,1,0,1 0,3,2 714

D3 10 2,0,5,0,3,0 1,0,2,1,3,3 5,5,0 714

D4 22 4,1,6,3,4,3 1,3,3,5,3,7 12,8,2 714
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J4 and J6 yielded lower error rates than the similar sets J5, J7, and
J9 (MD< 0, p< .05). As viewing distance decreased, the similarity
effect attenuated: although the most complex similar glyph J9 still
exceeded the complex non-similar J10 in error rate
(MD> 0, p< .05), other simpler or moderately complex glyphs
no longer differed significantly.

Glyph complexity played a secondary role. At D4, the simpler
glyph J3 evoked fewer errors than the medium-complexity similar
J5 (MD< 0, p< .05), whereas the simple non-similar kana J2 did
not differ from more complex glyphs J4, J6, or J8 (p> .05). Thus,
similarity rather than stroke count primarily determined error
susceptibility.

Interactions with Native language and Font added further
nuance under specific conditions. At far distances (D3/D4),
native English speakers were particularly challenged by complex
glyphs: for J9 (η2 � 0.016) and J10 (η2 � 0.011), EL1 error rates
significantly exceeded those of CL1 and JL1 (J9: MD � 0.22/0.20;
J10: MD � 0.17/0.20, both p< .01). Conversely, native Chinese
participants showed higher errors on simple similar glyphs at
D3-in the J3 comparison (η2 � 0.019), CL1 errors were greater
than both EL1 and JL1 (MD � 0.12/0.13, p< .001). Moreover, bold
serif styling (SeB) amplified similarity effects at D4: for
J5 (p< .001, η2 � 0.028), error rates in SeB surpassed all fonts except
SaB (MD> 0, p< .05). Even at closer distances (D2/D1), English native
speakers remained more error-prone on the most complex glyph J9
(D1: η2 � 0.016;EL1vs.JL1/CL1: MD � 0.10/0.10, p< .01).

4.1.3 Chinese experiment
ANOVA results were examined for each viewing distance.

Under the farthest distance (D4), Glyph was the sole significant
factor influencing error rates
[F(8, 918) � 10.131, p< .01, η2 � 0.081]. At the intermediate
distance (D3), Glyph again reached significance
[F(8, 918) � 3.568, p< .01, η2 � 0.030]. No effects emerged at the
nearer distance (D2; all p> .05). At the closest distance (D1), both
Glyph [F(8, 918) � 2.927, p< .01, η2 � 0.025] and the Glyph ×

Native interaction [F(16, 918) � 1.718, p< .05, η2 � 0.032] were
significant.

Overall, glyph identity drove error susceptibility. At D4,
among glyphs of equivalent stroke count, visually similar
forms (e.g., C5, C7) elicited higher error rates than non-
similar counterparts of the same complexity (C4, C6, C8;
MD> 0, p< .01). When complexity differed, more intricate
shapes (C3, C5, C7) produced more errors than simple forms
(C1, C2;MD< 0, p< .01), and medium-complexity similar glyphs
(C3, C5) exceeded the error rate of complex but non-similar
glyphs (C8, C9; MD> 0, p< .05).

At the comfortable viewing distance D3, similarity remained the
dominant influence: the medium-complex similar glyph C5 showed
elevated errors relative to non-similar glyphs C2, C6,
C8 (MD> 0, p< .05). Even at the closest distance D1, similar
shapes continued to challenge participants (e.g., C3 vs. C4/C6/
C7/C9; MD> 0, p< .05). Notably, at D1 the Glyph × Native
interaction revealed that on the complex similar glyph
C5(η2 � 0.018), native Chinese speakers (CL1) made significantly
more errors than both native Japanese (JL1) and native English
speakers (EL1) (both MD � 0.08, p< .001), suggesting a nuanced
interplay between script familiarity and visual similarity.

4.1.4 Interaction analysis
The main factors affecting error rates were Native and Glyph

and their interaction. Trends across distances are shown in Figure 4,
with parts (a–c) depicting Glyph × Native interactions for Chinese,
Japanese, and English experiments.

From these plots:

• Chinese: As shown in Figure 4a, Although Glyph × Native was
not significant (p> .05), Chinese and Japanese speakers had
similar errors on C3, C5, and C7, while English speakers erred
more on C3 but less on C5 and C7.

• Japanese: Figure 4b shows that similar glyphs (J1, J3, J5, J7, J9)
yielded high errors, especially J9. Native Japanese speakers had

FIGURE 4
Error rates for Chinese, Japanese, and English Experiments.Parts (a), (b), and (c) depict the interaction between Glyphs and Native language groups.
Glyphs C1–C9, J1–J11, and E1–E7 represent increasing complexity, with odd-numbered glyphs (e.g., C3, J5, E3) being similar and even-numbered glyphs
(e.g., J2, J4) dissimilar. In the Chinese experiment (a), glyphs C3, C5, and C7 show the highest error rates, with English speakers performing worse on
C3 but better on C5 and C7 compared to Chinese and Japanese speakers. In the Japanese experiment (b), J9 exhibits the highest error rates, with
native Japanese speakers showing consistently lower errors than others. Chinese speakers show balanced errors, while English speakers’errors increase
with complexity. In the English experiment (c), overall error rates are lower, but E1, E3, and E5 show peaks, especially for Chinese and Japanese speakers,
with E3 being the most error-prone glyph.
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the lowest errors; English speakers’errors rose with
complexity; Chinese speakers’errors remained steady.

• English: As illustrated in Figure 4c, overall errors were lower,
with peaks at E1, E3, and E5 (E3 highest). Non-native English
speakers showed greater sensitivity to similarity.

Similar glyphs were consistently more error-prone, especially for
Chinese and Japanese speakers, while complexity affected native
English speakers most in the Japanese experiment. Lower errors for
complex glyphs in the Chinese experiment may reflect marking
them as “invisible” rather than guessing.

Significant Glyph-Font interactions (p< .05) appeared in the
English (D3) and Japanese (D4) experiments, despite non-
significant Font main effects (p> .05). Figure 5 shows error bars:
both experiments show higher errors for similar glyphs, but the
Japanese experiment had larger font-related fluctuations. In English
(D3), SeM and SeT slightly increased E3 errors; in Japanese (D4),
SeB/SeE peaked at J1, SaB/SeB at J5, SaT/SeT at J7, and SaB/SeB at J9,
suggesting serif fonts affect hiragana and font weight matters for
complex glyphs.

