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Human task performance in extended reality (XR) environments is a critical area of study due to the growing use of these technologies in fields such as healthcare, education, manufacturing, and training, as XR has the potential to influence both how well people complete tasks (e.g., accuracy, speed) and underlying human states such as cognitive load, stress, and physiological responses. A plethora of research has explored the benefits of XR across these domains, as well as research to investigate potential negative impacts on cognition and task performance. However, the findings regarding task performance remain inconclusive, and the factors contributing to enhanced versus diminished performance are poorly defined. In this paper, we conduct a systematic literature review of 79 research papers from 2015 to 2024, following the PRISMA guidelines, selected from an initial pool of 6,878 search results from the Publish or Perish database. Our review reveals that a key gap exists in understanding how specific XR factors, such as immersion levels, interaction modalities, and user interface design, influence both task performance and associated cognitive, psychophysiological, and physiological outcomes. We also report how these different factors influence the performance of cognitive, psychophysiological, and physiological tasks in different XR environments. We conclude by proposing potential research gaps and future research directions to focus on controlled experimental studies targeting these factors to gain deeper insights into their impact on human performance in XR settings.
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1 INTRODUCTION
Interest in eXtended Reality (XR) (i.e., umbrella term for virtual reality [VR], augmented reality [AR], and mixed reality [MR]; Rauschnabel et al. (2022)) is rapidly increasing as these technologies have widespread applications across diverse fields, including education (Radianti et al., 2020), defense (Harris et al., 2023), experiential learning (Mystakidis and Lympouridis, 2024), skills training (Philippe et al., 2020), and healthcare (Son et al., 2022). Figure 1 shows different applications of XR technologies, illustrating the use cases in immersive learning, virtual training, and professional development. These examples present how XR can create engaging and useful experiences in many different areas. The growing integration of XR technologies across various fields has fueled a surge in research investigating human task performance (HTP) in cognitive, physiological, and psychophysiological tasks within XR environments. Extensive experimental studies have been conducted to understand the impact of XR technologies on human task performance (Scharinger et al., 2023; Lin et al., 2020; Teng, 2022). These studies mostly report the beneficial aspects of XR compared to real-world settings. However, downsides, such as high cognitive demand and low task performance due to cybersickness, have also been reported (Au, 2022; He et al., 2022; Descheneaux et al., 2020). These discrepancies present significant hurdles in providing unified design criteria for researchers, designers, and developers, and a thorough understanding of the possible correlations between XR and human task performance is essential but still unclear. To address this knowledge gap, this paper examines the current state of XR in human performance through a systematic investigation of the factors, including system factors (Khalid et al., 2023), design factors (Nenna et al., 2022), and individual factors (Stanney et al., 2002), influencing human task performance in XR environments (Harzing, 2007).
[image: The image shows three pictures labeled one to three. In the first, a person uses a virtual reality headset and controller in a room with a window. The second image features a person wearing a mixed reality headset and using a computer mouse. The third image displays a hand holding a smartphone, using augmented reality to show a 3D model of a cell above a desk. Each device type is labeled accordingly.]FIGURE 1 | Applications of XR technologies in diverse fields. (1) The user is performing training in a virtual reality (VR) environment. (2) A user is performing an assembly task in a mixed reality (MR) environment. (3) The user is in a learning environment using the Smartphone-based Augmented Reality (AR) technology.Task performance in XR is influenced by system factors (e.g., hardware, software, display), individual differences (e.g., age, gender, experience), content design (e.g., complexity, immersion, characters), and contextual elements (e.g., environment, motivation) (Shaw et al., 2016). Despite the volume of research, these findings are scattered across numerous publications, necessitating a consolidated overview for better understanding and future research direction. A comprehensive literature review can help identify common themes, emerging trends, and areas for further investigation. Organizing these insights into a cohesive framework would enable a clearer understanding of how various factors interact to affect performance in XR environments and could guide future research and system design to optimize human task performance across different applications.
To address this issue, in this paper, we conducted a systematic literature review of 79 papers selected from an initial pool of 6,878 search results using the Publish or Perish (PoP) database. The review explored the current research trends related to human task performance in XR systems, the factors affecting the performance, the negative impacts of XR, and potential research gaps for future studies. Following the PRISMA guidelines (Moher et al., 2009), we utilized the PoP database (Harzing, 2007) to collect relevant articles from various publishers and libraries. The selected papers covered a range of topics, including physiological, psychophysiological, and cognitive tasks, cognitive load, negative effects of XR, and performance factors. We also conducted a meta-analysis of the current papers from 2015 to 2024 and reported our key findings, the research gaps, and future research directions in this paper. Empirical studies related to human task performance, cognitive load, negative impacts of XR, and factors for HTP were the principal criteria for selecting the papers. This review focused on multiple objectives from three different types of tasks: cognitive, psychophysiological, and physiological. Our key contributions are but are not limited to:
	• Contribution 1: Comprehensive Literature Review - Conducted a thorough review of existing research on human task performance in XR, focusing on studies involving procedural experiments. The findings were analyzed and systematically organized into a taxonomy for clarity and meaningful interpretation.
	• Contribution 2: Identification of Key Performance Factors in XR Environments - Identified the key factors from the literature that influence human task performance across various XR environments. These factors were categorized into four primary groups to provide a clearer, more structured understanding of their impact on performance.
	• Contribution 3: Analysis of Research Gaps and Proposed Solutions - Conducted a detailed literature analysis on human task performance and its influencing factors in XR systems. Synthesized previous findings to identify research gaps and proposed actionable solutions, including recommendations for future studies and developing new methodologies to enhance understanding in this field.

The paper is organized as follows. Section 1 outlines the basic introduction to human task performance in XR systems, cognitive load, and factors and aspects of their applications. Section 2 details the relationship between human task performance and XR systems, while Section 3 details the review methodology, including the process of paper selection and data extraction. The key findings are presented in the subsequent sections.
2 HUMAN TASK PERFORMANCE IN EXTENDED REALITY
Human task performance is influenced by various factors, including system characteristics, user interface design, and individual differences, and is typically evaluated through performance metrics such as task pace and accuracy, alongside measures of cognitive and physical workload (Wickens et al., 2021). For instance, increasing task pace can reduce precision and lead to errors (Vekony et al., 2022), while tasks requiring high precision may take longer and impose greater cognitive load (Fleming et al., 2023). Cognitive demands, shaped by task complexity, expertise, and environmental conditions, also play a role (Darvishi-Bayazi et al., 2023). In XR environments, sensory feedback (e.g., visual, auditory, tactile) impacts human task performance. Figure 2 illustrates the key factors as well as task setups affecting performance, discussed in detail in this section.
[image: Flowchart illustrating factors influencing human task performance. Main sections include Performance Measures (Subjective, Objective), Type of the Tasks (Cognitive, Physiological, Psychophysiological), and Type of the Immersion (Augmented Reality, Virtual Reality, Mixed Reality). Arrows connect these to Factors of Human Task Performance: System, UI/UX, Individual, and Other Factors.]FIGURE 2 | Overview of XR task design concepts, factors of human task performance, subjective and objective measurements, and immersion types.2.1 Human-performed task categories in XR
We classified studies using the following decision rules:
	1. Cognitive tasks: The primary manipulation and outcomes target mental processes (e.g., memory, attention, decision-making) with no required continuous or coordinated motor program beyond simple responses (e.g., button press), and without analysis of physiological signals as primary outcomes.
	2. Physiological tasks: The primary outcomes are objective bodily signals or physical performance (e.g., gait, balance, exertion) without an explicit cognitive-load manipulation; at least one physiological signal (HR/HRV, RR, BP, EDA, skin temperature, EMG, pupil diameter) is recorded and interpreted as an outcome.
	3. Psychophysiological tasks: Both (a) a cognitive or affective manipulation and (b) coordinated motor action are integral to task success, and at least one physiological signal is analyzed as an outcome.

