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Realistic full-body avatars play a key role in representing users in virtual
environments, where they have been shown to considerably improve
important effects of immersive experiences such as body ownership and
presence. Consequently, the demand for realistic virtual humans – and
methods for creating them – is rapidly growing. However, despite extensive
research into 3D reconstruction of avatars from real humans, an easy and
affordable method for generating realistic and VR-capable avatars is still
lacking: Existing methods are either limited to complex capture hardware and/
or controlled lab environments, do not provide sufficient visual fidelity, or cannot
be rendered at sufficient frame rates for multi-avatar VR applications. To make
avatar reconstruction widely available, we developed Avatars for the Masses – a
client-server-based online service for scanning real humans with an easy-to-use
smartphone application that empowers even non-expert users to capture
photorealistic and VR-ready avatars. The data captured by the smartphone is
transferred to a reconstruction server, where the avatar is generated in a fully
automated process. Our advancements in capturing and reconstructing allow for
higher-quality avatars even in less controlled in-the-wild environments.
Extensive qualitative and quantitative evaluations show our method’s avatars
to be on par with the ones generated by expensive expert-operated systems. It
also generates more accurate replicas in comparison to the current state of the
art in smartphone-based reconstruction, produces much less artifacts and
provides a much higher rendering performance in VR in comparison to three
representative neural methods. A comprehensive user study confirms similar
perception results compared to avatars reconstructed with expensive expert-
operated systems, and it underscores a sufficient usability of the overall system.
To truly bring avatars to the masses, we will make our smartphone application
publicly available for research purposes. More details can be found on the project
page: https://avatars.cs.tu-dortmund.de.
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1 Introduction

Avatars are digital representations of users that can be
dynamically rendered in virtual environments in real time to
reflect the behavior of their users (Bailenson and Blascovich,
2004). While avatars can be of almost any conceivable shape and
appearance, in this research, we specifically refer to humanoid
representations that vary from stylized to realistically
reconstructed 3D models. Such avatars may appear generic,
lacking distinctive or individual features, or they can be
personalized to closely resemble the appearance of their
respective user. With the recent surge in virtual reality (VR)
research (Skarbez and Jiang, 2024) and the increasing availability
of mature head-mounted displays (HMDs) (Sutherland, 1968),
avatars have become increasingly important as faithful self-
representations of users in almost countless scenarios. These
scenarios include metaverse-like social VR environments
(Latoschik et al., 2019; Yoon et al., 2019; Aseeri and Interrante,
2021; Mystakidis, 2022) or VR applications to support mental health
(Sampaio et al., 2021; Döllinger et al., 2022). Among them are critical
applications for which maintaining user identity and conveying
realistic emotions are crucial for authentic interactions and a
sophisticated user experience (UX). Prior work has shown that
realistically personalized full-body avatars, which can look
deceptively similar to the user, are superior for the outlined
scenarios by increasing the user’s sense of presence and
embodiment or self-identification with the avatar (Waltemate
et al., 2018; Salagean et al., 2023; Fiedler et al., 2024; Kim et al.,
2023), or to increase emotional response (Gall et al., 2021;
Waltemate et al., 2018).

Unfortunately, many approaches for scanning-based full-body
avatar generation rely on complex and expensive multi-camera rigs
for photogrammetric reconstruction, such as (Achenbach et al.,
2017; Shetty et al., 2024; Ma et al., 2021). Methods for generating
avatars from monocular video input make avatar generation more
affordable, but early approaches (Alldieck et al., 2018a; b) suffered
from insufficient quality, as shown in (Wenninger et al., 2020).
Recent avatar reconstructions adapt NeRFs (Mildenhall et al., 2020)
or Gaussian Splatting (Kerbl et al., 2023) as underlying
representations, for instance (Jiang et al., 2023; Moreau et al.,
2024). Although this is an exciting and very promising research
direction, our experiments in Section 4 clearly demonstrate that
these approaches are not (yet) capable of providing sufficient visual
quality and rendering performance for VR applications. So far, the
method of Wenninger et al. (2020), which reconstructs mesh-based
avatars from smartphone videos, seems to be the most suitable for
the affordable reconstruction of photorealistic and VR-capable full-
body avatars. However, while the low hardware requirements make
avatar reconstruction more affordable, the scanning process requires
sufficient experience, the reconstruction process involves
commercial products, and the system’s operation requires expert
knowledge. Consequently, there is still no approach for fast,
affordable, and easy-to-operate reconstruction of photorealistic
and VR-capable full-body avatars. This prevents the full potential
of photorealistic avatars from being realized for many applications.

To bridge this gap and make avatar reconstruction both
affordable and widely available to non-expert users, we present
Avatars for the Masses, an easy-to-use system for smartphone-based

person scanning and server-based avatar reconstruction. In
particular, our contributions are.

• An easy-to-use smartphone application that visually guides
the user through the scanning process, enabling even non-
expert users to achieve high-quality results;

• A server-based pipeline that fully automatically reconstructs a
photorealistic avatar from smartphone-captured data in about
20 min, without relying on commercial components;

• Technical improvements in the capture and reconstruction
processes that result in high quality results even in
uncontrolled outdoor environments;

• Qualitative and quantitative technical evaluations and
comparisons with several state-of-the-art approaches that
clearly demonstrate the advantages of our system;

• A user-centric evaluation through a user study that evaluates
and confirms both our smartphone app’s usability and the
resulting avatars’ quality (captured by non-expert first-
time users!).

Our evaluations demonstrate that the proposed system is indeed
fast, affordable, and easy to use, and that it achieves avatar quality
almost on par with that of complex camera rigs–even in challenging
“in-the-wild” capture scenarios. As such, and due to the lack of
commercial components, it has the potential to bring avatars to the
masses. We will make our system publicly available for research to
encourage this.

2 Related work

In this section, we describe the mechanisms and implications of
representing oneself through an avatar in virtual reality (Section
2.1), before discussing different approaches to generate realistic
avatars (Section 2.2). In the following, we restrict our discussion
to avatars personalized (as opposed to generic), realistic (as opposed
to stylized), and full-body (as opposed to head-only or upper-body-
only), because these are the most challenging with regard to the
outlined desiderata.

2.1 Avatars for self-representation in
virtual reality

The egocentric embodiment of avatars for self-representation in
VR (Slater et al., 2010) can positively impact the UX of virtual
environments (Mottelson et al., 2023). This includes improving the
key psychometric properties of VR, such as the sense of presence
(Waltemate et al., 2018; Wolf et al., 2021; Skarbez et al., 2017), or
intensifying emotional responses to virtual content (Waltemate
et al., 2018; Gall et al., 2021). Other advantages may include
improved spatial perception (Mohler et al., 2010; Leyrer et al.,
2011), reduced cognitive load (Steed et al., 2016), or higher
performance and accuracy (Jung and Hughes, 2016; Pastel et al.,
2020) when performing tasks in VR.

A crucial aspect in evaluating the effectiveness of avatar
embodiment is the sense of embodiment (SoE), consisting of the
feeling of owning (ownership), controlling (agency), and being

Frontiers in Virtual Reality frontiersin.org02

Menzel et al. 10.3389/frvir.2025.1583474

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1583474


located within (self-location) a virtual body in a virtual environment
(Kilteni et al., 2012; de Vignemont, 2011). Previous work has shown
that realistic and personalized avatars increase the SoE towards the
avatar (Waltemate et al., 2018; Fiedler et al., 2023; Salagean et al.,
2023) and thus contribute to an overall plausible VR experience
(Latoschik and Wienrich, 2022).

Photorealistic and personalized avatars are particularly valuable
for maintaining the user’s identity, which is beneficial in social VR
experiences (Yoon et al., 2019; Aseeri and Interrante, 2021;
Mystakidis, 2022) or applications supporting mental health
(Sampaio et al., 2021; Döllinger et al., 2022; Turbyne et al.,
2021). Previous work has also shown that self-related cues
through avatar embodiment and personalization significantly
increase self-identification with the avatar (Fiedler et al., 2024),
potentially maintaining a more accurate self-perception in VR, even
in body-swap paradigms (Döllinger et al., 2024). However, a realistic
personalization of avatars can also harm UX, as their human-like
realism combined with their high affinity to the user can potentially
trigger Uncanny Valley effects, leading to negative emotional
responses such as eeriness towards the avatars (Mori et al., 2012;
Döllinger et al., 2023).