4.1.5 Summary
In summary, the error rates results based on our hypotheses are

as follows:

Hypothesis 1: Native speakers exhibit lower error rates compared
to non-native speakers. Supported in the English and Japanese
experiments. In the Chinese experiment, native and non-native
speakers showed comparable overall error rates and both groups
exhibited stable errors on similar glyphs, indicating that glyph
similarity affects Chinese participants regardless of native status.

Hypothesis 2: Similar glyphs increase error rates. Confirmed
across all languages, with peaks at C5 (Chinese), J9 (Japanese),
and E3 (English). Non-native English speakers (CL1 and JL1) had
higher error rates on similar English glyphs than native speakers,
suggesting that logographic-script users rely on visual similarity in
alphabetic scripts in a comparable manner.

Hypothesis 3: Glyph complexity affects error rates. Partially
supported and less influential than similarity. Elevated errors
occurred at C4 (Chinese) and J10 (Japanese). Native English
speakers’errors rose with complexity in the Japanese experiment

but fell in the Chinese experiment, possibly because highly complex
Chinese glyphs (C> 4) at the farthest distance were marked as
“invisible” rather than guessed.

Hypothesis 4: Font styles affects error rates. Partially supported.
Significant Glyph × Font interactions appeared in English (D3) and
Japanese (D4), yet glyph similarity remained the dominant factor.

4.2 Invisibility rates

The overall invisibility rates across the Chinese, Japanese, and
English experiments is summarized in Figure 6. A one-way
ANOVA revealed a significant main effect of language
(F(2, 12957) � 80.677, p< .001, η2 � 0.012). Given the low
occurrence of invisible responses, the effect size (η2) is small;
however, the actual influence of language may still be meaningful.

Post-hoc comparisons showed that the Chinese group exhibited
a significantly higher invisibility rates than both the Japanese group
(MD � 0.02, p< .001) and the English group
(MD � 0.05, p< .001). Additionally, the Japanese group had a

FIGURE 5
Error bar plots (95% confidence intervals) for Glyph-Font interactions in the English experiment (D3) and Japanese experiment (D4).

FIGURE 6
Overall invisibility rates Across Different Language Experiment
Environments. The x-axis represents different language experiment
environments, while the y-axis indicates the 95% confidence interval
of the mean invisibility rates. Overall, the Chinese group had the
highest invisibility rates, followed by the Japanese group, while the
English group’s invisibility rates were nearly zero.
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significantly higher invisibility rates than the English group
(MD � 0.02, p< .001).Similar to error rates, invisibility responses
were coded as “1” (invisible) and “0” (visible). Therefore, MD >
0 indicates a higher invisibility rate in the first group, while MD <
0 indicates a lower invisibility rate.

In addition, we compiled the total number of invisible instances
across different distances for each language, along with counts under
various conditions (e.g., glyphs, fonts, and native languages), as shown
inTable 4. Similarly, and consistent with the structure of Table 3, similar
glyphs (e.g., C1, C3, C5 for Chinese; J1, J3, J5 for Japanese; E1, E3, E5 for
English) are highlighted in bold for easier readability.

The invisibility rates in the Chinese and Japanese experiments
were primarily concentrated under the D4 condition, where the
number of invisible instances increased dramatically. In contrast,

English experiments showed an invisibility rates of less than 0.001,
likely due to accidental inputs, meaning that invisibility was virtually
non-existent. Therefore, English data was excluded from further
discussion of invisibility rates. From a practical perspective,
invisibility under D1 and D2 conditions in the Chinese experiment
is not expected to occur, rendering these data unreliable and excluded.
Under the D3 condition, the data show 7 invisible instances in Chinese
and 3 in Japanese. In the Japanese experiment, invisible instances
occurred for Japanese native speakers under glyph J7 with the SaT
font, and for two English native speakers under glyph J9 with the SeE
and SaM fonts. In the Chinese experiment, invisible instances were
associated with glyphs C5, C7, and C8, predominantly for English
native speakers, andmainly with Sans fonts. Among these glyphs, J7, J9,
C5, and C7 are categorized as similar glyphs, while C8 is considered a

TABLE 4 Invisible times distribution across different distances, glyphs, fonts, and native languages.

Language Distance Invisibles Glyph Font Native Total

CN D1 0 0,0,0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0 918

D2 5 0,0,0,1,1,0,2,1,0 0,2,2,1,0,0 3,0,2 918

D3 7 0,0,0,0,1,0,4,2,0 2,2,1,1,0,1 0,0,7 918

D4 191 4,0,5,0,40,21,58,63,0 37,33,30,30,29,32 79,47,65 918

JP D1 0 0,0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0 1122

D2 0 0,0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0 1122

D3 3 0,0,0,0,0,0,1,0,2,0,0 0,0,1,0,1,1 0,0,3 1122

D4 132 4,0,2,1,4,5,20,7,49,43,1 22,27,20,18,21,24 51,45,36 1122

EN D1 0 0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0 714

D2 0 0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0 714

D3 0 0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0 714

D4 2 0,0,1,0,0,0,1 0,0,01,0,1 0,2,0 714

TABLE 5 Mean task completion time across different distances, glyphs, fonts, and native languages.

Language Distance MT (ds) Glyph (ds) Font (ds) Native (ds) Total (ds)

CN D1 14 12,10,15,13,16,15,18,16,11 15,14,13,15,15,14 12,13,20 17

D2 15 12,11,16,13,19,14,18,17,12 15,14,15,16,14,14 13,13,21 17

D3 17 13,11,18,14,25,17,26,19,12 18,16,16,18,17,18 14,16,25 17

D4 23 18,13,28,20,29,27,29,28,14 22,22,24,23,23,24 20,23,29 17

JP D1 13 14,10,14,11,14,12,14,12,18,14,11 13,13,13,15,13,13 11,12,17 16

D2 14 13,10,15,11,15,12,16,13,21,14,11 13,14,14,14,13,13 11,12,19 16

D3 15 15,11,15,11,15,13,17,14,25,17,11 15,14,15,16,15,16 12,13,21 16

D4 22 19,13,18,13,26,23,29,23,33,34,15 22,22,22,22,22,23 17,22,28 16

EN D1 16 14,12,17,15,21,16,14 16,16,16,16,16,15 14,14,17 16

D2 14 13,12,16,13,19,15,13 14,15,15,14,14,14 14,13,16 16

D3 15 13,12,17,14,19,16,12 16,15,15,14,15,15 15,14,1.6 16

D4 18 17,14,23,17,25,18,14 17,17,19,19,17,10 16,18,19 16
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complex glyph. This indicates that even under the D3 (comfortable
distance) condition, similar glyphs, particularly those with higher
complexity, may affect visibility.