Tie-breakers: When a study plausibly fits multiple categories, we prioritized psychophysiological if both cognitive manipulation and motor coordination were essential and a physiological signal was analyzed; otherwise cognitive if outcomes were purely performance/accuracy/RT without physiological analysis; otherwise physiological. For example, fear-induction paradigms that combine affective manipulation, task performance, and recorded physiological responses were classified as psychophysiological.
2.1.1 Cognitive tasks
A cognitive task in an XR system refers to any task that requires mental processes such as perception, memory, attention, problem-solving, decision-making, or learning while interacting with immersive environments (Li et al., 2019). Research highlights that XR offers unique opportunities to manipulate environmental variables in ways that traditional learning environments cannot, thus enhancing human task performance in cognitive learning or training. Well-designed immersive environments can enhance learning by providing support for human cognitive limitations, reducing cognitive load, and increasing learning outcomes (De Back et al., 2021). Furthermore, immersive learning environments provide customized learning experiences, simulate real-world situations, improve memory retention, and reduce cognitive workload (Marougkas et al., 2024). However, the effects are not always positive. Issues such as cybersickness, acute stress, and visual fatigue involved in immersive environments diminish cognitive performance and impede learning and task performances (Han et al., 2017).
2.1.2 Physiological tasks
A physiological task in an XR system involves physical responses or bodily functions, such as movement, balance, coordination, or exertion, while interacting with a virtual environment (Lee and Kim, 2024). Physiological task performance in XR examines how responses like heart rate, eye movement, and muscle activity change to assess stress levels during task completion (Roy et al., 2019). This metric also evaluates physiological responses with changes in the virtual environments (Neo et al., 2021). XR can be shaped to meet users’ physiological needs, enhancing both safety and realism. For example, such customization enhanced hand-eye coordination in medical training, and helped medical students and surgeons perform minimally invasive surgeries guided by medical imaging (Rosenfeldt Nielsen et al., 2021). Research also shows that XR can reduce physiological discomfort during medical procedures by diverting attention to relaxing immersive content (Calogiuri et al., 2018). XR has potential in domains beyond healthcare, such as sports training. Thus, exploring physiological task performance across diverse setups in XR systems is crucial.
Operationalization of physiological change: In this review, “physiological change” refers to objectively recorded autonomic or somatic signals (e.g., heart rate, heart rate variability, respiratory rate, blood pressure, electrodermal activity/skin conductance, skin temperature, electromyography), and where relevant, ocular physiology (pupil diameter/eye openness). For each included study, we extracted and report which specific physiological measures were collected.
2.1.3 Psychophysiological tasks
A psychophysiological task in an XR environment refers to activities that require cognitive functions and physiological movements. These activities require synchronizing mental processes with motor actions, frequently requiring participants to react to visual stimuli in a virtual environment by manipulating their arms, legs, or other parts of their bodies (Ghrouz et al., 2019). Measuring the performance for a psychophysiological task in an XR system integrates simultaneous monitoring of mental load and physiological reactions such as heart rate and eye movement. These tasks often get affected by several external factors including some individual factors such as age, gender, prior respectability to an XR environment, etc. For instance, older adults face reduced performance compared to other age groups when texting and walking (Krasovsky et al., 2018).
2.2 Factors of human task performance
A variety of factors influence human task performance in an XR system. These factors can be categorized into system factors, user interface (UI) and user experience (UX) factors, individual factors, etc.
2.2.1 System factors
System factors encompass the technical aspects that influence both task performance and immersion in XR systems. These include hardware components such as display resolution, latency, and input devices, as well as software elements like the user interface and feedback systems (Yang et al., 2024). Key factors that significantly impact task performance include field of view (FoV), optical flow (OF), and latency, while factors such as user movement control and exposure duration have demonstrated marginal effects in the literature. For instance, network latency can negatively affect cognitive tasks by increasing participants’ mental workload (Khalid et al., 2023). Similarly, optical flow plays a crucial role in movement-based physiological tasks by enhancing detection and enabling redirected walking, thereby leading to more natural interactions in virtual environments (Lee et al., 2024). These system factors are discussed in detail in the Results Section 4.
2.2.2 UI/UX factors
UI/UX factors refer to the design of the virtual environment and its interaction with real-world elements like lighting and noise, which can either enhance or hinder task performance depending on the user’s capabilities and experience with XR systems. A well-designed UI, featuring intuitive controls, clear navigation, and responsive feedback, can reduce cognitive load and improve interactions (Alazmi and Alemtairy, 2024). Conversely, a poorly designed interface may cause confusion, frustration, and increased mental workload, all of which diminish task performance. Cybersickness is a critical issue within UI/UX design, often arising from mismatches between sensory inputs—particularly visual and vestibular cues (Stanney et al., 2020). Symptoms such as fatigue, nausea, and dizziness disrupt immersion and significantly impair user performance in tasks requiring sustained focus or physical interaction (Garrido et al., 2022).
2.2.3 Individual factors
Individual factors, such as gender, age, ethnicity, and prior experience, show varying levels of influence on human task performance, depending on the task type and environmental conditions. For instance, age can affect performance in specific cognitive tasks, such as the Montreal Cognitive Assessment (MoCA) (Tan et al., 2022), while gender may not have a significant impact. Prior experience is another critical factor, as individuals with previous experience tend to perform better in complex, skill-based tasks by reducing cognitive load and improving efficiency. However, prior experience may be less relevant for more intuitive or simpler tasks.
2.2.4 Other factors
Other factors affecting task performance in XR systems do not fit neatly into the categories of system, UI/UX, or individual factors but still play a role. For example, disruptions in time perception may not universally detract from performance but can have substantial impacts on tasks requiring immediate responses (Cometti et al., 2018). Collaboration is another pivotal factor as effective coordination and shared situational awareness are crucial for success in collaborative XR tasks. The absence of shared objectives, seamless interaction, and task synchronization can hinder teamwork and consequently reduce overall task performance in such environments (De Back et al., 2021).
2.3 Measures of human task performance
Human task performance in XR can be assessed using both subjective and objective metrics, providing a comprehensive view of how XR affects cognitive, physiological, and psychophysiological tasks. Subjective measures evaluate user engagement with XR systems (Wong et al., 2023), while objective measures provide empirical data, such as response time, accuracy, and physiological indicators (Tussyadiah et al., 2018). These methods complement each other, as subjective insights often impact performance reported by objective data. Table 1 outlines the techniques used in the reviewed papers.
TABLE 1 | Subjective and objective measures used to assess task performance and related internal statesa. N denotes the number of papers reporting each measure.	Category of task	Subjective measures	Objective measures
	Cognitive	NASA-TLX (N=15), SUS (N=15), SSQ (N=2), FMS (N=2)	EDA (N=4), Heart rate (N=6), EEG (N=5), Reaction time (N=5)
	Physiological	RPE (N=10), VAS (N=8), PES (N=5)	Heart rate (N=10), EDA (N=7), Respiration rate (N=8), Blood pressure (N=6), Skin temperature (N=4)
	Psychophysiological	NASA-TLX (N=10), Perceived Stress Scale (N=2)	EEG (N=8), ECG (N=5), EDA (N=6), Heart rate variability (HRV) (N=7), Cortisol levels (N=4)


a While some measures directly capture task performance (e.g., reaction time, accuracy), many assess related internal states (e.g., mental workload, stress) that can influence performance.
2.3.1 Subjective measures
Subjective assessments rely on user-reported data, often via questionnaires (Schwind et al., 2019). Common tools include the NASA Task Load Index (NASA-TLX) (Hart and Staveland, 1988) for physical and cognitive workload, the Presence Questionnaire (PQ) Witmer and Singer (1998) for immersion, and the System Usability Scale (SUS) (Brooke, 1996) for usability and satisfaction. Other measures like the Borg RPE (Borg, 1998), VAS (McCormack et al., 1988), and PSS (Cohen et al., 1983) assess physical effort, stress, and physiological responses. Cybersickness, impacting task performance, is evaluated using the Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993) and Fast Motion Sickness (FMS) Scale (Kichkaylo and O’Neill, 1998). These tools offer valuable insights into subjective task performance in XR (Lewis, 2018).
2.3.2 Objective measures
Objective measures assess user experience through biological signals, providing quantifiable data on cognitive and emotional states (Zhang, 2020). Common tools include an electrocardiogram (ECG), electrodermal activity (EDA), electroencephalogram (EEG), heart rate, blood pressure, and reaction time. Many studies used EDA, EEG, and ECG to classify emotions and assess physiological workload (Tremmel et al., 2019; Mondellini et al., 2023; Marucci et al., 2021; Chiossi et al., 2023), while others focused on user experience and cognitive load with blood pressure and heart rate (Hinricher et al., 2023; Archer and Steed, 2022). Another example is a dual-task paradigm consisting of a primary task (direct interaction with XR) and a secondary task (inducing distraction or cognitive load) (De Back et al., 2021), offering crucial insights into the effects of immersion on cognitive and psychophysiological abilities and task performance. When studies are grouped under physiological tasks, at least one of the following was explicitly measured as an outcome: HR/HRV, RR, BP, EDA, skin temperature, EMG, or related ocular physiology (e.g., pupil diameter). If no such signal was collected or reported, the study was not treated as assessing physiological change.
3 REVIEW METHOD
In this section, we highlight the review methods following the PRISMA (Moher et al., 2009) guideline for our paper. A brief overview of the review method is illustrated in Figure 3.
[image: Flowchart illustrating the selection process of studies for quantitative synthesis. It begins with 6,878 records identified from the PoP database, with duplicates removed, leaving 2,718 records. During screening, 2,453 records are excluded for reasons such as lack of relevant keywords and language. From 265 screened records, 152 are excluded, including irrelevant abstracts and unavailable full texts. In the eligibility phase, 113 full-text records are assessed, with 34 records excluded for irrelevance to immersive systems, non-HTP domain, or study design issues. Finally, 79 studies are included in the synthesis.]FIGURE 3 | PRISMA (Moher et al., 2009) Flow Diagram of the Paper Selection Process for XR-Related Research on Human Task Performance (HTP) from the year 2015 to 2024.3.1 Keyword and search criteria
We followed the PRISMA guidelines (Moher et al., 2009) for this review to collect and synthesize the papers. The process started by identifying and organizing keywords to facilitate the search for relevant articles. We developed a comprehensive set of keywords and search terms aimed at locating studies focused on human task performance in the XR environment. Table 2 presents the keyword categories used to collect research papers. The keywords for paper searches covered many topics, including human task performance, types of immersion, cognitive and physiological factors influencing task performance, mental workload, and associated challenges such as cognitive load, physiological workload, cybersickness, etc. Since “Task performance” was the key focus in this review, it was the common keyword for each search episode. A balanced number of papers were selected for each category to ensure a well-distributed taxonomy. The Publish or Perish (PoP) database was utilized for paper extraction (Harzing, 2007), offering an easy-to-use interface that allowed filtering by keywords, publication year, and category (e.g., patents or research papers).
TABLE 2 | Categorization of keywords associated with XR task types, immersive environments, and challenges.	Keywords on type of the tasks	Keywords on immersive environment	Keywords on challenges of XR
	“Cognitive task”, “Mentally demanding”, “Psychomotor”, “Psychophysiological”, “Collaborative”, “Decision making”, “Surgery”, “Sports”, “Multi-task”, “Physiological task”	“Virtual reality”, “VR”, “Augmented reality”, “AR”, “Mixed reality”, “MR”, “Extended reality”, “XR”, “Immersive Systems”	“Cognitive load”, “Mental demand”, “Mental workload”, “Attention capacity”, “Cognitive strain”, “Mental effort”, “Phsyical demand”, “Physical workload”, “Cybersickness”, “Simulator sickness”