Overall, comprehensive evidence exists for notable effects of
photorealistic personalized avatars on important user states.
Consequently, we will employ representative psychometric
measures for a prominent selection of the aforementioned effects
of avatars to evaluate the 3D reconstruction quality achieved with
our developed system. Therefore, Section 5 reports on a user study
evaluating our avatars with respect to the sense of embodiment,
plausibility, and a potential uncanny valley effect. In addition, this
user study also evaluates the general usability and user satisfaction of
the smartphone front-end to ensure appropriate ease of use and user
satisfaction.

2.2 Generation of realistic
personalized avatars

The growing demand for virtual avatars has triggered a lot of
research in scanning-based avatar reconstruction in the recent years.
We restrict ourselves to realistic full-body avatars and discuss related
approaches with respect to our target application requirements: The
avatar generation should be affordable and easy to use, the resulting
avatars should accurately resemble the scanned person, and the
avatars should be suitable for VR applications –meaning they can be
rendered from arbitrary camera views and at a sufficiently high
frame rate for multi-avatar (social) VR applications.

Many approaches employ complex and expensive rigs of
50–100 cameras to capture high-quality photos or videos of the
person to be scanned (Feng et al., 2017; Achenbach et al., 2017; Ma
et al., 2021; Kwon et al., 2023; Salagean et al., 2023; Morgenstern
et al., 2024; Shetty et al., 2024; Pang et al., 2024). While these
methods achieve highly accurate reconstructions, they are restricted
to dedicated capture laboratories whose operation requires
expert knowledge.

Instead of simultaneously taking images with multiple cameras,
other approaches use a single monocular camera (or smartphone) to
capture a sequence of images or videos. While this design choice
considerably reduces hardware cost and complexity, it increases the

capture time, which inevitably causes small movements of the
scanned person and reduces geometric accuracy. Early
approaches suffer from considerably lower quality compared to
camera rigs (Alldieck et al., 2018a; b, 2019), most visible in the face
region. Wenninger et al. (2020) address this problem by
incorporating close-ups of the head into the avatar
reconstruction, producing a quality that is objectively quite close
and subjectively very similar to those of camera rigs (Bartl et al.,
2021). On the downside, their method is rather complicated to
operate, is intended for controlled indoor environments, and relies
on commercial components, which prevents widespread use by
researchers and non-experts.

More recently, neural geometry representations, such as Neural
Radiance Fields (NeRFs) (Mildenhall et al., 2020) or 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023) have been extensively adapted
to avatar reconstruction. Neural avatar representations (Peng et al.,
2021b; Zhao et al., 2022; Jiang et al., 2024; Guo et al., 2023; Xiao et al.,
2024; Lin et al., 2024) are capable of reconstructing fine details, since
they are not restricted to a fixed mesh topology. Avatars based on
NeRFs (Liu et al., 2021; Peng et al., 2021a; Jiang et al., 2023; 2022;
Wang et al., 2023; Yu et al., 2023; Wang et al., 2024; Zheng et al.,
2022; 2023) or 3DGS (Hu et al., 2024; Shao et al., 2024; Moreau et al.,
2024; Li et al., 2024; Habermann et al., 2023) are therefore better
suited for reconstructing clothing and hair. However, as our
experiments with recent neural avatars show (see Section 4),
their generation from image and video data can be very time-
consuming (from hours up to days), their rendering is not fast
enough for multi-avatar VR applications (where 90 fps at 2 k
resolution for left/right eye is desired), and their visual fidelity is
not sufficient (when viewed from directions not covered by training
data). This last point is a particularly challenging limitation, since in
multi-user social VR applications there is no control over viewing
directions and avatar poses, which can quickly lead to
visual artifacts.

We therefore employ a traditional mesh-based representation
for virtual avatars and build on the approach of Wenninger et al.
(2020), which we advance in several important aspects. First, our
smartphone application visually guides the user through the capture
process, thereby ensuring high-quality input data. Second, we
technically improve the data acquisition, image pre-processing,
and template fitting, leading to more accurate and more robust
avatar reconstructions. Third, we replace the commercial
components of Wenninger et al. (2020) with carefully selected
non-commercial alternatives, allowing us to make our system
publicly available. Finally, we evaluate our approach (i) by
qualitative and quantitative comparisons to state-of-the-art avatar
reconstruction methods, and (ii) in terms of a carefully designed
user study, in which first-time users successfully reconstruct and
evaluate avatars.

3 Avatar reconstruction

Our approach extends and improves the work by Wenninger
et al. (2020). We start with a brief overview of their method in order
to point out our specific technical improvements later on.
Wenninger et al. (2020) record two videos of the to-be-scanned
person: The body video circles around the scanning subject twice to
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capture both the lower and the upper body. The head video circles
around the face/head in a close-up manner to capture facial details.
From these two videos, individual frames are extracted and fed into
Agisoft Metashape (Agisoft, 2023), a commercial photogrammetry
reconstruction tool, resulting in two point clouds for the body and
head. A template mesh is then fitted to the point clouds in a two-step
process: The template is first fitted to the body point cloud (for the
overall shape) and then to the head point cloud (for fine-tuning
facial features). Landmarks detected by OpenPose (Cao et al., 2019)
guide the template fitting process. In a final step, the avatar texture is
generated from the input images.

Our approach, as outlined in Figure 1, introduces guided
smartphone-based data capturing (Section 3.1) and a fully
automatic server-based reconstruction pipeline (Section 3.2). In
the following, we describe the components of both phases and
point out the main contributions and technical improvements
compared to Wenninger et al. (2020).

3.1 Smartphone-based data acquisition

Analogous to Wenninger et al. (2020), we capture people by
performing (i) a full-body scan in A-pose and (ii) a close-up head
scan using a smartphone (see Figure 1, top left). However, our
approach differs in the kind of data that is captured (Section 3.1.1)
and how the user performs the scanning (Section 3.1.2).

3.1.1 Capturing videos vs images
Videos captured with current smartphone cameras are

compressed using H.264 or H.265. These algorithms are
optimized for viewing each video frame for a fraction of a
second only, hence allowing for rather aggressive per-frame
compression. In addition, inter-frame compression exploits
blockwise similarity of consecutive frames, which further
degrades image quality (Wiegand et al., 2003). As
photogrammetry algorithms use image gradients to detect feature
points, the block edges can negatively influence the quality of the
resulting 3D point cloud (Figure 2, left). Furthermore, extracted

video frames can be affected by motion blur, whichWenninger et al.
(2020) had to handle explicitly.

In contrast, individual photographs can be captured at
considerably higher quality, since they suffer much less from
motion blur, avoid the inter-frame block compression artifacts,
and allow to use less aggressive compression in general. Higher-
quality images in turn yield more accurate photogrammetry results
(Figure 2, right), which will eventually result in more accurate
avatars with fine geometric details and higher-quality textures.
Our capture process (described next) therefore records individual
photographs instead of videos, at a resolution of 3024 × 4032 pixels.

In addition to the high-resolution RGB images, we also capture
coarse depth images (576 × 768 pixels) using the smartphone’s
depth sensor and the phone’s orientation (resp. Gravity vector).
The former helps to determine the reconstructed subject’s correct
size/scaling, and the latter to determine its correct orientation. Our
scanning application is designed for Apple iOS devices, and this
additional information is conveniently included in the meta-data of
Apple’s HEIC image format.

3.1.2 Scanning UI
Our extensive experience with the approach of Wenninger et al.

(2020) revealed that the quality of the photogrammetry
reconstruction strongly depends on the correct distance and
orientation of the camera to the subject. If the camera is too
close, some regions (e.g., feet, hands) might not be captured. If
the camera is too far away, valuable image resolution is wasted and
the point cloud becomes less dense and more noisy. Those errors
typically occurred to unexperienced users – despite detailed previous
instructions.