4.2.1 Chinese experiment
Since the invisibility rates was primarily concentrated under the

D4 condition, we conducted between-group effect analysis and
revealed large effects of Glyph [F(8, 918) � 53.574, p< .01, η2 �
0.318] and a smaller but significant Glyph × Native interaction
[F(16, 918) � 2.26, p< .01, η2 � 0.038].

Post-hoc comparisons indicated that Glyph complexity
determined invisibility: more complex glyph were less clearly
visible. Specifically, simple similar glyphs (C1, C3) had lower
invisibility rates than complex similar glyphs (C5, C7;
MD< 0, p< .001), and likewise, simple non-similar glyphs (C2,
C4) were clearer than complex non-similar glyphs (C6, C8;
MD< 0, p< .001). Although C5 was less visible than the equally
complex non-similar C6 (MD � 0.16, p< .01), the absence of a
difference between C7 and C8 indicates that overall complexity,
rather than similarity, is the primary driver of invisibility.

Moreover, the Glyph × Native interaction reached significance for
some conditions. For C6 (η2 � 0.021), English speakers had higher
invisibility than Chinese and Japanese speakers
(MD � 0.32/0.28, p.01). For C7 (η2 � 0.015), English speakers
again showed higher invisibility than Chinese speakers
(MD � 0.27, p< .001), and for C8 (η2 � 0.012), Japanese speakers
exceeded Chinese speakers in invisibility (MD � 0.23, p.01).

Despite some variability, native speakers consistently showed
lower invisibility rates, suggesting that they either rely more on
educated guesses when uncertain or genuinely perceive glyph forms
more sharply than non-native speakers.

4.2.2 Japanese experiment
A between-group ANOVA showed that Glyph [F(10, 1122) �

40.851, p< .01, η2 � .267] and the Glyph × Native interaction

[F(20, 1122) � 3.096, p< .01, η2 � .052] were the primary drivers
of invisibility rates.

Glyph complexity was the dominant driver of invisibility rates:
the simpler glyphs J1–J6 were far more visible than the highly
complex J7, J9, and J10 (MD< 0, p< .05). Within the highest-
complexity tier, visual similarity added to difficulty-J7 was less
visible than J8 (MD � 0.14, p< .01)-whereas J9 and J10 did
not differ.

The Glyph × Native interaction emerged for the most
challenging forms. At J7 (η2 � 0.023), Chinese speakers had
higher invisibility rates than Japanese speakers
(CL1vsJL1: MD � 0.30, p< .001). At J9 (η2 � 0.040), both
Chinese and English speakers exhibited higher invisibility than
Japanese speakers (CL1 vs. JL1: MD � 0.40, p< .01; EL1 vs. JL1:
MD � 0.18, p< .01). The fact that Japanese natives show lower
invisibility rates hints that they may prefer inferring ambiguous
glyphs over labeling them invisible, or that their perceptual
sensitivity to glyph details is stronger than that of non-
native speakers.

4.2.3 Interaction effects
Overall, Glyph and its interaction with native language were the

main factors influencing invisibility rates. To further analyze these
relationships, we created stacked area graphs, as shown in Figure 7,
to compare the effects of Glyph and native language.

The visualization results revealed comparable patterns between
the Chinese and Japanese experiments regarding glyphs and native
languages. In the Chinese experiment, glyphs C5, C6, C7, and
C9 exhibited higher invisibility rates, while in the Japanese
experiment, glyphs J7, J9, and J10 showed higher invisibility rates.

Further analysis indicated differences across native language
groups. In the Chinese experiment, Japanese native speakers had
lower invisibility rates for glyph C5 compared to Chinese and
English native speakers, while English native speakers had higher
invisibility rates for glyph C6. Glyphs C7 and C8 displayed relatively

FIGURE 7
Invisibility Rates in Chinese and Japanese Experiments. Part (a) illustrates the invisibility rates for glyphs C1 to C9 in the Chinese experiment, grouped
by native language (Chinese, Japanese, and English speakers).Part (b) depicts the invisibility rates for glyphs J1 to J11 in the Japanese experiment, similarly
grouped by native language. Glyphs C5, C6, C7, and C9 showed higher invisibility rates in the Chinese experiment, while glyphs J7, J9, and J10 exhibited
higher invisibility rates in the Japanese experiment.
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consistent invisibility rates across all native groups. In the Japanese
experiment, Japanese native speakers consistently exhibited the lowest
invisibility rates. However, for glyphs J7, J9, and J10, Chinese native
speakers demonstrated higher invisibility rates compared to Japanese
native speakers, slightly exceeding those of English native speakers.

In summary, glyph complexity is the primary factor influencing
invisibility rates, although glyph similarity also plays a role. In the
Chinese experiment, English native speakers had slightly higher
invisibility rates compared to Chinese and Japanese native speakers.
Conversely, in the Japanese experiment, Japanese native speakers had
lower invisibility rates than both Chinese and English native speakers.

4.2.4 Summary
Based on the hypotheses, the following conclusions are drawn

for invisibility rates:

Hypothesis 1: Native speakers exhibit lower invisibility rates
compared to non-native speakers.This hypothesis was supported. In
the Chinese experiment, English native speakers exhibited higher
invisibility rates compared to Chinese and Japanese native speakers.
Similarly, in the Japanese experiment, despite the use of numerous
Chinese glyphs, Chinese native speakers had higher invisibility rates
compared to Japanese native speakers. These findings confirm that
native speakers generally exhibit lower invisibility rates than non-
native speakers.

Hypothesis 2: Glyph similarity is a major factor influencing
invisibility rates.This hypothesis was partially supported. While
similar and complex glyphs, such as J7 and J9, showed some
influence on invisibility rates in the Japanese experiment, glyph
similarity was not the dominant factor. For instance, J8, which
shares the same complexity level as J7, exhibited a lower invisibility
rates, suggesting that glyph similarity has a minor but not
predominant effect.

Hypothesis 3: Glyph complexity is a major factor influencing
invisibility rates.This hypothesis was confirmed. Glyph complexity
was found to be the primary factor affecting invisibility rates in both
Chinese and Japanese experiments. Complex glyphs such as C3, C4, C7,
and C8 in the Chinese experiment, and J7, J9, and J10 in the Japanese
experiment, consistently exhibited higher invisibility rates compared to
simpler glyphs like C1, C2, J1, and J2.

Hypothesis 4: Fonts influence invisibility rates.This hypothesis
was not supported. Results showed no significant impact of fonts or
their interactions on invisibility rates in either the Chinese or
Japanese experiments.