3.2 Paper extraction process
Since all of the papers collected were not relevant to the review objectives, and to maintain balance over the taxonomies, it was crucial to follow structured steps to extract the most relevant papers. Figure 3 shows the high-level overview of the paper extraction for the review methods following the PRISMA guidelines (Moher et al., 2009). There were four fundamental steps for the paper extraction process. Each of these steps is discussed below:
3.2.1 Identification
Papers were searched and collected using the Harzing PoP database (Harzing, 2007). This database provided papers based on the given keywords and filtration regardless of the publisher. The resulting papers were then collected and saved in comma-separated value (CSV) format. It yielded a total of 6,878 papers initially using the search criteria. Patents were excluded during the extraction, also, the publication year was in or after 2015 set for the records. Our last search was performed on 07 April 2024. So, these 6,878 records were identified for further synthesis to remove duplicates.
3.2.2 Screening
After eliminating 4,160 duplicate papers (60.48% of the initial search), 2,718 records remained for analysis. To focus on procedural quantitative studies of human task performance in XR systems, we excluded review papers, surveys, pilot studies, and doctoral consortium papers. We developed a Python program (to be publicly accessible later) to streamline this process by performing keyword analysis, filtering out the specified types, and compiling the results into a CSV file. By reviewing titles, we removed an additional 2,453 irrelevant records (35.66% of the initial search), leaving 265 papers for screening. We then carefully reviewed the abstracts, excluding 152 papers (2.20% of the initial search) that were irrelevant or unnecessary for our taxonomy.
3.2.3 Eligibility
During the screening stage, we further narrowed down the number of papers through multiple assessments. The full text of each article was thoroughly read and summarized, focusing on their findings and methodologies. After summarization, the papers were categorized taxonomically based on factors affecting human task performance, mental workload, types of tasks, and study design. At this stage, an additional 34 papers (0.49% of the initial search) were excluded due to irrelevance to XR environments or misalignment with our taxonomy.
3.2.4 Inclusion
In the final stage of the paper extraction process, we conducted an intensive manual review of all selected papers. After the eligibility assessment, the previous stage yielded a total of 79 papers, each evaluated against predetermined criteria to ensure relevance and quality. The full text of each paper was thoroughly re-examined, focusing on their taxonomy, field, and findings. After double-checking the data, all 79 papers were deemed suitable and included in the review.
4 RESULTS
In this section, we present the findings of our systematic literature review, organized into three key categories: task performance in XR, the impact of XR (both positive and negative) on human task performance, and the factors within XR that influence human task performance.
4.1 Tasks performance in XR
As we collected various papers from various domains around human task performance in an immersive system, a diverse list of topics was identified for this review.
4.1.1 Cognitive task performance in XR
A total of 28 papers (35.44% of the total) discussed the task and various aspects of cognitive task performance in an immersive system specifically. Regardless of the types of immersion and study design, most studies found inconsistent task performance in XR and the real world. Most of the research (10, 12.65% of the total) chose within-subject and between-subject (10 papers) as their study design, while 8 adopted the mixed-design. Figure 4a highlights the variety of cognitive tasks used in XR studies. Willemsen et al. (2018) compared participants’ performance in the same task in both AR and VR modalities across AR, VR, and the real world, finding that task completion took longer in AR and the real world than in VR. Redlinger et al. (2022) examined the influence of game-like visual features in a VR environment but found no significant effect on participants’ cognitive performance, with only minor changes in accuracy. Pan et al. (2018) explored the effect of fear induced by an undersea virtual environment on cognitive tasks of varying difficulty, discovering that fear impacted task performance with medium difficulty levels. Wu et al. (2019) investigated the use of Spherical Video-based Virtual Reality (SVVR) to enhance elementary students’ cognitive problem-solving skills, and their finding revealed an improved performance while using SVVR rather than the traditional methods. Deshpande and Kim (2018) used Microsoft Hololens for object assembly tasks in AR and found that performance was better in AR than in the real world. Dasdemir (2022) tested the effects of AR applications on brain oscillations using the BOOKAR dataset, and the results indicate that emotion recognition is more successful when using AR reading. Lastly, Stanney et al. (2021) conducted a comprehensive study on XR-based military medical training, demonstrating its advantages for enhancing cognitive performance.
[image: Bar chart comparing the number of papers on tasks in XR across three categories: Cognitive, Physiological, and Psychophysiological. Each task displays numbers for designs: Within Subject, Between Subject, Mixed Design. Cognitive tasks include Memory Task and Training; Physiological tasks feature Motor Sports and Rehabilitation; Psychophysiological tasks involve Cognitive Inhibition and Motor Coordination. Each design is represented by a distinct color.]FIGURE 4 | Cognitive, Physiological, and Psychophysiological Tasks in XR. (a) Number of papers and study design in Cognitive Tasks, (b) Number of papers and study design in Physiological Tasks, (c) Number of papers and study design in Psychophysiological Tasks.4.1.2 Physiological task performance in XR
A total of 29 papers (36.70% of the total) focused on physiological task performance within immersive systems. Mixed-design and within-subject approaches were the most common study designs used. Figure 4b highlights the scope of studies investigating physiological task performance in XR environments. Results varied across AR, VR, and MR settings. Some studies, such as Bugdadi et al. (2019), found no significant impact on task performance during VR-based surgical training with force feedback devices. They compared two haptic devices (Omni and Entact) and found no notable difference in performance. In contrast, Kalkan et al. (2021) reported a 25% improvement in VR-based assembly task performance compared to real-world training on a hydraulically-controlled clutch system. Similarly, Yang et al. (2019) found that AR assistance reduced task time, errors, and cognitive load during assembly tasks. However, Wells and Miller (2020) observed no significant difference between real-world and VR-based welding training, suggesting mixed results for task performance in immersive environments. Ali et al. (2023) reported significant improvements in student performance in a VR-based chemistry lab, where different aids in the simulation enhanced task performance and reduced cognitive load. In dual motor tasks, studies found no significant impact of immersive environments, regardless of participant age or task type (Krasovsky et al., 2018; Habibnezhad et al., 2020).
4.1.3 Psychophysiological task performance in XR
A total of 22 (27.84% of the total) papers described specifically the psychophysiological task performance in XR systems, highlighting how immersive environments might impact individual motor abilities and coordination. Several studies have found that XR systems are effective for training and evaluating psychophysiological skills, particularly in fields such as medical training, rehabilitation, and sports performance (Schmid and Wagner-Hartl, 2023; Barata et al., 2015). Moreover, studies have shown that psychophysiological performance in XR systems can translate to real-world improvements, making XR a valuable tool for skill acquisition and training (do Couto, 2023). These findings highlight the potential of XR for psychophysiological tasks, especially in applications that require precise motor control and coordination. Figure 4c shows the number of papers along with their study design and aspect of the task in this review. The tasks were divided into five key areas: Cognitive Inhibition, Motor Coordination, Occupational Training, Gait and Mobility Assessment, and Gaming.
4.2 Impacts of XR on human task performance
This section examines the positive and negative impacts of XR environments on human task performance, as reported in the reviewed papers. As shown in Table 3, the impact of XR systems can vary significantly depending on the context. The immersive nature of XR enhances engagement, learning, and memory retention, particularly in fields such as aviation, surgery (Buttussi and Chittaro, 2018), and industrial training, where high-risk scenarios can be safely simulated (Rubio-Tamayo et al., 2017). Additionally, the ability to visualize abstract concepts or manipulate virtual objects in real-time has been linked to improved cognitive and psychophysiological performance, allowing users to engage more deeply with material (Al-Ansi et al., 2023). For instance, XR has been shown to improve spatial awareness and problem-solving skills in architectural design and urban planning (Darwish et al., 2023). However, as outlined in Table 3, the impact of XR is not always positive. Some users experience serious issues that negatively affect task performance. Immersive environments can lead to discomfort, which in turn reduces cognitive and physiological performance (Lavoie et al., 2021). Common issues such as motion sickness, disorientation, and eye strain, can significantly impair task effectiveness (Hein et al., 2023). Additionally, immersive virtual environments may cause unpleasant and painful experiences, reducing engagement and the sense of presence (Quesnel and Riecke, 2018). In some cases, these negative effects can persist even after the immersion ends (Mittelstaedt et al., 2019), limiting the ability to transfer skills to real-world tasks (Dobrowolski et al., 2021). This review also considered these negative impacts to better understand the potential factors contributing to performance impairments.
TABLE 3 | Positive and negative impacts of XR technologies on human task performance for different types of tasks.	Type of immersion	Tasks	Positive impact (with citation)	Negative impact (with citation)
	AR	Assembly task Yang et al. (2019); Deshpande and Kim (2018); General tasks in construction, architecture, operation industries Fazel and Adel (2024); Bademosi and Issa (2019); Localizing virtual objects using a distance matching Au (2022); Repeating and generating words during driving Kenemans et al. (2021)	Reduced task completion time, cognitive workload Yang et al. (2019); Enhanced performance Deshpande and Kim (2018); Improvements in accuracy, productivity, safety Fazel and Adel (2024); Bademosi and Issa (2019)	Increased spatial error, reduced auditory susceptibility Au (2022); Kenemans et al. (2021)
	MR	Learning in an educational setup Yi et al. (2024); Training Tang et al. (2020); Choi and Kim (2024); Executive functioning Svarverud (2022)	Improved understanding of historical stories, cultural connotations Yi et al. (2024); Creativity, geometric analysis, model visualization Tang et al. (2020); Critical-thinking, motivation in emergency-nursing training Choi and Kim (2024)	Potential long-term visual disadvantages Svarverud (2022)
	VR	Cognitive tail-making task Mostajeran et al. (2023); Recalling items while walking Girardeau et al. (2023); Learning through a VR application Lin et al. (2020); Teng (2022); Spatial n-back working memory task Scharinger et al. (2023); Zhang and Robb (2021); Walking Birenboim et al. (2021); Assembly task Kalkan et al. (2021); Tasks in a virtual chemistry lab Ali et al. (2023); Shooting Game Maloney (2019); Tutoring during training Andersen et al. (2020); Prosthetic case planning Liebermann et al. (2024); Playing a challenging computer game with neck length biofeedback Baer et al. (2022); VR bike application Mittelstaedt et al. (2019)	Higher cognitive performance, restorativeness, positive affect, lower stress Mostajeran et al. (2023); Improved memory, learning outcomes, cognitive paths Girardeau et al. (2023); Lin et al. (2020); Teng (2022); Positive effects on cognitive task performance, reduced cognitive load Scharinger et al. (2023); Zhang and Robb (2021); High-resolution physiological walking parameters, wellbeing indicators Birenboim et al. (2021); Improved task performance Kalkan et al. (2021); Ali et al. (2023)	Increase in implicit racial bias, cognitive load, potential for cybersickness, poorer game performance, deterioration in reaction times Maloney (2019); Andersen et al. (2020); Liebermann et al. (2024); Baer et al. (2022); Mittelstaedt et al. (2019)
	AR and VR	Spatial design visualization Jin et al. (2020); Edler and Kersten (2021); Fitt’s law experiment: Move to a target area, such as pointing, clicking, or tapping Batmaz et al. (2019); Mathematic education Cevikbas et al. (2023); Immersive shopping He et al. (2022)	Enhanced spatial awareness and problem-solving abilities Jin et al. (2020); Edler and Kersten (2021)	Impaired depth perception and virtual hand interaction in close spaces Batmaz et al. (2019); Unclear overall impact on learning outcomes, technological glitches, and reliability issues Cevikbas et al. (2023); Mismatch between consumer expectations and technology capabilities He et al. (2022)