To avoid these errors, our smartphone application visually
guides the user through the scanning process: On top of the
camera feed, we overlay in green the silhouette of a virtual
human model (of average size and shape) as seen from the
intended camera position (see Figure 3). The user adjusts the
phone/camera to roughly match the silhouette of the subject and
the model. It is not necessary to precisely fit the overlay to the
subject. The purpose of the overlay only is to guide the user to
maintain proper distance and orientation. To also guide the user’s
movement around the scanned subject, the virtual camera moves
around the green virtual model in the same way that the user should
move around the scanned subject. In addition, the direction of the
movement is indicated by a white arrow.

During the scanning process, the app captures images at a
frequency of 1 Hz and a resolution of 3024 × 4032 pixels. The
speed of the virtual camera’s movement is chosen to result in
105 images for the entire scanning process, as this number
experimentally turned out to be the best compromise: Fewer
images degraded the point cloud quality, more images did not
improve the results but increased the computation time. Thanks
to this well-controlled capture process, we require just one circle
around the subject for the full-body scan and one for the head
scan – thus reducing the scanning time to about two-thirds of
Wenninger et al. (2020). Since a shorter scanning time reduces
artifacts caused by subject movement, it also improves
geometric accuracy.

A dialog informs the user when the full-body and head scans are
complete (Figure 3, right column), after which the captured images

FIGURE 1
The user scans a subject with our smartphone application (top
left). The captured images are uploaded to our processing server
(right), where a fully automatic reconstruction pipeline generates an
avatar in about 20 minutes. The user can then download his/her
avatar into any VR application (bottom left).
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are uploaded to the reconstruction server. All further user
instructions or hints during the scanning procedure are displayed
in Figure 3. The entire scanning process can also be seen in the
accompanying video. To further minimize scanning errors, the app
displays a step-by-step tutorial before the scanning process, covering
subject preparation (hairstyle, accessories, shoes, and clothes), scan
pose requirements (A pose), and scan process explanations (body/
head scan procedure).

3.2 Server-based reconstruction pipeline

The avatar reconstruction pipeline, whose individual tasks are
described in this section, includes several computationally expensive
tasks. To speed up the avatar generation process and to reduce the
load on the smartphone’s resources, the captured images are
uploaded to a compute server, where the avatar is automatically
reconstructed and can be downloaded by the user.

FIGURE 2
Point clouds reconstructed via photogrammetry from video frames suffer from compression artifacts (left). The higher quality of individually
captured images yields more accurate point clouds (right).

FIGURE 3
The guided scanning procedure of the smartphone application. Top row, from left to right: Initial overlay before starting the body scan; overlay
during the body scan; end of body scan. Bottom row, from left to right: Initial overlay before starting the head scan; overlay during the head scan; end of
head scan.
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3.2.1 Image preprocessing
Our experiments with Wenninger et al. (2020) revealed that

their method works well in controlled indoor environments, but in
outdoor environments it often gives noticeably worse results. This is
due to non-static background, such as leaves moving in the wind or
cars driving by. These background movements violate the
photogrammetry assumption of a static scene, leading to
incorrect extrinsic camera parameters and consequently to errors
in the reconstructed 3D point cloud.

To eliminate these problems and thereby make the
reconstruction process much more robust with respect to “in-
the-wild” capture environments, we segment the input images
into foreground and background and mask out the background
before passing the images to the photogrammetry process. To this
end, we compared DeepLabV3 (Chen et al., 2017) and Apple’s
person segmentation (Apple Inc, 2023d) (on macOS 15.3.1), and
decided for the latter since it produced slightly more accurate and
more detailed masks in our experiments (see Figure 4). Moreover, as
the image background is excluded from the reconstruction, the
number of image features to be matched by the photogrammetry is
significantly reduced (accelerating this process by 30%), the
resulting point cloud contain considerably fewer points
(accelerating later template fitting), and the point clouds contain
significantly less noise and outliers (improving accuracy and
robustness of the template fitting). Overall, this image
preprocessing leads to faster computations and much cleaner
point clouds–in particular in uncontrolled outdoor environments
(see Figure 5).

3.2.2 Photogrammetry
The captured and segmented images are passed to the

photogrammetry stage, which reconstructs a dense 3D point
cloud (see Figure 1). Wenninger et al. (2020) employ Metashape
(Agisoft, 2023) for this task, a widely used commercial
photogrammetry software. Unfortunately, its license restrictions
explicitly prohibit the use in server-based reconstruction
scenarios (which we aim for). In order to make our system

publicly available for research purposes, we compared several
non-commercial alternatives for photogrammetric reconstruction,
including MeshRoom (Alice Vision, 2025), COLMAP (Schönberger
and Frahm, 2016), and Apple’s RealityKit (Apple Inc., 2023a) (on
macOS 15.3.1). From these frameworks, Apple’s RealityKit
consistently produced the highest-quality results, which are very
similar in terms of geometric fidelity, texture quality, and processing
time to those of Agisoft Metashape (see Figure 6).

Apple’s high-level photogrammetry API allows one to specify
different configuration options, where we found the settings raw
detail, high feature sensitivity, and unordered samples to yield best
results. In addition to the high-resolution RGB images, we also
provide segmentation masks, coarse depth images, gravity vectors,
and EXIF data, which significantly improves the photogrammetry
results compared to processing only the RGB images. The depth data
and gravity vectors help to determine the correct scale and
orientation of the reconstructed object, which make the
upcoming steps more reliable.

3.2.3 Landmark detection
The previous photogrammetry stage produces a (static) high-

resolution textured triangle mesh (see Figure 6). This mesh can
suffer from artifacts in insufficiently scanned regions and is lacking
animation controls (body skeleton, facial blendshapes). The well-
established approach is to fit a high-quality template mesh with all
required animation controls to the photogrammetry output (point
cloud or mesh). This results in a reconstructed avatar mesh that
inherits its triangulation, UV texture layout, and animation controls
from the template model, while closely resembling the geometric
shape and the texture/material of the photogrammetry scan. This
template fitting process (described in the next subsection) has to be
initialized and guided by a set of landmarks on both the template
model (where they are pre-selected once) and the photogrammetry
output (where they have to be manually selected or
automatically detected).

Wenninger et al. (2020) detect body and face landmarks in the
2D input images using OpenPose (Cao et al., 2019; Dlib, 2022),

FIGURE 4
When segmenting foreground and background of the input images, Apple’s person segmentation (center) better preserves small details, such as hair
and clothing creases, compared to DeepLabV3 (right).
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respectively, where they select the best suited (e.g., most frontal)
input images based on heuristics. The detected 2D landmarks are re-
projected onto the photogrammetry point cloud. While working
well in most cases, their approach can fail if wrong images are
selected for landmark detection or if a 2D landmark in sparsely
sampled regions back-projects to the wrong surface part. We avoid
both problems by rendering the photogrammetry mesh (Figure 6)
from several camera positions and performing landmark detection
on the resulting synthetic images. Our controlled capturing process
enables the straightforward selection of suitable camera views, and
the back-projection onto the rendered 3D mesh is well-defined for
any detected 2D landmark.

We detect 4 hand landmarks (two knuckles on the left and right
hands) and 37 face landmarks (eye contours, tip of the nose, and
mouth features), which are passed on to the template-fitting stage.
To ensure accurate and reliable landmark detection, we compared
on a wide range of examples the face/hand landmark detection of
OpenPose (Cao et al., 2019), Dlib (2022), Apple’s Vision Framework
(Apple Inc, 2023c; Apple Inc, 2025), and Google’s MediaPipe
(Lugaresi et al., 2019). Since MediaPipe produced the most

reliable results in our experiments, we chose this landmark
detector for our reconstruction pipeline.

3.2.4 Template fitting

The previous two stages result in two high-resolution textured
photogrammetry meshes from the body and head scans of the
subject standing in A-pose with neutral facial expression, as well
as a set of 37 face and 4 body landmarks. We perform curvature-
adaptive point sampling on the two photogrammetry meshes to
convert them into two point clouds for body and head, respectively.
To reconstruct the avatar, we fit a fully rigged statistical template
mesh to the photogrammetry data, guided by the landmarks.