In conclusion, glyph complexity is the primary factor
influencing invisibility rates for both Chinese and Japanese
speakers, whereas native speakers exhibited lower invisibility rates
than non-native speakers, particularly for complex glyphs (e.g.,
C7 and C8, J9 and J10).

4.3 Task completion time

Prior to the experiment, participants were instructed to ‘select as
quickly as possible.’ During each trial, we recorded the Mean Task

Completion Time. Table 5 summarizes the mean task completion
time across viewing distances, glyphs, fonts, and native-language
groups. MT denotes the mean completion time at each viewing
distance, and Total denotes the grandmean across D1–D4; all values
are reported in deciseconds (1 ds = 0.1 s) for ease of comparison. The
ordering and structure of the conditions follow those in Tables 3, 4.
As in Table 3, similar-looking glyphs are shown in bold to facilitate
readability. In this section, we first applied a full-factorial GLM
ANOVA to assess main and interaction effects at each viewing
distance, followed by post-hoc comparisons on significant main
effects to establish initial trends. Next, we visualized those two-way
interactions that reached significance. Finally, guided by the GLM
main and two-way interaction results, we employed linear mixed-
effects (LME) regression to explore why certain language groups
performed differently under specific three-way interaction
conditions. As with the GLM, separate LME models were run for
each experiment (Chinese, Japanese, English) and for each distance
(D1–D4). All data, analyses, and code are available on Open Science
Framework (OSF) for full transparency.

Although reaction time is not treated as direct evidence for our
primary conclusions-since participant fatigue from repeated trials
may have influenced times-it offers valuable supplementary insight.
In particular, reaction time helps interpret the trends observed in
error and invisibility rates, providing additional support for our
main findings.

4.3.1 GLM model analysis
4.3.1.1 English experiment

ANOVA results by viewing distance showed that at the farthest
distance (D4), Glyph [F(6, 714) � 31.802, p< .01, η2 � 0.211], Font
[F(6, 714) � 3.257, p< .01, η2 � 0.022], and Native [F(6, 714) �
8.267, p< .01, η2 � 0.023] were all significant. At the intermediate
distance (D3), only Glyph [F(6, 714) � 23.988, p< .01, η2 � 0.168]
and Native [F(6, 714) � 7.036, p< .01, η2 � 0.019] reached
significance. Under D2, Glyph remained the sole significant
factor [F(6, 714) � 21.294, p< .01, η2 � 0.152]. At the closest
distance (D1), both Glyph [F(6, 714) � 24.520, p< .01, η2 �
0.063] and Native [F(6, 714) � 24.161, p< .01, η2 � 0.171] were
significant. No interaction terms attained significance in
any condition.

Across D4, D3, and D2, visually similar glyphs consistently
required more processing time than dissimilar ones, particularly the
longest glyph E5. Under D4, E3 and E5 were slower than E1, E2, E4,
E6, and E7 (MD> 0, p< .05). Because completion time is measured
in seconds, MD > 0 denotes slower performance (longer times),
whereas MD < 0 denotes faster performance (shorter times). At D3,
E3, E5, and E6 slower than E1 and E2 (MD> 0, p< .05), with
E4 also completing slower than E2 (MD> 0, p< .05). Under D2,
E5 remained the slowest across all comparisons (MD> 0, p< .05).
This pattern indicates that similarity prolongs recognition time at
any distance, while as distance decreases, string length exerts an
increasingly strong effect-longer words occupy a larger visual angle
and thus take longer to process.

The font effect at D4 was small but detectable: SeT required
more time than SaB, SaM, and SeM (MD> 0, p< .05). Interestingly,
native English speakers were slower than Chinese and Japanese
speakers at D1 (EN vs. CN/JP: MD> 0, p< .01) and also at D4 (EN
vs. CN: MD � 0.27, p< .001) and D3 (EN vs. JP:

Frontiers in Virtual Reality frontiersin.org15

Zhang et al. 10.3389/frvir.2025.1579525

https://doi.org/10.17605/OSF.IO/FJSTU
https://doi.org/10.17605/OSF.IO/FJSTU
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1579525


MD � 0.18, p< .001), contradicting our hypothesis that native
speakers would be fastest.

4.3.1.2 Japanese experiment
Separate ANOVAs by viewing distance showed that at D4, Glyph

[F(10, 1122) � 36.338, p< .01, η2 � .245], Native [F(2, 1122) �
8.267, p< .01, η2 � .102], and their interaction [F(20, 1122) �
3.890, p< .01, η2 � .065] were all significant. At D3, the same three
effects remained strong (Glyph: F(10, 1122) � 28.953, η2 � .205;
Native: F(2, 1122) � 117.856, η2 � .174; Glyph × Native:
F(20, 1122) � 7.450, η2 � .117). Under D2, Glyph (F(10, 1122) �
17.222, η2 � .133), Native (F(2, 1122) � 99.136, η2 � .150) and
their interaction (F(20, 1122) � 3.567, η2 � .060) were again
significant. Even at the closest distance (D1), Glyph
(F(10, 1122) � 15.496, η2 � .121), Native (F(2, 1122) � 104.924,
η2 � .158), Font (F(5, 1122) � 3.819, η2 � .017) and Glyph ×
Native (F(20, 1122) � 2.914, η2 � .049) all exerted reliable effects.

Across all distances, native Japanese and Chinese speakers
outperformed English speakers: at D4, CL1 was faster than
JL1 and EL1 (MD< 0, p< .01), and at D3–D1 both CL1 and
JL1 remained faster than EL1 (MD< 0, p< .01). Glyph type
showed two consistent patterns. At the greatest distance (D4),
processing time rose with complexity: the simple dissimilar Kana
J2 was completed more quickly than the dissimilar moderate/
complex glyphs J6, J8, and J10 (MD< 0, p< .01). At closer
distances (D3, D2, D1), similarity rather than complexity
dominated: within each same complexity tier,for example, J1 vs.
J2, J3 vs. J4, J9 vs. J10 at D3; J9 vs. J10 at D2; and J1 vs. J2, J3 vs. J4,
J5 vs. J6, J9 vs. J10 at D1, similar glyphs required significantly more
time (MD> 0, p< .05). Complexity played a secondary role,
emerging only for the most intricate glyphs: the similar most-
complex J9 lagged behind its simpler peers like J1, J3, J5 and
J7 (MD> 0, p< .05), whereas the dissimilar most-complex
J10 took longer only compared to dissimilar simple forms like
J2 or J4(MD> 0, p< .05).