4.3 Factors of human task performance in an XR system
Identifying and analyzing the key factors affecting human task performance in immersive systems was a central objective of this review. The papers were comprehensively analyzed based on these factors using various study designs and techniques. Figure 5 illustrates the number of papers from various factor categories related to human task performance in XR systems. A significant portion (25 papers, 31.64%) focused on UI/UX factors, emphasizing elements that influence user interface and experience in XR environments, particularly system design, interaction ease, and user satisfaction. Another 13 papers (16.45%) investigated the impact of system factors, mainly addressing technical aspects like display resolution, frame rate, input devices, and latency, which are critical to user experience and task performance. While these categories play a vital role in XR task performance, individual factors were explored less frequently, with only 8 papers (10.12%) focusing specifically on this area. Table 4 provides a detailed visualization of the key factors, along with task and environment design elements found in the reviewed papers. The impact of each factor varied depending on perspective, so the table includes the type of immersion, task design, and its effect on human task performance.
[image: Bar chart showing the number of papers across categories: System Factors (Virtual Reality: 9, Augmented Reality: 4), UI/UX Factors (Virtual Reality: 14, Augmented Reality: 10, Mixed Reality: 2), Individual Factors (Virtual Reality: 4, Augmented Reality: 3, Mixed Reality: 1), Other Factors (Virtual Reality: 3).]FIGURE 5 | Overall distribution of the factors to different XR systems.TABLE 4 | Summary of Key Factors Influencing Human Task Performance in XR systems.	Category	Factor	Type of task	Correlation with performance (with citation)
	System Factors	Latency	Psycho-physiological	Increased latency significantly reduces task performance, although it slightly decreased error rates Khalid et al. (2023)
	Field of View (FoV)	Physiological	Wide FoV (horizontal and vertical) increases physiological performances Wang et al. (2016); Ghasemi et al. (2021)
	Cognitive	Enhanced FoV increased performance up to 20% in both VR and AR Trepkowski et al. (2019)
	Exposure Duration	Physiological	Shorter exposures could enhance performance and reduce sickness Stanney et al. (2002); Wang et al. (2024)
	Display Technology	Psycho-physiological	Projection displays achieved the best task performance, while head-mounted displays (HMDs) performed worst across all criteria Lin et al. (2015)
	Inertia Load	Physiological	Removing inertial load led to poor motor control and reduced performance Tang et al. (2023)
	Optical Flow (OF)	Psycho-physiological	Optical flow enhances redirected walking (RDW) performance by adjusting the detection threshold (DT) range Lee and Kim (2024)
	Display Fidelity	Cognitive	Higher display fidelity significantly improves overall performance Bacim et al. (2013)
	Representativeness	Physiological	Presentation mode affected user preference and task efficiency Le Noury et al. (2020)
	UI/UX Factors	Multimodal Feedback	Psychophysiological	Improved task accuracy and reduced completion time Marucci et al. (2021); Markov-Vetter et al. (2020); Yildirim (2022); Cooper et al. (2018)
	Sense of presence	Cognitive	Strong sense of presence enhanced cognitive task performance by increasing engagement, focus, and immersion Chen et al. (2021); Maneuvrier et al. (2020); Seeliger et al. (2022)
	Sense of presence	Physiological	Positive Moon et al. (2022)
	Information Density	Psycho-physiological	Information density significantly impacts cognitive and physiological task performance. Participants needed more time at high than at low density to complete a task Trepkowski et al. (2019); Van de Merwe et al. (2019)
	Body Visualization and Embodiment	Physiological	Whole-body visualization in VR improved accuracy in physiological tasks and influenced balance task performance, compared to other body visualization types. Missing a certain part of the body could significantly decrease task performance. Additionally, embodying a certain avatar affected task performance considerably Pastel et al. (2020); Kocur et al. (2020a), (2020b); Borjon et al. (2021); Dudley et al. (2019)
	Interface Design	Cognitive	Diegetic interfaces improve performance compared to non-diegetic interfaces Marre et al. (2021)
	Multi-level precueing	Psycho-physiological	Performance increases with two to three precues, but decreases with four precues Liu et al. (2021)
	Room Acoustics	Cognitive	Positive Doggett et al. (2021)
	Scene Complexity	Physiological	Increased complexity affects performance negatively Stanney et al. (2002)
	Interaction Type	Psycho-physiological	Action-based VR controls lead to enhanced performance and lower mental workload compared to button-based controls Nenna et al. (2022)
	User movement control	Physiological	Enhanced control improved physiological task performance Stanney et al. (2002)
	Task Difficulty	Physiological	Variable effects for tasks with different levels of difficulty Parton and Neumann (2019)
	Cybersickness	Cognitive and Psycho-physiological	Cybersickness reduces cognitive and psychophysiological task performances Martirosov et al. (2022); Oh and Son (2022)
	Congruency of Information	Cognitive	Congruency of visuotactile information decreased reaction times and increased performance Odermatt et al. (2021)
	Individual Factors	Cognitive competency	Cognitive and Psycho-physiological	Increased cognitive competency leads to reduced errors and slower reaction time Juliano et al. (2022); Norouzi et al. (2019)
	Gender	Physiological	Male participants show enhanced motor performance Kocur et al. (2020a)
	Age	Psycho-physiological	Older people face reduced task performance Liao et al. (2019); Krasovsky et al. (2018)
	Prior experience	Cognitive	Prior experience slightly increases task accuracy Schmid and Wagner-Hartl (2023)
	Physiological competency	Psycho-physiological	Increased physiological workload enhances stress level and reduces task performance Markov-Vetter et al. (2020)
	Skill Level	Physiological	Higher competence enhances task performance due to familiarity with system interfaces Dobrowolski et al. (2021a)
	Other Factors	Coordination	Cognitive	Coordination in collaborative tasks motivates users and enhances performances Khalid et al. (2023)
	Spatial understanding	Cognitive	Better spatial understanding reduces task completion time Drey et al. (2023)
	Physical Training Intensity	Physiological	Marginal impact on human task performance Bauer and Andringa (2020)
	Task familiarization	Psycho-physiological	Task familiarization significantly reduce discomfort and increases task accuracy Cometti et al. (2018)