Our template mesh was designed by a skilled artist (to be free of
license restrictions) and has a slightly higher resolution
(23,752 vertices) than the template from the Autodesk Character
Generator in Wenninger et al. (2020). Its animation rig consists of a
full-body skeleton with 59 joints, as well as 52 facial blends that are
compatible with ARKit (Apple Inc., 2023b). The template was fit to

FIGURE 5
Point clouds reconstructed from unprocessed input images captured in outdoor environments suffer from significant noise, outliers, and
misalignments in the face region (A,C). By processing the images through person segmentation and background removal, these artifacts are largely
eliminated (B,D).

FIGURE 6
The (meshed) photogrammetry reconstructions of Agisoft Metashape (left) and Apple’s RealityKit (right) are very similar in geometric fidelity, texture
quality, and computational performance.
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1700 scans of the CAESAR database (Robinette et al., 1999) to derive
a 30-dimensional PCA subspace of human body shapes.

In a first step, the template is coarsely fitted to the point clouds
by iteratively optimizing alignment (position, orientation, scale),
overall body shape (PCA weights), and body pose (skeleton joint
angles). In the second step, the initial template fit is refined by
optimizing all individual vertex positions. Both optimization phases
minimize the sum of squared distances of photogrammetry points to
their closest points on the template mesh in a non-rigid ICPmanner,
guided by the landmark points. Both steps are regularized to prevent
overfitting: the first step by Tikhonov regularization on the PCA
weights, the second step by a discrete bending energy (see
Achenbach et al. (2017); Wenninger et al. (2020) for details).

Our method differs fromWenninger et al. (2020) in two aspects:
Wenninger et al. first fit the template to the body point cloud and
then refine the result by fitting it to the head point cloud. Since in
their approach the absolute scaling of these point clouds is
unknown, the proportions of body to head can be slightly wrong.
In contrast, our coarse depth images determine the absolute scale.
We also pre-align the body and head point clouds using landmark-
guided ICP and then fit the template to both point clouds
simultaneously. In this process, closest-point correspondences to
the head/body regions of the template mesh are computed from the
head/body point clouds only, respectively. This approach effectively
avoids the wrong body-head proportions (see Figure 9). In addition,
since our advanced scanning process yields more accurate point
clouds, we require less regularization in the fine-scale fitting step,
resulting in more geometric details.

3.2.5 Texture transfer
After reconstructing the geometric shape of the avatar in the

previous step, the final step reconstructs the texture image. The two
photogrammetry meshes already feature high-quality textures
generated from the input images, but with a rather poor UV
texture layout. To have a uniform texture layout for all avatars,
we transfer textureP of the photogrammetry mesh to textureA

of the avatar mesh (having the high-quality texture layout of the
template). For each texel uA in the avatar’s UV layout we determine
the corresponding 3D point xA on the avatar mesh (based on texture
coordinates), find its closest point xP on the photogrammetry mesh,
and copy its color by its texture coordinate uP:

textureA uA[ ] ← textureP uP[ ]
Note that we actually fill two textures, from the body and head scan,
respectively. These two texture images are then combined into one
using Poisson Image Editing (Pérez et al., 2003). This final step of the
reconstruction pipeline results in a textured avatar mesh (see
Figure 7 for some examples).

4 Quantitative and qualitative
evaluation

Reconstructing an avatar with our approach starts by capturing
a person using our iPhone application (iPhone 12 Pro and iPhone
13 Pro Max in our experiments). The app visually guides the user
through the scanning procedure and takes 105 images (45 full-body
and 60 head images), which takes about 2 minutes and is shown in

the accompanying video. The captured image data (about 320 MB)
is then uploaded to our server, which takes less than 1 minute over
WiFi. The reconstruction is performed in a fully automatic manner
on the server (Mac Studio, M1-Max 10-Core CPU, 32-Core
integrated GPU, 64 GB RAM) and takes about 19 min (1 min
segmentation, 7 min photogrammetry, 5 min offscreen rendering,
2 min landmark detection, 4.5 min template fitting and texture
generation). The whole process, therefore, takes about 22 min only,
after which the avatar can then be downloaded in file formats
compatible with VR and game engines.

In the following, we compare our results to those of a complex
multi-camera rig Achenbach et al. (2017), to the smartphone-based
method of Wenninger et al. (2020), and to three recent neural avatar
techniques based on NeRFs or 3D Gaussian Splatting (Müller et al.,
2022; Shao et al., 2024; Lei et al., 2024).

4.1 Quantitative comparisons

Following Wenninger et al. (2020), we evaluate the accuracy of
our avatar reconstruction by reporting reprojection errors. To this
end, we render the resulting textured avatar onto the images
captured during the scan process using the camera calibration
data from the photogrammetry process (see Figure 8), and then
compute the root-mean-square errors over all rendered pixels in
CIELab color space, averaged over all images. This metric allows us
to measure errors resulting from inaccuracies in both color
and geometry.

We perform this evaluation on the 33 subjects that were scanned
during the user study described in Section 5. These participants were
scanned by (i) another 33 non-expert first-time users of our
smartphone application, as well as (ii) an expert using the multi-
camera rig at the Embodiment Lab of JMU Würzburg (106 Canon
EOS 1300D DSLR cameras, based on Achenbach et al. (2017)).
Generating the avatars using the expert-operated multi-camera rig
took about 15 min. Our pipeline, on the other hand, took around
22 min. Despite the tremendous difference in expertise of the
scanning person and in cost and complexity of the scanner setup,
the results obtained with the camera rig are only slightly better than
our smartphone scans (see Figure 8). Averaging over all 33 scans and
comparing our RSME (M = 32.83, SD = 4.88) with that of the multi-
camera rig (M = 32.29, SD = 6.36) reveals that the error increases by
less than 2%, while the financial cost decreases by more than 98%.

4.2 Qualitative comparisons

Besides the easy-to-use visually guided scanning procedure, our
method improves the approach ofWenninger et al. (2020) by several
technical contributions, as described in Section 3.2. To evaluate the
effect of these contributions, we compare with their method in
Figure 9. The two subjects were captured in an outdoor environment
by recording videos (for their method) and images (for our method)
on the same iPhone 12 Pro. The avatar generation took 15min (their
method) and 22 min (our method). Our method produces
noticeably more accurate results, with more geometric detail and
higher-quality textures. This results from more accurate
photogrammetry point clouds (due to recording higher-resolution
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images instead of videos and due to background removal) and from
better template fitting (due to simultaneously fitting to body and
head point clouds, and requiring less regularization). The results of
Wenninger et al. (2020) suffer from considerably less geometric
details and wrong body-to-head proportions. These differences are
even more prevalent for the lower subject, where the head is
unnaturally deformed due to camera misalignments in the
photogrammetry step (see Figure 5C).

In order to evaluate whether neural avatars are a viable
alternative to mesh-based avatars for VR applications, we
experimented with three recent approaches: the NeRF-based
InstantAvatar (Jiang et al., 2023) and the 3DGS-based methods
SplattingAvatar (Shao et al., 2024) and GART (Lei et al.,
2024) – since those methods reported fast training times and
high rendering performance. To achieve optimal results, we
followed the recommendations of these projects and use their
training scripts. Since all three methods can reconstruct avatars
from the People Snapshot format (Alldieck et al., 2018b), we
recorded equivalent videos (1080 × 1080 pixels, subject rotating

in A-pose) using the same iPhone as for our scans. These videos
are then converted to the People Snapshot format using (Alldieck
et al., 2018b), and the per-frame SMPL poses are refined using
Anim-NeRF (Chen et al., 2021). On this prepared data we ran
InstantAvatar using their provided scripts. The data resulting
from InstantAvatar then act as input for running SplattingAvatar
and GART. We used batch size 4 for InstantAvatar and 2min
training of GART, as these produced the best results. The results
from different configurations are shown in the
Supplementary Material.

The (required) video pre-processing (landmark detection,
segmentation, VideoAvatars pipeline, and Anim-NeRF) took
about 17 h on a compute server with three Nvidia RTX
6000 having 48 GB GPU memory each. Training of
InstantAvatar, SplattingAvatar, and GART took another 2–5 min,
25 min, and 2 min, respectively, on a different server with Nvidia
RTX A5000 and 24 GB GPU memory. With more than 17 h, the
overall reconstruction time of these methods is 45 times
longer than ours.