The Glyph × Native interaction further highlighted that, as
glyphs grew more complex (J6–J10), English speakers took longer
than both Japanese and Chinese speakers (EL1 vs. CL1/JL1:
MD> 0, p< .05). This pattern held even at nearer distances for
complex or similar forms (e.g., J5–J10 at D3; J3, J5, J7–J10 at D2; and
J3, J5, J7–J10 at D1), indicating that non-logographic readers
consistently struggled more with intricate or confusable glyphs.
In sum, at extreme distances CL1 showed the fastest
performance, but as text became clearer, EL1 required longer
processing times-especially for complex or similar glyphs-
contrary to our initial hypothesis.

4.3.1.3 Chinese experiment
Separate ANOVAs by viewing distance revealed that at D4,

Glyph [F(8, 918) � 35.3, p< .001, η2 � .235], Native [F(2, 918) �
47.114, p< .001, η2 � .093] and their interaction [F(16, 918) �
1.774, p< .05, η2 � .030] were all significant. At D3, Glyph
[F(8, 918) � 61.547, p< .01, η2 � .349], Native [F(2, 918) �
156.631, p< .01, η2 � .254], Font [F(5, 918) � 3.078, p< .01, η2 �
.016] and their interaction [F(16, 918) � 8.385, p< .01, η2 � .128]
remained strong. Under D2, all three-Glyph [F(8, 918) � 26.241,
η2 � .186], Native [F(2, 918) � 139.124, η2 � .233] and Glyph ×
Native [F(16, 918) � 6.105, η2 � .096]-continued to influence

performance (all p< .01), with Font also reaching significance
[F(5, 918) � 3.631, η2 � .019]. Even at the closest distance (D1),
Glyph [F(8, 918) � 20.086, η2 � .149], Native [F(2, 918) �
163.257, η2 � .262] and their interaction [F(16, 918) � 3.998, η2 �
.065] were reliable predictors (p< .01).

Overall, Glyph, Native, and their interaction remained
significant with moderate–large effect sizes. At the farthest
distance (D4), response time scaled with complexity-more
intricate glyphs took longer-while similarity made no additional
difference within the same complexity tier. At the intermediate
distance (D3), complexity still dominated, but visually similar pairs
(C3 vs. C4, C5 vs. C6, C7 vs. C8) introduced extra delay. Under
nearer distances (D2, D1), only complexity slowed recognition;
similarity no longer added time. also, we observed a consistent
native-language advantage: participants whose native script
matched the stimuli (Chinese and Japanese speakers) recognized
glyphs more rapidly than those without such familiarity. The Glyph
× Native interaction mirrored this ordering for nearly every glyph
(except the simplest C1 and C2), confirming that logographic
familiarity conferred a speed advantage across character types
and viewing conditions.

4.3.2 Interaction analysis
Based on the ANOVA results, we calculated the average task

completion time for each group of categorical variables. To illustrate
the interaction effects, we visualized Glyph with Native language in
Figure 8 parts (a–c) present the interaction between Glyph and
Native language.

The figures reveal that, across all languages, similar glyphs
generally require more time for recognition. In the Japanese
experiment, complex glyphs, particularly intricate Kanji
characters, demand significantly longer recognition times. This
effect is moderately noticeable in Chinese and Japanese, while in
English, the impact is minimal.

Figures 8a–c shows that native English speakers (EL1) require
more time to complete tasks in the Chinese and Japanese
experiments than native Japanese (JL1) and Chinese (CL1)
speakers. In the Japanese experiment, EL1’s completion time
increases as Kanji complexity rises. In the English experiment, all
three native groups (Chinese, Japanese, and English) take slightly
longer to recognize similar glyphs, though the overall differences
remain small.

4.3.3 LME model analysis
To elucidate how complex three-way interactions influence

reading performance, we report the most robust effects from our
linear mixed-effects (LME) models:

4.3.3.1 Chinese experiment (D3–D4)
English-native speakers (EL1) experienced pronounced delays

when moderate-complexity characters were rendered in extreme
stroke-weight fonts at far distances. At D3, the EL1 ×SeB × C4(C> 4)
interaction incurred a +1.63 s penalty (b � +1.63 s, p � .004), and at
D4 the EL1 ×SeE × C4(2<C≤ 4) term added +1.77 s
(b � +1.77 s, p � .036). These results indicate that at longer
distances (D3 and D4), both heavy-stroke (SeB) and ultra-light-
stroke (SeE) serif fonts prolong task completion times. Contrary
to our hypothesis-that fine-stroke serifs might facilitate
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recognition of complex glyphs at extreme distances-the most
complex glyphs (C4(C> 4)) suffered increased processing time
regardless of serif weight, amplifying visual parsing demands for
EL1 as acuity drops.

4.3.3.2 Japanese experiment (D1)
At D1, EL1 are 0.86 s slower when Glyph looks similar

(J1,J3,J5,J7,J9) in the SeB font (b � +0.86 s, p � .0014), and 1.10 s
slower on Kana (J1,J2) in SeB font (b � +1.10 s, p � .009). This
suggests that, regardless of glyph type, heavy-stroke serif fonts
introduce confusion and slow processing for English-native
speakers in Japanese text.

4.3.3.3 English experiment (D1)
LME analysis revealed a strong effect of word length: short

versus long words led to a 0.57 s faster response
(b � –0.57 s, p � .0015), medium versus long a 0.42 s advantage
(b � –0.42 s, p � .020), and mixed versus long a 0.51 s advantage
(b � –0.51 s, p � .027). Because word length varied with
complexity in the English experiment (unlike the fixed lengths
in the Chinese and Japanese experiments), long words such as
“consideration” required a wider visual angle at the nearest
viewing distance (D1), resulting in significantly longer
processing times, whereas shorter strings reduced visual
search demands.

By integrating these LME-derived effects with our GLM
results and interaction plots, we propose that optimal VR text
design must carefully balance stroke weight and glyph
distinctiveness to accommodate cross-lingual differences across
viewing distances.

4.3.4 Summary
In summary, the results for task completion time based on the

hypotheses are as follows:

Hypothesis 1: Native speakers complete tasks faster than non-
native speakers. This hypothesis is partially supported. In the
Chinese experiment, the hypothesis was confirmed, as Chinese

native speakers completed tasks significantly faster than non-
native speakers across all distance conditions. However, in the
Japanese experiment, the performance of Chinese and Japanese
native speakers was comparable, with Chinese native speakers
even outperforming Japanese native speakers under certain
conditions (e.g., D4). In the English experiment, Chinese and
Japanese native speakers consistently completed tasks faster than
English native speakers.

Hypothesis 2: Similar glyphs increase task completion time. This
hypothesis is fully supported. Across all language experiments and
all distance conditions, both native and non-native speakers
required more time to process similar glyphs, confirming the
significant impact of glyph similarity.