4.3.1 Impact of system factors
This review revealed several key system factors that impact human task performance in the XR system. Increased latency was found to reduce task performance, though it slightly lowered error rates (Khalid et al., 2023). An enhanced field of view improved performance by up to 20% (Ghasemi et al., 2021; Trepkowski et al., 2019), while shorter exposure durations in mixed reality enhanced performance and reduced sickness (Wang et al., 2024; Stanney et al., 2002). Among display technologies, projection displays led to the best task outcomes, while head-mounted displays (HMDs) performed the worst (Lin et al., 2015). The removal of inertial load negatively affected motor control and overall performance in physiological tasks (Tang et al., 2023), and optical flow improved redirected walking by optimizing the detection threshold range (Lee et al., 2024). Higher display fidelity consistently enhanced performance (Bacim et al., 2013), and the representativeness of physiological tasks influenced user preferences and efficiency (Le Noury et al., 2020). These factors underline the importance of optimizing system characteristics to maximize task performance in immersive environments. Figure 6b shows the distribution of system factors over the papers with their specific task setup. It is clear from the chart that a limited number of papers (2 papers) found in this review for ‘cognitive tasks’ focus on the system factors, while it was 8 papers for physiological tasks.
[image: Bar chart comparing UI/UX and System Factors across three categories: Physiological, Cognitive, and Psychophysiological. UI/UX factors include embodiment, with physiological scoring highest at five. System Factors highlight latency, with cognitive and psychophysiological each scoring two. Various factors show differing numbers of papers in each category.]FIGURE 6 | Distribution of UI/UX and System Factors of HTP in XR. (a) The distribution of UI/UX factors reveals a focus on task difficulty, embodiment, and sense of presence, with embodiment receiving notable attention. (b) The distribution of system factors shows a concentration on the field of view, latency, and display fidelity.4.3.2 Impact of UI/UX factors
The results of this review demonstrate that a variety of UI/UX factors have significant impacts on human task performance in virtual and augmented reality environments. As shown in Figure 6a, the embodiment stands out as a key factor that receives significant attention in the literature. It enhances the user’s sense of agency and engagement (Pastel et al., 2020; Kocur et al., 2020a,b). This, in turn, helps improve task performance. Multimodal feedback consistently improved task accuracy and shortened completion times throughout the studies (Marucci et al., 2021; Markov-Vetter et al., 2020; Yildirim, 2022; Cooper et al., 2018), while a strong sense of presence enhanced cognitive performance by increasing user engagement and attention (Chen et al., 2021; Maneuvrier et al., 2020; Seeliger et al., 2022). Information density was found to influence both cognitive and physiological task performance, with higher densities leading to longer task completion times (Trepkowski et al., 2019; Van de Merwe et al., 2019).
4.3.3 Impact of individual factors
Although the studies in this review did not strongly emphasize individual factors, they remain important and could be a focus of future research. Figure 7a highlights the number of papers discussing individual factors such as cognitive competency, age, and gender. Notably, 27 papers (34.17% of the total) reported the gender distribution of participants. Figure 8 shows the breakdown of male and female participants, revealing that most studies involved a majority of male participants. This raises the possibility that results might differ if female participants were more dominant, even though some research has underscored “Gender” as a significant factor in human task performance in XR systems (Kocur et al., 2020a). Additionally, several studies examined the influence of age on task performance (Banakou et al., 2018; Krasovsky et al., 2018; Ali et al., 2023). Figure 9 presents the distribution of age groups and ethnicities across the reviewed papers. It is clear from Figure 9 that studies primarily focused on adults (age: 26–40), and very less amount of research was conducted on older adults (age: 61+), with European (i.e., Caucasian) majority groups.
[image: Bar charts comparing factors in research papers. (a) Individual Factors: Cognitive competency, gender, and other attributes with counts. (b) Other Factors: Physiological training intensity, spatial understanding, and more with counts. Categories are physiological, cognitive, and psychophysiological.]FIGURE 7 | Distribution of Individual and Other Factors of HTP in XR. (a) The distribution of individual factors shows that age and cognitive load are the most frequently studied. (b) The distribution of other factors of HTP in XR shows limited studies on these types of factors.[image: Scatter plot showing data points classified by task type: psychophysiological (orange), physiological (gray), and cognitive (light blue). The x-axis represents male values, and the y-axis represents female values. Overlapping ellipses indicate data density.]FIGURE 8 | Distribution of male and female participants across three task categories: Psychophysiological, Physiological, and Cognitive tasks.[image: Bar graphs comparing the number of papers by ethnicity and age group. Panel (a) shows ethnicity with European and American groups leading around six papers each. Panel (b) shows age groups with Adults (26-40) leading over sixteen papers.]FIGURE 9 | Distribution of age and ethnicity. (a) Distribution of ethnicity. (b) Distribution of age.4.3.4 Impacts of other factors
Apart from system factors, individual factors, and UI/UX factors, there were some other factors identified in this review that were identified by the researchers during their studies but did not fall into any of these categories. For example, the physiological training intensity was marked influenced physiological task (Bauer and Andringa, 2020), even though it was not very significant. Spatial understanding and collaboration in a collaborative task had a significant impact on human task performance (Khalid et al., 2023; Drey et al., 2023). Additionally, Task familiarization improves human task performance as users get more comfortable with the system and tasks (Cometti et al., 2018). Figure 7b shows the number of papers in this review focusing on other factors except the aforementiond three categories along with their task setups.
5 DISCUSSION
This review adopts a broad perspective on human task performance in XR, encompassing both observable performance metrics (e.g., speed, accuracy, errors) and underlying cognitive, psychophysiological, and physiological outcomes that can influence or result from performance. In this section, we discuss potential research gaps (PRGs) related to human task performance in immersive virtual environments, analyzing the research questions from 45 VR papers, 23 AR papers, and 11 MR papers. This section identifies areas for further exploration within XR, highlighting gaps that need more research to understand human task performance in XR systems.
5.1 Major challenges in XR task performance
Human task performance in XR systems often declines due to factors such as increased cognitive and physiological load, cybersickness, and technological misalignments, all of which pose serious threats to performance. Cognitive load, frequently cited in this review (which is also described in a later section in detail), is a key factor that reduces performance by overwhelming mental capacity when users process large amounts of sensory information or handle complex interfaces (Chang et al., 2022). Physiological load, from prolonged XR use, leads to muscle fatigue, eye strain, and discomfort due to physical engagement or poorly optimized hardware (Wrzus et al., 2024). Cybersickness, caused by mismatches between visual and vestibular inputs, significantly disrupts performance, affecting accuracy, reaction time, and efficiency (Martirosov et al., 2022; Oh and Son, 2022). While real-time mitigation strategies have been explored (Islam and Islam, 2024), more research is needed, particularly regarding system factors of cybersickness, despite evidence for individual factors (Setu et al., 2024). These challenges can reduce XR’s effectiveness for tasks such as training, simulation, and collaboration, limiting user engagement and adoption.
5.2 Potential research gaps (PRGs)
The potential research gaps are described in this section in detail, along with possible future study directions.
5.2.1 PRG1: factors influencing task performance in XR
Factors identified in this review were classified into four major categories: system factors, UI/UX factors, individual factors, and other factors. UI/UX factors were the most dominant, with 25 papers (31.64% of the total) explicitly or implicitly discussing these factors. Some papers found a severe impact of such factors (Cooper et al., 2018; Marucci et al., 2021), while others reported marginal impact (Parton and Neumann, 2019). The prevalence of this category highlights the significant amount of research focused on user interface and experience design and its role in enhancing performance in XR environments. In our analysis, we found limited research examined system factors, primarily in the MR domain (Figure 6). While the findings on system factors are well-supported in terms of latency, FoV, optical flow, etc., (Khalid et al., 2023; Ghasemi et al., 2021; Wang et al., 2016), further investigation is needed to assess their impact on task performance in other immersive technologies beyond VR. Similarly, research on individual factors is limited, indicating the need for more studies in this area. Most of the studies in this category focused on adults and younger participants (Juliano et al., 2022), with other groups underrepresented. This gap warrants further exploration in future research. While there were no direct findings related to the impact of “Ethnicity”, it remains a factor that should be investigated in future studies (Figure 9). Additionally, some factors influencing task performance fall outside these categories (i.e., coordination, spatial Understanding, and such) but are nonetheless important (Figure 7). Comprehensive studies should address these overlooked factors to provide a more complete understanding of human task performance in XR systems.
5.2.2 PRG2: adaptability to different types of tasks
Minimal investigations have explored how different types of tasks influence user performance metrics in an immersive virtual environment. One of the recent papers utilized the research lack for decision-making collaborative time-critical tasks in the AR domain (Gower, 2022). Apart from that, Pan et al. (2018) found differential effects of sea-level-induced fears among users for different types of tasks. Furthermore, a limited amount of research focused on learning-based tasks and gaming in an XR system for assessing human task performance. A thorough investigation of these areas could provide significant insights into the effects of task variety on user engagement, learning outcomes, and performance efficiency. For example, understanding how immersive technologies may be optimized for learning objectives or conditions that cause stress might result in more efficient designs of XR applications.
5.2.3 PRG3: experimental design on XR task performance
Many studies on human task performance in XR systems do not fully examine the effects of different experimental designs, such as within-subject, between-subject, and mixed designs. These experimental approaches are crucial for accurately assessing the relative effectiveness of XR systems versus traditional real-world environments (Belcher and Halliwell, 2021; Figure 10). However, practical constraints like difficulties finding participants and balancing demographics like age and gender might make it difficult to carry out thorough investigations. This review found that approximately 35.4% of studies used a within-subject design, while 32.9% employed between-subject designs, and 31.6% utilized mixed designs. These findings suggest that using various study designs opens the door to different insights, as study design can significantly influence outcomes and findings in human task performance research within XR environments (Matovu et al., 2022). Furthermore, experimental design is crucial for future research since appropriate participant distribution in study setups is essential to providing reliable outcomes (Grübel, 2023). Additionally, experimental research should also focus on diverse age groups and ethnicities to perform user studies so that the gaps in these criteria can be bridged.
[image: A donut chart displays the distribution of three research designs. "Mixed Design" occupies 31.6% in orange, "Within Subject" holds 35.4% in gray, and "Between Subject" covers 32.9% in blue.]FIGURE 10 | Comparison for study design of papers in this review.5.2.4 PRG4: cognitive load in XR systems
Research on cognitive load in immersive virtual environments is still limited despite its critical importance. A high cognitive load can impair task performance, while too low a load may cause boredom and disengagement (Yin et al., 2020). Studies emphasize the need to explore optimal levels of immersion that balance the cognitive load for better performance outcomes (Agbo et al., 2023; Norouzi et al., 2019). Few papers specifically focus on the cognitive load itself rather than its contributing factors. However, evaluating these factors is essential when developing XR systems. For example, increased cognitive load may result from additional sensory information in VR, which can negatively impact learning abilities (Li et al., 2022). There is significant potential for future research to investigate cognitive load factors during virtual immersion. Various elements of an immersive environment, such as interface complexity, interaction modes, and sensory engagement, all influence cognitive load. A complex interface, for instance, increases cognitive demand, diverting users’ attention from primary tasks and diminishing task performance. Therefore, understanding these components is key to designing XR systems that optimize cognitive load and enhance user experience.
6 CONCLUSION
This review centered on human task performance within XR systems, exploring the various factors that influence it, the study designs employed, and the assessment techniques utilized. By conducting a comparative assessment between real-world and XR environments, this paper highlighted both the positive and negative impacts of XR systems on human task performance across different task settings. The analyses underscored how different study designs affect the reliability and validity of research findings in this domain. The evaluation methods discussed were essential not only for measuring performance outcomes but also for assessing participant engagement and satisfaction. A significant contribution of this review is the in-depth analysis of the factors impacting human task performance in XR systems. We extensively investigated these factors, representing their positive or negative effects based on several criteria, thereby providing valuable insights for future research. Notably, while much of the existing research has focused on system factors concerning human task performance, our review highlights the importance of other factors as well. Therefore, we recommend that future studies broaden their focus to include these additional factors to gain a more comprehensive understanding of human task performance in XR environments.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
NA: Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing – original draft, Writing – review and editing. PW: Formal Analysis, Methodology, Validation, Writing – review and editing. KH: Methodology, Validation, Writing – review and editing. SJ: Conceptualization, Formal Analysis, Investigation, Methodology, Validation, Writing – review and editing. HR: Methodology, Validation, Writing – review and editing. GT: Investigation, Validation, Writing – review and editing. MI: Investigation, Validation, Writing – review and editing. RI: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review and editing.
FUNDING
The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under grant HR00112420366.
CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
GENERATIVE AI STATEMENT
The author(s) declare that no Generative AI was used in the creation of this manuscript.
Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/frvir.2025.1589256/full#supplementary-material
REFERENCES
	Agbo, F., Olaleye, S., Bower, M., and Oyelere, S. S. (2023). Examining the relationships between students’ perceptions of technology, pedagogy, and cognition: the case of immersive virtual reality mini games to foster computational thinking in higher education. Smart Learn. Environ. 10, 16. doi:10.1186/s40561-023-00233-1