FIGURE 7
Avatars reconstructed with our appraoch, all being scanned in uncontrolled outdoor settings.

FIGURE 8
(A): We evaluate the accurate of our approach by reprojecting our avatars (left half of images) into the captured images (right half of images). (B):
Despite the significant difference in hardware complexity, the reprojection errors of our smartphone scans are only slightly worse than those of the
multicamera rig.
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Figure 10 shows the resulting avatars in a training pose and from
a training camera view. While InstantAvatar produces visual clutter,
both SplattingAvatar and GART are visually appealing–although
more blurry than our reconstruction. However, as shown in
Figure 11 and the accompanying video, when it comes to novel
poses and/or novel viewpoints, the quality of neural avatars quickly
degrades to a level not acceptable for social VR applications. In
particular, for multi-avatar VR applications, where users/avatars can
take on arbitrary poses and be viewed from arbitrary camera
positions, the artifacts shown in Figure 11 are more the rule
rather than the exception. Avoiding these generalization
problems would require much more training data, i.e., capturing
the subject in significantly more poses and from significantly more
camera views, which in turn would make the scanning significantly
more complex and the reconstruction significantly more
expensive – therefore requiring a complex multi-camera video
recording setup. Our mesh-based avatars, in contrast, are
sufficiently regularized by the statistical human body template
and its animation controls to enable generalization to novel views
and novel poses, even when captured from 105 smartphone
images only.

In addition to long reconstruction times and suboptimal visual
quality, the rendering performance of neural avatars is not (yet)
sufficient for VR applications, where currently HMDs require
around 90 fps stereoscopic rendering (i.e., 180 fps monoscopic
rendering) at about 2k resolution per eye. We therefore evaluated
the rendering performance at a resolution of 2160 × 2160 pixels on a
VR workstation (AMD Ryzen 9 7950X CPU, RTX 4090 24 GB GPU,
64 GB RAM). For this monoscopic rendering, InstantAvatar
achieved 1.22 fps (819 ms/frame), SplattingAvatar 171 fps

(5.9 ms/frame), and GART 245 fps (4.1 ms/frame). While
InstantAvatar was far from the required frame rate for VR
application, rendering performance of SplattingAvatar and GART
were just on the edge of VR applicability. However, contrary to these
rather low performance results, our mesh-based representation can
be rendered at 4,615 fps–therefore comfortably allowing even
multiple avatars in the same virtual environment at the same time.

5 User study

We conducted a comprehensive user study following a multi-
method approach. The study evaluated the quality of our generated
avatars (called below smartphone avatars) by measuring their
impact on a prominent selection of well-known and often
studied avatar effects. In addition, it also evaluated the general
usability and user satisfaction of the smartphone front-end. The
purpose was to assess the quality of the avatars subjectively and to
improve the user experience of scanning and being scanned with the
smartphone app.

To this end, we arranged the participants into dyads, where one
participant had to perform a smartphone app scan of another
participant. While the scanning participant evaluated the app’s
usability afterward (in the following called smartphone app
evaluation), the scanned participant assessed the perception of
the scanning processes and the generated avatar (in the following
called avatar evaluation).

For the smartphone app evaluation, participants performing the
smartphone scan were asked to assess the app’s usability using
standardized questionnaires, allowing for comparison with validated

FIGURE 9
Two subjects captured in an outdoor environment (left), with avatars reconstructed using (Wenninger et al., 2020) (center) and our approach (right).
Our avatars are considerably more accurate in terms of geometry and texture, while those of Wenninger et al. (2020) suffer from photogrammetry
misalignments (required) strong regularization, and wrong body-to-head proportions.
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benchmarks. Additionally, we conducted semi-structured interviews
to gather more feedback on the user experience of both scanning and
being scanned with the smartphone app. The results are used as part
of a user-centered design process to improve the app.

For the avatar evaluation, we adopted and extended the
approach from Bartl et al. (2021) and utilized a counterbalanced
within-subject design comparing our generated smartphone avatars
to (a) photorealistically reconstructed personalized avatars from a
state-of-the-art expert system (in the following called camera rig
avatar, see Section 4.1) and (b) gender- and ethnicity-matched
generic avatars. We chose condition (a) to compare the quality of
our smartphone avatars to the quality of personalized avatars
frequently used in recent avatar research but reconstructed by a
rather costly and complex technical setup. This allowed us to assess
the impact of the proposed method’s reconstruction quality on
typical well-known and often studied avatar effects in relation to
the much lower technical requirements of our method. We chose
condition (b) to assess the quality of both reconstruction methods in
terms of self-similarity and self-attribution of the resulting avatars
and to measure the overall effect of personalization. An additional
in-VR comparison to any of the neural avatars (see Section 4.2)
unfortunately was still unreasonable. The given state of the art was
inadequate for a VR evaluation due to the low rendering
performance but most importantly due to the significant artifacts
(see Figure 11 and video), specifically given the arbitrary poses and
camera positions typical for the VR exposure.

During individual one-by-one exposures, the scanned
participants embodied each of the three avatar types successively
while engaging in various body-centered movement tasks in front of

a virtual mirror within a VR environment. Afterward, they evaluated
the avatars regarding (a) sense of embodiment and self-
identification, (b) plausibility, and (c) uncanny valley effects. In a
final side-by-side exposure, participants simultaneously embodied
each type of avatar while observing them exclusively from an
allocentric perspective in three different virtual mirrors (one for
each type) and answering different preference questions. Afterward,
we asked the participants why they preferred their chosen avatars.

5.1 Apparatus

5.1.1 Avatars
In the following, we explain the integration of the three different

avatar types utilized in our study.
Each participant attending the smartphone app evaluation (in

the following called scanning participant) used our smartphone app
to create a personalized avatar for the corresponding participant
attending the avatar evaluation (in the following called scanned
participant). Wemaintained uniform lighting conditions to enhance
the avatars’ comparability with the camera rig avatars. The scanning
participant received instructions from the smartphone app tutorial
and was directed to guide the scanned participant accordingly. No
further post-processing was performed on the smartphone avatars.

We created a personalized camera rig avatar for each participant
in the avatar evaluation using the expert body scanner of the
Embodiment Lab at the University of Würzburg (see Section
4.1). No further post-processing was performed on the camera
rig avatars.

FIGURE 10
Reconstructed avatars rendered in A-pose and view from the training data. From left to right: InstantAvatar (Jiang et al., 2022), SplattingAvatar (Shao
et al., 2024), GART (Lei et al., 2024), and ours.
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Since avatars that do not match the user’s gender and ethnicity
have been shown to impact SoE particularly negatively (Do et al.,
2024) and consequently would lead to an unequal comparison with
personalized avatars that are matched in gender and ethnicity, we
decided tomatch both between user and generic avatars. To this end,
we chose the Validated Avatar Library for Inclusion and Diversity
(VALID) (Do et al., 2023). Through a LimeSurvey questionnaire,
each participant in the avatar evaluation was asked to select the
VALID avatar that most closely matched their own gender and
ethnicity. As the participants typically attend studies dressed
casually, they could choose between 42 casually dressed VALID
avatars, consisting of three male and three female avatars, each of
seven different ethnicities.