Hypothesis 3:Complex glyphs increase task completion time. This
hypothesis is also fully supported. In all language experiments and
across all distance conditions, complex glyphs consistently required
longer task completion times. Notably, in the Japanese experiment,
glyph similarity had a greater impact on task completion time than
glyph complexity.

Hypothesis 4: Fonts influence task completion time. This
hypothesis is partially supported. Overall, font type had minimal
influence on task completion time. However, our LME analysis
shows that under specific conditions-such as the D1 distance in the
Japanese experiment and the D2 distance in the Chinese
experiment,the SeB font (serif bold) required significantly longer
recognition times compared to other fonts, particularly for English-
native participants.

5 Discussion

Our results demonstrate that glyph complexity and similarity
significantly affect legibility across Chinese, Japanese, and English.
We first summarize the experimental findings, then discuss design
implications and study limitations.

FIGURE 8
Average Task Completion Time by Glyph and Native Language for Chinese, Japanese, and English Experiments. Parts (a–c) illustrate the interaction
between Glyph and Native language groups in the Chinese, Japanese, and English experiments, respectively. In the Chinese and Japanese experiments,
English native speakers generally require more time to complete tasks (parts (a) and (b)), especially for complex glyphs such as C3, C5, C7 in Chinese and
J7, J9, J10 in Japanese. Under the D4 condition, compared to D3, there is a notable increase in average task completion times. In the English
experiment (part (c)), task completion times are similar across all native language groups, with visually similar glyphs (such as E3 and E6) requiring slightly
more time than dissimilar glyphs.
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5.1 Differences in visual recognition
between L1 and L2 participants

5.1.1 Logographic L1 participants: faster processing
with elevated similarity sensitivity

As shown in Figures 8a–c Native Chinese (CL1) and Japanese
(JL1) participants-familiar with logographic scripts-exhibited faster
task completion times in the Chinese and Japanese experiments and
matched or slightly outperformed English native participants (EL1)
in the English experiment. This aligns with Tan et al. (Tan et al.,
2005), who attribute accelerated logographic processing to holistic
visual strategies.

However, Figure 4 show that CL1 and JL1 groups incurred
higher error rates for visually similar glyphs across languages. In the
Chinese experiment, no significant native-language effect on error
rates was found (p> .05), indicating comparable performance
between CL1 and non-native participants, as shown in Figure 4a.
In contrast, native participants consistently outperformed non-
natives in the Japanese and English experiments. CL1 error rates
remained stable across complexity levels, as shown in Figure 4b,
whereas EL1 error rates increased with glyph complexity. Similarly,
CL1/JL1 participants made more errors on similar alphabetic glyphs
(e.g., E3, E5) than EL1 participants in the English experiment. These
findings aligning with evidence that script-specific processing biases
amplify sensitivity to confusable glyphs (Pae and Lee, 2015).

A likely explanation is that logographic readers rely on holistic,
configural processing-treating each character as a unified shape-
which allows rapid outline-based localization of strokes and radicals
but neglects internal detail. As a result, recognition of simple and
complex forms follows the same contour-driven mechanism. This
strategy may underlie certain social behaviors: for example,
logographic users often prefer subtitles and on-screen comments
(danmaku) over dubbing, since text can be processed simultaneously
with video content (Li, 2024). However, this contour-focused
approach also incurs costs in the digital age: increased
typographical errors and “digital dysgraphia,” where users recall
only rough outlines and struggle with precise stroke recall (Huang
et al., 2021). Furthermore, this bias can hinder alphabetic
L2 acquisition: many Asian learners depend heavily on
visuospatial-orthographic resources in short-term memory and
typing tasks (Liu et al., 2025), while phonological training is
often insufficient in some curricula, exacerbating difficulties with
linear decoding rules (Zhong and Kang, 2021).

5.1.2 Alphabetic L1 participants: complexity-driven
slower processing and sensitivity

Native English (EL1) participants exhibited low error and
invisibility rates for simple glyphs (Chinese C1-C2; Japanese J1-
J4), but both error/invisibility rates and task completion times rose
sharply once complexity exceeded C> 0.5 (Chinese C3-C8; Japanese
J5-J10) as shown in Figures 4, 7. In the English experiment,
EL1 accuracy remained high-especially for visually similar word
pairs-outperforming logographic L1 groups (CL1,JL1).

A likely explanation is that alphabetic-script speakers leverage
automatic morphological decomposition-using syllable-morpheme
mappings to visually parse word forms-whereas logographic-script
speakers depend on holistic contour and radical matching. In tasks
featuring visually similar but semantically distinct Glyphs (e.g.,

“consideration” vs. “conversation”), this reliance on whole-shape
matching elevates error rates for logographic L1 participants. By
contrast, English native speakers perform unconscious, automated
decomposition without extra semantic processing cost (Kraut,
2015). Even experienced L2 English learners (EL2), despite years
of study, tend to default to contour-matching strategies in purely
shape-based tasks: they may match EL1 speeds but still incur higher
error rates when glyphs share similar outlines yet differ in meaning.

On the other hand In natural reading, English speakers
decompose words into letters and letter groups, a strategy that
does not generalize to multi-stroke logographs. When presented
with high-complexity characters (e.g., C3, C5, C7 or J7, J9, J10) at far
distances (D4), EL1 participants could not leverage any automatic
radical- or contour-based processing and thus required extra time to
visually parse and compare shapes. By contrast, CL1 and JL1 have
internalized radical structures and stroke patterns through years of
literacy training, allowing them to chunk complex forms even in
low-resolution VR conditions.

In summary, The interaction effects between glyph complexity
and native language likely arise from fundamental differences in
how logographic and alphabetic readers process visual forms, and
combined with script-specific familiarity.Therefore EL1 participants
resist word-length complexity in their native script but incur higher
error rates and longer task completion times for complex
logographic glyphs.

5.1.3 Minimal impact of font on error and
invisibility rates

Across three language experiments, while typographic variations
showed no systematic effects on error or invisibility rates in most
intergroup comparisons, our linear mixed-effects (LME) model
analysis revealed font characteristics systematically modulated
task completion speed under specific stimulus combinations
meeting statistical significance criteria. For instance, in the
Japanese experiment, non-native speakers (EL1) exhibited
marked processing delays when encountering heavy serif fonts
(e.g., +0.86–1.01 s at D1 viewing distance, p< .001), yet their
error rates remained statistically indistinguishable from baseline
conditions. This pattern aligns with the speed-accuracy tradeoff
framework (Wickelgren, 1977), where readers prioritize precision
through compensatory time allocation-a strategic adaptation
particularly critical in second-language (L2) processing contexts.