	Al-Ansi, A. M., Jaboob, M., Garad, A., and Al-Ansi, A. (2023). Analyzing augmented reality (ar) and virtual reality (vr) recent development in education. Soc. Sci. and Humanit. Open 8, 100532. doi:10.1016/j.ssaho.2023.100532

	Alazmi, H., and Alemtairy, G. (2024). The effects of immersive virtual reality field trips upon student academic achievement, cognitive load, and multimodal presence in a social studies educational context. Educ. Inf. Technol. 29, 22189–22211. doi:10.1007/s10639-024-12682-3

	Ali, N., Ullah, S., and Raees, M. (2023). The effect of task specific aids on students’ performance and minimization of cognitive load in a virtual reality chemistry laboratory. Comput. Animat. Virtual Worlds 34, e2194. doi:10.1002/cav.2194

	Andersen, S., Frendo, M., and Sorensen, M. (2020). Effects on cognitive load of tutoring in virtual reality simulation training. MedEdPublish 9, 51. doi:10.15694/mep.2020.000051.1

	Archer, D., and Steed, A. (2022). “Optimizing performance through stress and induction levels in virtual reality using autonomic responses,” in 2022 IEEE international symposium on mixed and augmented reality adjunct (ISMAR-Adjunct) , 622–627. doi:10.1109/ISMAR-Adjunct57072.2022.00129

	Au, D. (2022). “The impact of conflicting virtual and physical object distances in augmented reality,” in SPIE AR, VR, MR industry talks 2022 ( Bellingham, WA: International Society for Optics and Photonics SPIE), 11932. doi:10.1117/12.2632509

	Bacim, F., Ragan, E. D., Scerbo, S., Polys, N. F., Setareh, M., and Jones, B. D. (2013). “The effects of display fidelity, visual complexity, and task scope on spatial understanding of 3d graphs,” in Graphics interface .

	Bademosi, F., and Issa, R. R. A. (2019). “Implementation of augmented reality throughout the lifecycle of construction projects,” in Advances in informatics and computing in civil and construction engineering ed . Editors I. Mutis, and T. Hartmann (Cham: Springer). doi:10.1007/978-3-030-00220-6_37

	Baer, J. L., Vasavada, A., and Cohen, R. G. (2022). Posture biofeedback increases cognitive load. Psychol. Res. 86, 1892–1903. doi:10.1007/s00426-021-01622-2

	Banakou, D., Kishore, S., and Slater, M. (2018). Virtually being einstein results in an improvement in cognitive task performance and a decrease in age bias. Front. Psychol. 9, 917. doi:10.3389/fpsyg.2018.00917

	Barata, P. N. A., Ribeiro Filho, M., and Nunes, M. V. A. (2015). Consolidating learning in power systems: virtual reality applied to the study of the operation of electric power transformers. IEEE Trans. Educ. 58, 255–261. doi:10.1109/te.2015.2393842

	Batmaz, A. U., Machuca, M. D. B., Pham, D. M., and Stuerzlinger, W. (2019). “Do head-mounted display stereo deficiencies affect 3d pointing tasks in ar and vr?,” in 2019 IEEE conference on virtual reality and 3D user interfaces (VR) , 585–592. doi:10.1109/VR.2019.8797975

	Bauer, A. C. M., and Andringa, G. (2020). The potential of immersive virtual reality for cognitive training in elderly. Gerontology 66, 614–623. doi:10.1159/000509830

	Belcher, B., and Halliwell, J. (2021). Conceptualizing the elements of research impact: towards semantic standards. Humanit. Soc. Sci. Commun. 8, 183–186. doi:10.1057/s41599-021-00854-2

	Birenboim, A., Ben-Nun Bloom, P., Levit, H., and Omer, I. (2021). The study of walking, walkability and wellbeing in immersive virtual environments. Int. J. Environ. Res. Public Health 18, 364. doi:10.3390/ijerph18020364

	Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.

	Borjon, J. I., Abney, D. H., Yu, C., and Smith, L. B. (2021). Head and eyes: looking behavior in 12- to 24-month-old infants. J. Vis. 21, 18. doi:10.1167/jov.21.8.18

	Brooke, J. B. (1996). Sus: a ’quick and dirty’ usability scale. arXiv , 207–212. doi:10.1201/9781498710411-35

	Bugdadi, A., Sawaya, R., Bajunaid, K., Olwi, D., Winkler-Schwartz, A., Ledwos, N., et al. (2019). Is virtual reality surgical performance influenced by force feedback device utilized?J. Surg. Educ. 76, 262–273. doi:10.1016/j.jsurg.2018.06.012

	Buttussi, F., and Chittaro, L. (2018). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Trans. Vis. Comput. Graph. 24, 1063–1076. doi:10.1109/TVCG.2017.2653117

	Calogiuri, G., Litleskare, S., Fagerheim, K. A., Rydgren, T. L., Brambilla, E., and Thurston, M. (2018). Experiencing nature through immersive virtual environments: environmental perceptions, physical engagement, and affective responses during a simulated nature walk. Front. Psychol. 8, 2321. doi:10.3389/fpsyg.2017.02321

	Cevikbas, M., Bulut, N., and Kaiser, G. (2023). Exploring the benefits and drawbacks of ar and vr technologies for learners of mathematics: recent developments. Systems 11, 244. doi:10.3390/systems11050244

	Chang, Z., Bai, H., Zhang, L., Gupta, K., He, W., and Billinghurst, M. (2022). The impact of virtual agents’ multimodal communication on brain activity and cognitive load in virtual reality. Front. Virtual Real. 3, 995090. doi:10.3389/frvir.2022.995090

	Chen, H., Hung, T., and Yeh, C. (2021). Virtual reality in problem-based learning contexts: effects on the problem-solving performance, vocabulary acquisition and motivation of english language learners. J. Comput. Assisted Learn. 37, 851–860. doi:10.1111/jcal.12528

	Chiossi, F., Turgut, Y., Welsch, R., and Mayer, S. (2023). Adapting visual complexity based on electrodermal activity improves working memory performance in virtual reality. Proc. ACM Hum.-Comput. Interact. 7, 1–26. doi:10.1145/3604243