5.1.2 Virtual reality system
The VR system was realized using Unity Technologies

2020.3.25f1 (Unity Technologies, 2020). We utilized a Valve Index
head-mounted display (HMD) featuring a resolution of
1440 × 1600 px per eye and a total field of view of 114.1 × 109.4°

(Wolf et al., 2022a). Its refresh rate was set to 90 Hz. Participants’
hand and finger movements were tracked through two Index
controllers and their built-in proximity sensors. Four SteamVR
base stations covered the 3 × 3m tracking area. All mentioned
components were integrated into the VR system using SteamVR
version 2.3 (Valve Corporation, 2024a) and its corresponding Unity
plug-in version 2.7.3 (Valve Corporation, 2024b). We routed the
HMD’s cable to a VR-capable workstation (Intel Core i7-7700 K

FIGURE 11
Avatar reconstructions animated in novel poses. From left to right: InstantAvatar (Jiang et al., 2023), SplattingAvatar (Shao et al., 2024), GART (Lei
et al., 2024), and our result. Although InstantAvatar, SplattingAvatar, and GART produced visually appealing results in the training poses, the
reconstructions get noisier and blurrier in novel poses. Details, e.g., hands and faces, are hardly recognizable anymore and the renderings get even
blurrier. Our results in contrast are as sharp and detailed as in the training poses.
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CPU, NVIDIA GeForce GTX 1080, 16 GB RAM) running the VR
system onWindows 10. For body tracking, we utilized themarkerless
body tracking system from Captury. Body poses were captured using
eight FLIR Blackfly S BFS-PGE-16S2C RGB cameras running at
100 Hz, which have been connected via two 4-port 1GBit/s ethernet
frame-grabber to a high-end workstation (NVIDIA GeForce RTX
3080 Ti, 32 GB RAM, AMDRyzen 9 5900X) running Captury Live in
version 259 (Captury, 2023a) on Ubuntu 18 LTS. The body poses
were continuously integrated into the VR system using Captury’s
corresponding Unity plug-in (Captury, 2023b).

5.1.3 Avatar embodiment
We realized avatar embodiment by retargeting the participant’s

tracked body pose to the used avatar in real-time following the joint
approaches described in previous work (Döllinger et al., 2022; Wolf
et al., 2022b). During a short calibration process, in which the
participant had to stand rigidly and upright, the embodied avatar
was calibrated to continuously follow the position of the HMD and
scaled to match the participant’s eye height. To avoid sliding feet and
inaccuracies in hand and feet positions caused by variations in
skeletal structure, segment lengths, or insufficient hand tracking, we
utilized an IK-supported end-effector optimization using FinalIK
version 2.1. Due to a higher accuracy and sampling rate, hand
positions and finger poses were taken from the Index controllers,
while elbow, knee, and foot positions were taken from Captury.

5.1.4 Virtual environment and tasks
Our virtual environment was based on different Unity assets,

which we adapted to create a realistically rendered setting. Figure 12
depicts the virtual environment, accommodating up to three virtual
mirrors. Following the guidelines for self-observation mirror
placement by Wolf et al. (2022a), each virtual mirror was placed
at a distance of 1.5 m from the participant during the study.

During each one-by-one exposure, participants embodied one of
the three avatars in the virtual environment, where only the middle

virtual mirror was shown. They could either observe their embodied
avatar directly from an egocentric perspective or look into the virtual
mirror to receive an allocentric perspective. Participants were asked
to perform various body movement tasks in front of the virtual
mirror to promote visuomotor coupling and induce SoE (Slater
et al., 2010; González-Franco et al., 2010). The body movement tasks
adhered to a structured protocol adapted from Roth and Latoschik
(2020) and can be found in the supplements of this work.

During the side-by-side exposure, participants embodied all
three avatars simultaneously in the virtual environment, where all
three virtual mirrors were shown. While they received no egocentric
perspective on the avatars, they could observe each avatar through a
virtual mirror. The mirrors were labeled with small numbers, and
participants responded to four different preference questions by
identifying the mirror number displaying their preferred avatar. The
assignment of avatars to mirrors changed randomly after each
question. The preference questions can be found in the
supplements of this work. Figure 12 depicts the side-by-
side exposure.

5.2 Measures

5.2.1 Quantitative measures
We assessed all quantitative measures using previously

published questionnaires. When available, we used validated
translated German versions of the utilized questionnaires.
Otherwise, we used back-and-forth translations to translate the
items into German. Participants answered all questionnaires on a
MacBook Pro using LimeSurvey (Limesurvey GmbH, 2024).

We captured the usability of the smartphone app using the
System Usability Scale (SUS) (Brooke, 1996). It provides a fast and
simple way to assess a system’s usability using ten questionnaire
items each answered on a 5-point Likert scale. The calculated overall
score ranges between 0 and 100 (100 = highest usability) and can be

FIGURE 12
The threemirrors showing the expert (left), smartphone (middle), and generic (right) avatar of a female participant during the side-by-side exposure.
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compared with benchmarks provided by previous work (Bangor
et al., 2009; Sauro and Lewis, 2016; Kortum and Sorber, 2015).

For assessing Sense of Embodiment and Self-Identification (SoE)
towards the avatars, we captured virtual body ownership (VBO) and
agency (AG) utilizing the corresponding items of the Virtual
Embodiment Questionnaire (VEQ) (Roth and Latoschik, 2020)
and self-location (SL) using the additional items introduced by
Fiedler et al. (VEQ+) (Fiedler et al., 2023). We used the items
capturing self-similarity (SS) and self-attribution (SA) from the
VEQ + to assess self-identification towards the avatars. Each
factor measured comprises four items rated on a 7-point Likert
scale (7 = highest VBO, AG, SL, SS, and SA).

We captured the avatars’ plausibility utilizing the Virtual
Human Plausibility Questionnaire (VHPQ) (Mal et al., 2022;
2024). It consists of seven items that assess the avatars’
appearance and behavior plausibility (ABP) and four items for
matching the virtual environment (MVE). Each item is rated on
a 7-point Likert scale (7 = highest ABP and MVE).

We captured tendencies of the avatars’ appearance towards
the uncanny valley using the revised version of the Uncanny
Valley Index (UVI) (Ho and MacDorman, 2017). It comprises
four items each to assess the avatars’ humanness (HU) and
attractiveness (AT) and eight items to capture the avatars’
eeriness (EE). While the items are answered on a range
between −3 and 3, we report them on a range between 1 and 7
(7 = highest HU, AT, EE).

As a control measure, we captured participants’ physical
symptoms associated with VR sickness in a pre-post comparison
using the Virtual Reality Sickness Questionnaire (VRSQ) (Kim et al.,
2018). It consists of nine items, each of which represents a typical
symptom of VR sickness and is answered on a scale between 0 and 3
(3 = highest symptomatology). The total score of the VRSQ ranges
between 0 and 100 (100 = highest VR sickness).

5.2.2 Qualitative measures
We conducted semi-structured interviews to assess the user

experiences related to both scanning and being scanned with the
smartphone app. The interview protocols incorporated a
retrospective thinking-aloud approach (Bowers and Snyder, 1990;
Simon and Ericsson, 1993) to comprehensively analyze the
interactions with the smartphone app while not influencing the
scan experiences. We further included predefined questions to query
positive and negative feelings experienced during the use of the app
and while being scanned, the app’s functionality and its intended
purpose, the impact of the scanning participant on comfort or
discomfort when being scanned, and the clarity and
comprehensibility of the scanning process. Additionally,
participants described aspects of the process they found efficient
or challenging and reported any problematic incidents they faced.
Finally, participants could suggest improvements to both the scan
app functionality and the scanning process and were asked about
their scan preferences and if they would participate in a body scan
again. Participants in the avatar evaluation were further asked which
avatar they preferred regarding self-representation similarity,
fidelity, plausibility, and suitability, along with reasons behind
their choices. The complete interview protocols and exact
phrasing of the preference questions can be found in the
supplements of this work.

5.3 Procedures

In the following, we describe the standardized experimental
procedures of our smartphone app and avatar evaluations. Figure 13
visualizes both procedures and highlights their intersection during
the smartphone app scan. Initially, participants in both procedures
received information about the study and privacy, consented to
participate, and generated two pseudonymization codes to store
personal (i.e., voice recordings and avatars) and evaluation data
separately. Subsequently, they proceeded with their respective
evaluation procedures.

5.3.1 Smartphone App evaluation
Each participant in the smartphone app evaluation first

completed a tutorial on how to perform a body scan using the
smartphone app. As soon as the other participant arrived for the
scan in the laboratory, both participants were introduced to each
other. The participant performing the scan verified that all
requirements for the scan were met and instructed the scanned
participant not to speak or move during the scan. To ensure that an
assessable avatar was generated, the scanning participant performed
two successive scans. After scanning, the scanned participant left the
laboratory, and the scanning participant answered the SUS
questionnaire using LimeSurvey. Following that, the participant
was interviewed and completed demographics. On average, the
entire smartphone app evaluation took approximately 41 min.