5.1.4 Summary
In conclusion, glyph similarity and complexity affect reading

performance differently depending on language backgrounds.
Native speakers from the Chinese character culture (CL1 and
JL1) are more influenced by visual similarity, while English
native speakers (EL1) are more affected by glyph complexity in
non-native scripts. Familiarity with glyph structure aids native
speakers from the Chinese character culture in efficient
information processing but also increases their sensitivity to
similar glyphs, resulting in higher error rates. English speakers,
owing to lower familiarity with non-native glyph structures, maybe
require greater cognitive load to interpret complex characters. Font
had a minimal effect on error and invisibility rates, influencing task
outcomes only under specific experimental conditions. These
findings underscore that familiarity with glyph structure
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enhances visual processing efficiency but also heightens sensitivity to
similarity, whereas complexity emerges as a primary challenge in
non-native reading.

5.2 Educational and design implications

This study explores the impact of Chinese character complexity
and similarity on the legibility of Chinese, Japanese, and English
texts for native (L1) speakers, second language (L2) learners, and
individuals with no prior exposure to the language (LN). Our
findings offer valuable insights into how these factors affect
legibility across languages and suggest potential improvements
for educational strategies and design considerations.

5.2.1 LearningChinese and Japanese characters for
English native speakers

Our findings reveal intrinsic differences in glyph perception
among native speakers of Chinese (CL1), Japanese (JL1), and
English (EL1), shaped by cultural and linguistic backgrounds. For
Chinese and Japanese speakers, long-term exposure to the Chinese
character system fosters high familiarity with complex and visually
similar glyphs, resulting in faster task completion times. However,
this familiarity also increases sensitivity to glyph similarity, leading
to higher error rates when encountering visually similar characters.

This heightened tolerance for similarity within the structure of
Chinese characters (Kanji and Hanzi) allows Chinese and Japanese
speakers to overlook minor errors in visually similar characters
without significantly impacting comprehension. Additionally, the
inherent ambiguity in the visual features of Chinese characters has
facilitated the development of fields such as handwritten character
recognition (Li et al., 2016). Compared to English words, Chinese
characters (Kanji and Hanzi) have a higher threshold for similarity,
suggesting that as long as the overall structure of the character
remains intact, substituting certain parts with visually similar
elements, such as simplified graphical symbols or even English
letters, may not interfere with recognition for native speakers.
Additionally, studies have shown that non-native beginners often
rely on visual aids as a strategy for memorizing Chinese characters
(Leminen and Bai, 2023).

This tolerance for structural similarity can be leveraged to assist
second language (L2) or no prior exposure to the language (LN)
learners in recognizing Chinese characters (Kanji and Hanzi). For
example, educational tools could incorporate structured, hybrid
glyphs that integrate familiar visual cues or supplementary
English letters to help learners identify key components of
complex characters. Moreover, the rich information embedded in
complex characters could be utilized to create mnemonic devices or
visual aids that reinforce specific character components, easing the
visual perceptual load for L2 and LN learners and supporting more
efficient character recognition and learning.

5.2.2 Learning English for Chinese and Japanese
native speakers

For native speakers of Chinese and Japanese, English is typically
learned as a second language (L2). Our findings suggest that these
learners are particularly sensitive to visual similarity in English
glyphs, rather than word length or complexity. Unlike the

logographic Chinese system, which allows for semantic
encoding–even with unfamiliar characters (Cheng, 1981)–the
English phonetic system relies heavily on phonological
encoding and structural analysis. English word recognition
depends on phonological pathways, frequency effects,
morphological structure, and sequential redundancy, which
help the brain convert visual input into phonological and
semantic information. Without familiarity with English
phonetic structures, Chinese and Japanese learners maybe
experience additional cognitive load when processing visually
similar English words or letters.

One potential strategy is to present English vocabulary in a
structured, pattern-based format that leverages learners’existing
familiarity with complex characters. Although some studies, such
as those by Jankowski et al. (Jankowski et al., 2010), have explored
innovative approaches like arranging English words in square
formats resembling Chinese characters, this approach may come
with a higher learning cost. Instead, grouping words by common
prefixes, suffixes, or roots could help Chinese and Japanese learners
process English words as unified, meaningful units, similar to how
they interpret characters in their native languages. This method
could reduce the visual perceptual load of learning English
vocabulary by drawing analogies to familiar morphological
structures.

Additionally, educational programs should place a greater
emphasis on phonological training. Currently, much language
instruction focuses on written skills, with limited exposure to
spoken English outside of standardized listening assessments or
media consumption. Unlike Japanese, which has a more
straightforward syllabic structure, English phonemes are not
always clearly linked to specific written forms.

A study focusing on enhancing Chinese character input
efficiency through a multi-channel approach that integrates
phonetic and handwriting modalities (Chen et al., 2020) suggests
that a similar multi-sensory method could also be highly beneficial
in English education. Although the study specifically addresses
Chinese character input, the combination of auditory, visual, and
tactile channels used in this approach may prove effective in
reinforcing English learning, particularly for Asian students.
Therefore, future educational tools should aim to strengthen the
connections between English pronunciation, spelling, meaning, and
practical usage through multi-sensory learning experiences.

5.2.3 Accessible interface layouts
Script-specific perceptual habits demand adaptive interface

designs. Logographic users (Chinese/Japanese speakers) exhibit
stronger preference for dense, grid-like layouts (e.g., multi-
element panels, nested icon clusters) that mirror the spatial
compression of characters, while alphabetic-language users
usually perform better with linear, minimalist layouts aligned
with sequential parsing. We propose language-responsive layout
systems that dynamically adjust interface density. For example,
Interfaces could switch between grid-based displays (optimized
for logographic users) and linear flows (for alphabetic users),
enhancing information findability through spatial reorganization
and typographic adaptation. Future work should establish cross-
cultural design standards to address the growing linguistic diversity
of digital platforms.
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5.2.4 Enhancing language learning and legibility in
VR environments

VR’s immersive nature reduces external distractions and fosters
sustained attention, making it an ideal platform for language study.
Its multimodal interactions-combining visual, auditory, and spatial
cues-can lower visual perceptual load, especially for phonology-
driven languages like English, by reinforcing sound-symbol and
meaning associations.

By integrating AI, a VR system can adapt in real time to each
learner’s level: for L2 users, simplifying text or adding phonetic/
semantic hints; for L1 users, increasing text density or complexity.
VR can also recreate cultural contexts, offering contextualized
practice that deepens both linguistic and pragmatic competence.