	Choi, M. J., and Kim, K. J. (2024). Effects of team-based mixed reality simulation program in emergency situations. PLoS One 19, e0299832. doi:10.1371/journal.pone.0299832

	Cohen, S., Kamarck, T., and Mermelstein, R. (1983). A global measure of perceived stress. J. Health Soc. Behav. 24, 385–396. doi:10.2307/2136404

	Cometti, C., Païzis, C., Casteleira, A., Pons, G., and Babault, N. (2018). Effects of mixed reality head-mounted glasses during 90 minutes of mental and manual tasks on cognitive and physiological functions. PeerJ 6, e5847. doi:10.7717/peerj.5847

	Cooper, N., Milella, F., Pinto, C., Cant, I., White, M., and Meyer, G. (2018). The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment. PLoS ONE 13, e0191846. doi:10.1371/journal.pone.0191846

	Darvishi-Bayazi, M. J., Law, A., Romero, S. M., Jennings, S., Rish, I., and Faubert, J. (2023). Beyond performance: the role of task demand, effort, and individual differences in ab initio pilots. Sci. Rep. 13, 14035. doi:10.1038/s41598-023-41427-4

	Darwish, M., Kamel, S., and Assem, A. (2023). Extended reality for enhancing spatial ability in architecture design education. Ain Shams Eng. J. 14, 102104. doi:10.1016/j.asej.2022.102104

	Dasdemir, Y. (2022). Cognitive investigation on the effect of augmented reality-based reading on emotion classification performance: a new dataset. Biomed. Signal Process. Control 78, 103942. doi:10.1016/j.bspc.2022.103942

	De Back, T. T., Tinga, A. M., and Louwerse, M. M. (2021). Learning in immersed collaborative virtual environments: design and implementation. Interact. Learn. Environ. 31, 5364–5382. doi:10.1080/10494820.2021.2006238

	Descheneaux, C. R., Reinerman-Jones, L., Moss, J., Krum, D., and Hudson, I. (2020). “Negative effects associated with hmds in augmented and virtual reality,” in Virtual, augmented and mixed reality. Design and interaction ed . Editors J. Y. C. Chen, and G. Fragomeni (Cham: Springer), 12190, 410–428. doi:10.1007/978-3-030-49695-1_27

	Deshpande, A., and Kim, I. (2018). The effects of augmented reality on improving spatial problem solving for object assembly. Adv. Eng. Inf. 38, 760–775. doi:10.1016/j.aei.2018.10.004

	do Couto, M. B. B. (2023). Virtual reality applied to welder training. Portugal: Master’s thesis, Instituto Politecnico do Porto.

	Dobrowolski, P., Skorko, M., Pochwatko, G., Myśliwiec, M., and Grabowski, A. (2021). Immersive virtual reality and complex skill learning: transfer effects after training in younger and older adults. Front. Virtual Real. 1, 604008. doi:10.3389/frvir.2020.604008

	Doggett, R., Sander, E. J., Birt, J., Ottley, M., and Baumann, O. (2021). Using virtual reality to evaluate the impact of room acoustics on cognitive performance and well-being. Front. Virtual Real. 2, 620503. doi:10.3389/frvir.2021.620503

	Drey, T., Montag, M., Vogt, A., Rixen, N., Seufert, T., Zander, S., et al. (2023). “Investigating the effects of individual spatial abilities on virtual reality object manipulation,” in Proceedings of the 2023 CHI conference on human factors in computing systems (New York, NY, USA: Association for Computing Machinery). doi:10.1145/3544548.3581004

	Dudley, J., Benko, H., Wigdor, D., and Kristensson, P. O. (2019). “Performance envelopes of virtual keyboard text input strategies in virtual reality,” in 2019 IEEE international symposium on mixed and augmented reality (ISMAR) , 289–300. doi:10.1109/ISMAR.2019.00027

	Edler, D., and Kersten, T. P. (2021). Virtual and augmented reality in spatial visualization. Kn. J. Cartogr. Geogr. Inf. 71, 221–222. doi:10.1007/s42489-021-00094-z

	Fazel, A., and Adel, A. (2024). Enhancing construction accuracy, productivity, and safety with augmented reality for timber fastening. Automation Constr. 166, 105596. doi:10.1016/j.autcon.2024.105596

	Fleming, H., Robinson, O. J., and Roiser, J. P. (2023). Measuring cognitive effort without difficulty. Cognitive, Affect. and Behav. Neurosci. 23, 290–305. doi:10.3758/s13415-023-01065-9

	Garrido, L. E., Frías-Hiciano, M., Moreno-Jiménez, M., Cruz, G. N., García-Batista, Z. E., Guerra-Peña, K., et al. (2022). Focusing on cybersickness: pervasiveness, latent trajectories, susceptibility, and effects on the virtual reality experience. Virtual Real. 26, 1347–1371. doi:10.1007/s10055-022-00636-4

	Ghasemi, Y., Singh, A., Kim, M., Johnson, A., and Jeong, H. (2021). Effects of head-locked augmented reality on user’s performance and perceived workload. Proc. Hum. Factors Ergonomics Soc. Annu. Meet. 65, 1094–1098. doi:10.1177/1071181321651169

	Ghrouz, A. K., Noohu, M. M., Dilshad Manzar, M., Warren Spence, D., BaHammam, A. S., and Pandi-Perumal, S. R. (2019). Physical activity and sleep quality in relation to mental health among college students. Sleep Breath. 23, 627–634. doi:10.1007/s11325-019-01780-z

	Girardeau, J. C., Ledru, R., Blondé, P., Sperduti, M., and Piolino, P. (2023). The benefits of mind wandering on a naturalistic prospective memory task. Sci. Rep. 13, 1–16. doi:10.1038/s41598-023-37996-z

	Gower, J. (2022). “Utilizing augmented reality for performance and decision-making in collaborative time-critical environments,” in 2022 IEEE international symposium on mixed and augmented reality adjunct (ISMAR-Adjunct) , 946–949. doi:10.1109/ISMAR-Adjunct57072.2022.00212

	Grübel, J. (2023). The design, experiment, analyse, and reproduce principle for experimentation in virtual reality. Front. Virtual Real. 4, 1069423. doi:10.3389/frvir.2023.1069423

	Habibnezhad, M., Puckett, J., Jebelli, H., Karji, A., Fardhosseini, M. S., and Asadi, S. (2020). Neurophysiological testing for assessing construction workers’ task performance at virtual height. Automation Constr. 113, 103143. doi:10.1016/j.autcon.2020.103143

	Han, J., Bae, S. H., and Suk, H.-J. (2017). “Comparison of visual discomfort and visual fatigue between head-mounted display and smartphone,” in Proceedings of the IS&T international symposium on electronic imaging: human vision and electronic imaging , 212–217. doi:10.2352/ISSN.2470-1173.2017.14.HVEI-146

	Harris, D. J., Arthur, T., Kearse, J., Olonilua, M., Hassan, E. K., De Burgh, T. C., et al. (2023). Exploring the role of virtual reality in military decision training. Front. Virtual Real. 4, 1165030. doi:10.3389/frvir.2023.1165030

	Hart, S. G., and Staveland, L. E. (1988). Development of nasa-tlx (task load index): results of empirical and theoretical research. Adv. Psychol. (Elsevier) 52, 139–183. doi:10.1016/S0166-4115(08)62386-9

	Harzing, A. W. (2007). Publish or perish. Available online at: https://harzing.com/resources/publish-or-perish.

	He, Y., Mun, S., and Yo, C. (2022). Vr and ar in the digital world: the impacts on consumer purchasing intentions. BCP Bus. and Manag. 20, 1047–1054. doi:10.54691/bcpbm.v20i.1098

	Hein, O., Rauschnabel, P., Hassib, M., and Alt, F. (2023). “Sick in the car, sick in vr? Understanding how real-world susceptibility to dizziness, nausea, and eye strain influences vr motion sickness,” in Human-computer interaction – INTERACT 2023 ed . Editors J. Abdelnour Nocera, M. Kristín Lárusdóttir, H. Petrie, A. Piccinno, and M. Winckler (Cham: Springer), 14143, 552–573. doi:10.1007/978-3-031-42283-6_30

	Hinricher, N., König, S., Schröer, C., and Backhaus, C. (2023). Effects of virtual reality and test environment on user experience, usability, and mental workload in the evaluation of a blood pressure monitor. Front. Virtual Real. 4, 1151190. doi:10.3389/frvir.2023.1151190

	Islam, M. J., and Islam, R. (2024). “Towards optimized cybersickness prediction for computationally constrained standalone virtual reality devices,” in 2024 IEEE conference on virtual reality and 3D user interfaces abstracts and workshops (VRW) , 1003–1004. doi:10.1109/VRW62533.2024.00298

	Jin, Y., Seo, J., Lee, J. G., Ahn, S., and Han, S. (2020). Bim-based spatial augmented reality (sar) for architectural design collaboration: a proof of concept. Appl. Sci. 10, 5915. doi:10.3390/app10175915

	Juliano, J. M., Schweighofer, N., and Liew, S.-L. (2022). Increased cognitive load in immersive virtual reality during visuomotor adaptation is associated with decreased long-term retention and context transfer. J. NeuroEngineering Rehabilitation 19, 106. doi:10.1186/s12984-022-01084-6

	Kalkan, O., Karabulut, S., and Hoke, G. (2021). Effect of virtual reality-based training on complex industrial assembly task performance. Arabian J. Sci. Eng. 46, 12697–12708. doi:10.1007/s13369-021-06138-w