5.3.2 Avatar evaluation
Each participant in the avatar evaluation first participated in a

smartphone and expert scan conducted in a counterbalanced order.
After the scans, the participant was interviewed about the scan
processes, chose a generic avatar as described above, completed the
demographics, and answered the pre-VRSQ. The one-by-one
exposures followed in a counterbalanced order, each lasting on
average 7.6 min. After each exposure, the participant answered the
VEQ, VEQ+, and UVI. The following side-by-side exposure averaged
4.2 min and was accompanied by the preference questions answered
verbally in VR. For each exposure, a vision test and the avatar
embodiment calibration were performed following the instructions
on a virtual whiteboard. In addition, the participant received audio
instructions for all tasks. Finally, the participant completed the post-
VRSQ. On average, the entire avatar evaluation lasted 103 min.

5.4 Participants

Adhering to the ethical standards of the Declaration of Helsinki,
our study received approval from the ethics review board of the
Institute Human-Computer-Media (MCM) at the University of
Würzburg1. We recruited a total of 66 participants organized into
33 dyads using the local participant management system and
compensated them either by course credits or cash, both
depending on the duration of their participation. In none of the
dyads, participants knew each other before the study. All participants

1 https://www.mcm.uni-wuerzburg.de/forschung/ethikkommission/
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had normal or corrected vision and no hearing impairment.
Participants evaluating the smartphone app (19 female, 14 male)
were aged between 19 and 41 (M � 26.60, SD � 5.48). None of them
had used the smartphone app before. Participants evaluating the
avatars (25 female, 8 male) were aged between 20 and
49 (M � 27.64, SD � 6.90). While none of them had been
scanned with the smartphone app before, nine participants had
previously taken part in an expert scan. Most participants in the
avatar evaluation (29White, 2 Asian, 1MENA) chose a generic avatar
that matched their ethnicity. Only one White participant chose a
Hispanic avatar. Ten participants used VR for the first time, 20 up to
ten times, one more than ten times, and two more than 20 times.

We excluded one dyad from our statistical analysis as one
participant used the smartphone app contrary to the instructions,
resulting in an unusable avatar. While all participants stated that
they had more than 5 years of experience with the German language,
we had to exclude another participant from the avatar evaluation as
the experimenter felt that the participant did not understand the
questions and instructions correctly, which was confirmed by
implausible answers and outliers in the data. Hence, 32 datasets
remained for the smartphone app and 31 for the avatar evaluation.

5.5 Data analysis

We conducted all quantitative analyses using SPSS version
29.0.2.0 (IBM, 2022). Before running the statistical tests, we
checked whether our data met the assumption of normality and
sphericity for parametric testing. Shapiro-Wilk tests showed clear

violations of the normality assumption for both dimensions of the
VHPQ and minor violations for VEQ agency and VEQ + self-
location. Mauchly’s test for sphericity confirmed homoscedasticity
between the groups for all of our measures. Since variance analysis
shows robustness to slight violations of normality for groups with
N≥ 30 (Wilcox, 2022), we decided to perform parametric tests for all
measures except those from the VHPQ. All main tests have been
performed against an α of 0.05, while post hoc tests have been
Bonferroni adjusted.

The qualitative feedback has been analyzed following the
principles of thematic analysis (Braun and Clarke, 2006). Due to
space restrictions, we decided to report the results mainly based on
the frequency of certain feedback while mostly refraining from
direct quotes.

5.6 Results

5.6.1 Smartphone App evaluation
The quantitative evaluation of the smartphone app’s usability

resulted in a reasonably high SUS score (M � 78.83, SD � 12.23).
We compared the results to absolute benchmarks from existing
literature. According to Sauro and Lewis (2016), our smartphone
app shows above-average usability. While a score between 77.2 and
78.8 leads to a usability grade of B+, a score between 78.9 and
80.7 relates to an A-. This grade matches the classifications of the
adjective rating scale of Bangor et al. (2009), where a score above
71.4 is considered good, while a score above 85.5 would be excellent.
According to the work of Kortum and Sorber (2015), our

FIGURE 13
Experimental procedure of a dyad, illustrating the process of evaluating the smartphone app (left) and the avatars (right).
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smartphone app’s usability can almost keep up with the usability of
the ten most-used iPhone apps, which have an average SUS
score of 79.3.

When analyzing interviews about the usability of the
smartphone app, the majority of the 32 participants performing
the smartphone app scan found it highly usable. Twenty-nine
participants found the app’s functionality and purpose easy to
understand, while 26 reported that they constantly knew how to
use it. As particularly useful features, 20 participants highlighted the
overlay for controlling scan distance and movement, 16 participants
the initial tutorial, and five participants the arrows indicating the
movement direction. Nonetheless, challenges were also noted.
Twenty-three participants reported difficulties maintaining an
appropriate moving pace while scanning, with six participants
emphasizing this problem, especially for the head scan. Similarly,
seven and six participants reported issues with aligning the overlay
while moving and keeping the correct distance, respectively. Six
participants mentioned the need for high concentration, and 18 felt a
bit uncomfortable due to the close proximity to the scanned
participant. Six participants considered the relatively long
duration of the scan process as unpleasant. To address the
mentioned aspects, eight participants suggested a more detailed
tutorial, and another four suggested an initial overlaymapping to the
height of the scanned participant. To improve the scan process, five
participants recommended more interaction with the scanned
person, five more additional feedback on pacing their movement
during the scan, and another five stressed the need to shorten the
scan duration.

In addition to feedback on performing the scan, we obtained
reports from the 32 scanned participants on their scanning
experience. Overall, the process was clear and manageable, with
30 participants completely understanding the required actions. All
participants confirmed their willingness to participate in a
smartphone app scan again. However, compared to expert scans,
21 participants noted the smartphone app scan was slower, and
22 found it less comfortable. Prolonged posing discomfort was
mentioned by twelve participants, while wardrobe and hairstyle
constraints were issues for another four. Fourteen participants
anticipated a difference between an expert and a beginner
performing the smartphone scan, with four believing the expert
would be faster. When asked about suggestions for improvement,
four participants indicated that they would accelerate the process to
reduce the discomfort of holding the scan pose. Regarding the head
scan, four participants suggested a fixation to aid focus, and three to
increase the distance between the camera and the head.

5.6.2 Avatar Evaluation
To perform group comparisons on our avatar evaluation data,

we calculated either a repeated-measures ANOVA for measures that
met the requirements for parametric analysis or Friedman tests as a
non-parametric alternative. The descriptive data and the results of
the group comparisons can be found in Table 1. For all tests
revealing significant differences between groups, we calculated
Bonferroni-corrected pairwise post hoc comparisons that are
reported in Figure 14.

During the side-by-side exposure, we asked participants about
their preferences regarding self-representation similarity, fidelity,
plausibility, and suitability, along with reasons behind their choices.

Out of the 31 participants included in the analysis, 16 perceived the
smartphone avatars to be more similar to themselves, while
13 preferred the camera rig avatars. Regarding self-representation
fidelity, 11 participants preferred the smartphone avatars, 19 chose
the camera rig avatars, and one favored the generic one. To feel most
plausibly represented in VR, 12 participants chose the smartphone
avatars, 18 the camera rig avatars, and one the generic one. When
asked which avatar the participants would prefer to be represented
in VR, 10 chose the smartphone avatars, 17 the camera rig avatars,
and four the generic ones. When asked for their reasoning,
participants favoring smartphone avatars mostly mentioned a
detailed facial reconstruction and realism as key factors. Those
participants who preferred camera rig avatars highlighted the
accuracy of body shape reconstruction, noting issues with
smartphone avatars’ body proportions, particularly the arms.
Participants who chose generic avatars consistently did so
because of overall dissatisfaction with their personal appearance
rather than avatar quality.

6 Discussion

In this section, we discuss the results of the comparisons with the
different avatar reconstruction methods and the results of our user
study and present the limitations of our work.

6.1 Smartphone app evaluation

We evaluated the usability of our smartphone app quantitatively
using the SUS questionnaire and qualitatively using semi-structured
interviews, including a retrospective thinking-aloud approach. The
SUS results showed that our smartphone app is already well usable.
The qualitative feedback confirmed this impression and highlighted
the overlay and tutorial as particularly positive features. However,
the qualitative feedback also revealed areas for improvement.