Together, immersion, multimodal support, and adaptive
presentation in VR can improve text legibility and accelerate
language acquisition across writing systems.

5.3 Limitations and future work

Sample Diversity and Size: This study primarily recruited
participants in Japan, resulting in skewed L2/LN distributions.
While we ensured balanced L1 groups (native Chinese, Japanese,
and English speakers), the L2 and LN groups remained uneven due
to geographic constraints. Moreover, although we collected many
trials, the absolute counts of errors and invisible responses were
insufficient, leading to sparse data. Future work should recruit
larger, more geographically and linguistically balanced cohorts
and adjust task difficulty or glyph complexity to elicit an
appropriately robust, high-quality dataset.

Complexity Measures for English: In this study, we used word
length as the primary index of complexity for English text. However,
previous research (Cai and Li, 2014) have demonstrated the
importance of considering case variations when assessing English
readability. Uppercase letters, for instance, often differ significantly
in visual structure from their lowercase counterparts. This is
especially apparent in three distinct case scenarios: all lowercase,
all uppercase, and title case (capitalizing only the first letter of each
word). These variations can influence recognition speed and
accuracy owing to differences in visual cues such as ascenders,
descenders, and uniformity of character height. Future research
should incorporate a wider range of complexity measures, including
case variations, to obtain more comprehensive insights.

Font Styles: Although font style had minimal impact in this
experiment, this may be attributed to the use of the widely legible
Google Noto font family. While we included both serif and sans-serif
typefaces, as along with three different font weights, the selected fonts
were all common and highly readable styles typically used in written
materials. As a result, the variation between fonts may have been too
subtle to produce significant differences in legibility. Prior studies
(Wallace et al., 2022) have demonstrated that a broader range of
font styles can produce more pronounced effects on readability.
Future research should explore a wider variety of font styles,
particularly those with greater stylistic variation, to better assess the
differential impact of typography on legibility across languages.

Potential Bias Toward Logographic Systems: The experiment’s
visual-centric design, which excluded auditory or semantic cues
(e.g., using pseudo-glyph tasks to minimize linguistic familiarity

effects), may inadvertently favor logographic learners accustomed to
holistic visual processing. This bias could explain English natives’
(EL1) longer task times and higher error/invisibility rates in non-
native scripts. To address this, future designs should integrate multi-
modal stimuli (e.g., auditory prompts for alphabetic systems) to
balance perceptual strategies across writing systems.

Vision Correction and Visual Acuity: Although all participants
self-reported normal or corrected-to-normal vision (using glasses or
contact lenses) and this was logged in the Participant Information
file, we did not administer a formal vision test before the experiment.
As a result, residual differences in visual acuity may have influenced
legibility measures. Future studies should include standardized
vision screenings to control for these individual differences.

Despite these limitations, the present findings lay a solid
groundwork for a number of promising avenues:

• Future work should integrate high-precision eye-tracking within
the VR environment to uncover language-specific scanning
strategies. By analyzing fixation distributions, saccade
amplitudes, and dwell times across different viewing distances
and glyph conditions, researchers can determine whether
logographic readers (Chinese/Japanese) indeed rely on holistic
shape recognition while alphabetic readers (English) engage in
more sequential component parsing.

• In parallel, it will be essential to validate our glyph-similarity
categories through expert orthographic evaluation. Recruiting
at least two to three native-speaker specialists per language to
rate pairwise similarity and computing inter-rater agreement
will ensure that our structural and stroke-count rules align
with linguistic and typographic standards.

• Longitudinal studies of training interventions represent
another key direction. Targeted practice-whether font-
specific drills or adaptive VR modules-should be evaluated
not only immediately but also for retention over weeks or
months, to asses s sustained legibility gains in L2/L3 readers.

• Finally, deeper investigation into visual perceptual processes,
visual attention, and memory encoding during glyph
recognition will help clarify the perceptual and mnemonic
mechanisms that govern legibility in immersive contexts.

Together, these efforts will yield both richer theoretical models
of cross-linguistic reading in VR and concrete, evidence-based
guidelines for multilingual text design.

6 Conclusion

This study systematically investigated how the complexity and
similarity of glyphs in different languages (Chinese, Japanese, and
English) influence legibility in native (L1) and non-native (L2, LN)
reading environments, aiming to uncover visual perceptual
differences across diverse linguistic backgrounds. Conducted in a
VR environment using the Oculus Quest 3 device, the experiment
involved participants from Chinese, Japanese, and English linguistic
backgrounds who performed tasks under varying conditions of
distance, font, and language. Participants were asked to identify a
glyph displayed in a prompt box and select its matching counterpart
from two options. The experiment measured key outcomes such as
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error rates, invisibility rates, and task completion times, while
exploring how factors such as glyph complexity, similarity, font
styles, viewing distances, and participants’ native language
backgrounds interacted to affect legibility. These findings provide
a basis for understanding how glyph characteristics shape the
reading experiences of native and non-native speakers across
different linguistic and cultural contexts.

The results show that for native Chinese and Japanese speakers
(CL1 and JL1), familiarity with glyph structures significantly improves
visual perceptual efficiency, enabling them to complete tasks in less
time. However, this familiarity also heightens their sensitivity to glyph
similarity, leading to a higher error rates. This phenomenon is observed
not only in Chinese and Japanese but also in English, likely because of
the influence of their native language background. In contrast, native
English speakers (EL1) were primarily affected by glyph complexity
when reading non-native scripts (Chinese and Japanese), resulting in
longer task completion times. This reflects the additional visual load
required to decode unfamiliar visual patterns. However, compared to
native Chinese and Japanese speakers, native English speakers were less
influenced by glyph similarity.

This difference further confirms the significant impact of
linguistic and cultural backgrounds on visual perceptual. The
characteristics of one’s native language directly affect the
difficulty of processing second or unfamiliar languages, either
increasing or decreasing the perceptual challenge. These findings
underscore the importance of continued research into the visual
perceptual challenges associated with multilingual text legibility.

While this study establishes a foundational understanding of
cross-linguistic text legibility, future research should aim to expand
sample diversity and include more comprehensive complexity
metrics. Although the results of this experiment indicate that
font styles did not significantly affect legibility, future studies
should test a broader range of font types, particularly those with
greater stylistic variation. Such efforts could lead to the development
of more inclusive and effective multilingual text design solutions.
Ultimately, this study not only provides new perspectives for
theoretical research but also lays a solid foundation for practical
applications in human-computer interaction, language learning, and
cross-cultural communication. Approached from a rendering
strategy standpoint, the persistent perceptual divergences
observed across language groups imply the necessity of adaptive
solutions tailored to native-script experience.
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