As part of the user-oriented design process, we already
incorporated suggested improvements. To address comments
regarding the duration of the scan and the pace, we added the
option to shorten or extend the scan speed using technical means.
The unclear parts of the tutorial have been improved to prepare
users for the scan better. Furthermore, we have also added warnings
if the scanned person is not sufficiently centered. Other feedback
could not be implemented due to technical limitations or requires
further research. For example, the distance between the smartphone
and the scanned person, especially during the head scan, could only
be increased by the loss of detail in the reconstructed avatars.
However, since the high quality of the faces is a significant
advantage of our system, we decided to keep the required
distance. Furthermore, the interaction between the scanning and
scanned person and visual aids (e.g., fixation point) for the scanned
person lies outside the influence of our smartphone application.

6.2 Avatar evaluation

Our quantitative and qualitative comparisons in Section 4
demonstrate that our smartphone application enables even non-
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experts to reconstruct avatars of a similar quality and accuracy as
those produced with an expert-operated multi-camera rig–at a
fraction of the price, complexity, and required expertise.
Compared to the previous smartphone-based reconstruction
(Wenninger et al., 2020), our proposed method is easier to use
and gives higher-quality results even in more challenging in-the-
wild scenarios.

Our experiments with InstantAvatar (Jiang et al., 2023),
SplattingAvatar (Shao et al., 2024), and GART Lei et al. (2024)
revealed that neural avatars generalize rather poorly to poses and
camera views far from training data–a situation that cannot be
avoided in multi-avatar VR applications. Although these
generalization problems can be reduced with more training data,
this is beyond the capabilities of a simple smartphone-based
scanning solution. Also in terms of reconstruction times and

rendering performance are neural avatars not yet suitable for VR
applications, such that classical mesh-based avatars appear to still be
the preferred representation. Table 2 summarizes the fulfillment of
our requirements with respect to avatar reconstruction. Although
many methods show their strengths in a subset of the criteria, only
our system fulfills all of them.

Compared to the work of Waltemate et al (2018), our user study
confirmed that realistic avatars still offer substantial benefits over
generic avatars for self-representation, even when the generic avatars
are also personalized in gender and ethnicity (Do et al., 2023, Do
et al., 2024). With regard to the comparison, some further notable
findings need to be addressed. The statistically significant difference
in virtual body ownership between the smartphone and camera rig
avatars can potentially be attributed to observed motion artifacts,
which can degrade the avatars’ appearance. However, smartphone

TABLE 1 Exact descriptive values for each measure of the avatar evaluation per group and statistical results of the group comparisons.

Smartphone Camera rig Generic Group comparisons

M (SD) M (SD) M (SD)
Sense of Embodiment

VEQ Ownership (VBO) 4.10 (1.50) 4.79 (1.28) 3.75 (1.44) F(2, 60) � 11.011, p< .001, η2p � .268

VEQ Agency (AG) 5.57 (0.96) 5.97 (0.79) 5.79 (0.81) F(2, 60) � 2.845, p � .066, η2p � .087

VEQ+ Self-Location (SL) 4.11 (1.07) 4.14 (1.03) 3.73 (1.13) F(2, 60) � 3.502, p � .036, η2p � .275

VEQ+ Self-Similarity (SS) 5.69 (1.11) 5.85 (0.68) 2.69 (1.23) F(2, 60) � 82.651, p< .001, η2p � .734

VEQ+ Self-Attribution (SA) 4.69 (1.21) 4.99 (0.99) 3.37 (1.16) F(2, 60) � 31.390, p< .001, η2p � .511

Plausibility

VHPQ Appearance/Behaviour (ABP) 4.84 (0.82) 5.33 (0.78) 5.27 (0.78) χ2(2) � 4.581, p � .101,W � .074

VHPQ Match to VE (MVE) 5.15 (0.98) 5.47 (1.14) 5.80 (0.65) χ2(2) � 5.782, p � .056,W � .093

Uncanny Valley

UVI Humanness (HU) 3.46 (1.16) 3.84 (1.08) 3.36 (0.90) F(2, 60) � 2.444, p � .095, η2p � .075

UVI Eeriness (EE) 4.05 (0.79) 3.87 (0.97) 3.15 (0.79) F(2, 60) � 19.313, p< .001, η2p � .392

UVI Attractiveness (AT) 3.90 (1.20) 4.13 (0.84) 4.52 (0.69) F(2, 60) � 3.264, p � .045, η2p � .098

FIGURE 14
Bar charts for each measure and each group of the avatar evaluation, including statistical test results of the group comparisons and post hoc tests
where applicable. Error bars represent 95% confidence intervals. Statistical significance indicators: *p<.05; †p<.01; ‡p<.001.
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avatars still perform descriptively better than generic avatars.
Regarding self-identification, the smartphone and camera rig
avatars both show significant advantages to generic avatars,
although the smartphone avatars were generated using a
significantly cheaper method than the camera rig avatars. For the
smartphone avatars, participants emphasized particularly the high
similarity of the head. However, results also showed that the eeriness
of realistic avatars was significantly higher than generic avatars. This
is likely attributable to an Uncanny Valley effect originating from the
emotional relatedness to self-personalized avatars, which has also
been observed in other research (Mori et al., 2012; Döllinger et al.,
2023). When considering the plausibility of the avatars, it is
noticeable that the reconstruction described most realistically had
the lowest match with the perceived plausibility. This discrepancy
might be attributed to the incongruence between the virtual
environment’s realistic style and the avatars’ photorealistic style
(Latoschik and Wienrich, 2022).

6.3 Limitations

Since our method uses photogrammetry software to generate
point clouds from images, the input images must contain as little
movement as possible. If movement occurs in the background, the
segmentation significantly improves the photogrammetry results.
However, the motions of the scanned subject violate the
photogrammetry assumption, i.e., that the scanned object is rigid
and not moving, leading to less accurate point clouds and, therefore,
geometric deformations in the final avatar. Figure 7 shows this
problem in more detail, as the arms of the second avatar (from left)
have visible differences in thickness.

We use a mesh-based representation for our avatars. On the one
hand, this enables high-performance rendering and novel pose
generation. On the other hand, we represent cloth, hair, and skin
by a single textured mesh, which can lead to visual artifacts. An
interesting direction for future work would be to combine mesh-
based avatars (potentially with multiple layers for skin and cloth)
with volumetric details (such as hair) represented by Gaussian
Splatting–as this would combine the strengths of both
representations.

Our system uses image segmentation to preprocess the input
and mask out regions that do not contain people. For that reason,
people in the background are a challenging task, as they are not

removed. We want to explore the capabilities of the depth sensor to
remove people in the background from the masks.

We rely on Apple frameworks for both our scanning client and
reconstruction server. For the client, an Android-based app would
be possible, but we chose iOS because Apple’s photogrammetry
yields correctly scaled results thanks to the LiDAR sensor of the pro-
level iPhones. On the reconstruction server, only the
photogrammetry and the segmentation frameworks are Apple-
specific, all other parts of the reconstruction pipeline are cross-
platform compatible. We chose Apple’s RealityKit and Vision
frameworks since in our extensive tests this platform produced
the best results while not being limited by restrictive licensing.

The sample in our study consisted of white participants only. As
this potentially limits the generalizability of our results, in future
work a larger population sample with greater variability in age, sex,
and ethnicity should be tested.

7 Conclusion

We presented Avatars for the Masses, a system that allows non-
expert users to scan people and automatically reconstruct realistic
VR-ready full-body avatars that achieve similar perception results
compared to avatars reconstructed with expensive expert-operated
systems. Inspired by the approach of Wenninger et al. (2020), we
presented methods to resolve present obstacles that prevent the wide
accessibility of realistic full-body avatars. Our custom smartphone
application enables laypeople to easily and quickly capture high-
quality input images, which, together with background
segmentation and an improved template fitting algorithm, result
in more convincing reconstructions while reducing restrictions on
scanning locations. Our end-to-end solution computes VR-ready
avatars that can be easily integrated into existing VR pipelines. To
further empower people to create realistic full-body avatars and
encourage more avatar-related studies, we will make Avatars for the
Masses publicly available for research purposes.
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