	Kenemans, J. L., Donker, S. F., and Janssen, C. P. (2021). The effect of cognitive load on auditory susceptibility during automated driving. Hum. Factors 63, 58–72. doi:10.1177/0018720821998850

	Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. (1993). Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220. doi:10.1207/s15327108ijap0303_3

	Khalid, S., Alam, A., Fayaz, M., Din, F., Ullah, S., and Ahmad, S. (2023). Investigating the effect of network latency on users’ performance in collaborative virtual environments using navigation aids. Future Gener. Comput. Syst. 145, 68–76. doi:10.1016/j.future.2023.02.025

	Kichkaylo, P., and O’Neill, W. (1998). A new method for rapid assessment of motion sickness severity: the fast motion sickness scale (fms). Proc. Hum. Factors Ergonomics Soc. Annu. Meet. 42, 1464–1468. doi:10.1177/154193129804201928

	Kocur, M., Graf, S., and Schwind, V. (2020a). The impact of missing fingers in virtual reality. New York, NY, USA: Association for Computing Machinery. doi:10.1145/3385956.3418973

	Kocur, M., Kloss, M., Schwind, V., Wolff, C., and Henze, N. (2020b). Flexing muscles in virtual reality: effects of avatars’ muscular appearance on physical performance. Proc. Annu. Symposium Computer-Human Interact. Play 20, 193–205. doi:10.1145/3410404.3414261

	Krasovsky, T., Weiss, P. L., and Kizony, R. (2018). Older adults pay an additional cost when texting and walking: effects of age, environment, and use of mixed reality on dual-task performance. Phys. Ther. 98, 549–559. doi:10.1093/ptj/pzy047

	Lavoie, R., Main, K., King, C., and King, D. (2021). Virtual experience, real consequences: the potential negative emotional consequences of virtual reality gameplay. Virtual Real. 25, 69–81. doi:10.1007/s10055-020-00440-y

	Le Noury, P., Buszard, T., Reid, M., and Farrow, D. (2020). Examining the representativeness of a virtual reality environment for simulation of tennis performance. J. Sports Sci. 39, 412–420. doi:10.1080/02640414.2020.1823618

	Lee, K., and Kim, J. (2024). Relationship between psycho-physiological indicators and task performance under various indoor space designs for telecommuting environment by introducing mixed-reality. Sci. Rep. 14, 1977. doi:10.1038/s41598-024-52291-1

	Lee, J., Hwang, S., Ataya, A., and Kim, S. (2024). Effect of optical flow and user vr familiarity on curvature gain thresholds for redirected walking. Virtual Real. 28, 35. doi:10.1007/s10055-023-00935-4

	Lewis, J. R. (2018). The system usability scale: past, present, and future. Int. J. Human-Computer Interact. 34, 577–590. doi:10.1080/10447318.2018.1455307

	Li, W., Lu, X., Zhang, Y., and Zhao, H. (2019). “How the cognitive styles affect the immersive experience: a study of video-watching experience in vr,” in Design, user experience, and usability. User experience in advanced technological environments ed . Editors A. Marcus, and W. Wang (Cham: Springer), 11584, 163–177. doi:10.1007/978-3-030-23541-3_13

	Li, C., Yeom, S., Dermoudy, J., and Salas, K. (2022). “Cognitive load measurement in the impact of vr intervention in learning,” in 2022 international conference on advanced learning technologies (ICALT) , 325–329. doi:10.1109/ICALT55010.2022.00103

	Liao, Y.-C., Chen, I.-S., Lin, Y.-L., Chen, Y.-C., and Hsu, W.-C. (2019). Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: a randomized control trial. Front. Aging Neurosci. 11, 162. doi:10.3389/fnagi.2019.00162

	Liebermann, A., Lente, I., Huth, K. C., and Erdelt, K. (2024). Impact of a virtual prosthetic case planning environment on perceived immersion, cognitive load, authenticity and learning motivation in dental students. Eur. J. Dent. Educ. 28, 9–19. doi:10.1111/eje.12910

	Lin, C. J., Chen, J., Cheng, Y., and Sun, L. (2015). Effects of displays on visually controlled task performance in three-dimensional virtual reality environment. Hum. Factors Ergonomics Manuf. and Serv. Industries 25, 523–533. doi:10.1002/hfm.20566

	Lin, Y., Wang, G., and Suh, A. (2020). “Exploring the effects of immersive virtual reality on learning outcomes: a two-path model,” in Augmented cognition. Human cognition and behavior. HCII 2020 ed . Editors D. Schmorrow, and C. Fidopiastis (Cham: Springer), 12197, 86–105. doi:10.1007/978-3-030-50439-7_6

	Liu, J.-S., Elvezio, C., Tversky, B., and Feiner, S. (2021). Using multi-level precueing to improve performance in path-following tasks in virtual reality. IEEE Trans. Vis. Comput. Graph. 27, 4311–4320. doi:10.1109/TVCG.2021.3106476

	Maloney, D. (2019). “[dc] embodied virtual avatars and potential negative effects on implicit racial bias,” in 2019 IEEE conference on virtual reality and 3D user interfaces (VR) , 1373–1374. doi:10.1109/VR.2019.8798008

	Maneuvrier, A., Decker, L. M., Ceyte, H., Fleury, P., and Renaud, P. (2020). Presence promotes performance on a virtual spatial cognition task: impact of human factors on virtual reality assessment. Front. Virtual Real. 1, 571713. doi:10.3389/frvir.2020.571713

	Markov-Vetter, D., Luboschik, M., Tariqul Islam, A., Gauger, P., and Staadt, O. (2020). “The effect of spatial reference on visual attention and workload during viewpoint guidance in augmented reality,” in Proceedings of the 2020 ACM symposium on spatial user interaction (SUI ’20) (New York, NY, USA: Association for Computing Machinery), 1–10. doi:10.1145/3385959.3418449

	Marougkas, A., Troussas, C., Krouska, A., and Sgouropoulou, C. (2024). How personalized and effective is immersive virtual reality in education? A systematic literature review for the last decade. Multimedia Tools Appl. 83, 18185–18233. doi:10.1007/s11042-023-15986-7

	Marre, Q., Caroux, L., and Sakdavong, J. C. (2021). Video game interfaces and diegesis: the impact on experts and novices’ performance and experience in virtual reality. Int. J. Human–Computer Interact. 37, 1089–1103. doi:10.1080/10447318.2020.1870819

	Martirosov, S., Bureš, M., and Zítka, T. (2022). Cyber sickness in low-immersive, semi-immersive, and fully immersive virtual reality. Virtual Real. 26, 15–32. doi:10.1007/s10055-021-00507-4

	Marucci, M., Di Flumeri, G., Borghini, G., Sciaraffa, N., Scandola, M., Pavone, E. F., et al. (2021). The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence. Sci. Rep. 11, 4831–15. doi:10.1038/s41598-021-84196-8

	Matovu, H., Ungu, D., Won, M., Tsai, C.-C., Treagust, D. F., Mocerino, M., et al. (2022). Immersive virtual reality for science learning: design, implementation, and evaluation. Stud. Sci. Educ. 59, 205–244. doi:10.1080/03057267.2022.2082680

	McCormack, H. M., Horne, D. J., and Sheather, S. (1988). The measurement of pain using the visual analogue scale. J. Psychosomatic Res. 22, 191–198. doi:10.1016/0022-3999(88)90038-8

	Mittelstaedt, J. M., Wacker, J., and Stelling, D. (2019). Vr aftereffect and the relation of cybersickness and cognitive performance. Virtual Real. 23, 143–154. doi:10.1007/s10055-018-0370-3

	Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLoS Med. 6, e1000097. doi:10.1371/journal.pmed.1000097

	Mondellini, M., Pirovano, I., Colombo, V., Arlati, S., Sacco, M., Rizzo, G., et al. (2023). A multimodal approach exploiting eeg to investigate the effects of vr environment on mental workload. Int. J. Human–Computer Interact. 40, 6566–6578. doi:10.1080/10447318.2023.2258017

	Moon, H. S., Orr, G., and Jeon, M. (2022). Hand tracking with vibrotactile feedback enhanced presence, engagement, usability, and performance in a virtual reality rhythm game. Int. J. Human-Computer Interact. 39, 2840–2851. doi:10.1080/10447318.2022.2087000

	Mostajeran, F., Fischer, M., Steinicke, F., and Kühn, S. (2023). Effects of exposure to immersive computer-generated virtual nature and control environments on affect and cognition. Sci. Rep. 13, 220–13. doi:10.1038/s41598-022-26750-6

	Mystakidis, S., and Lympouridis, V. (2024). “Designing simulations in the metaverse: a blueprint for experiential immersive learning experiences,” in Augmented and virtual reality in the metaverse ed . Editor V. Geroimenko (Springer, Cham: Springer Series on Cultural Computing). doi:10.1007/978-3-031-57746-8_4

	Nenna, F., Zanardi, D., and Gamberini, L. (2022). Human-centric telerobotics: investigating users’ performance and workload via vr-based eye-tracking measures.

	Neo, J. R., Won, A. S., and Shepley, M. M. (2021). Designing immersive virtual environments for human behavior research. Front. Virtual Real. 2, 603750. doi:10.3389/frvir.2021.603750

	Norouzi, N., Erickson, A., Kim, K., Schubert, R., LaViola, J., Bruder, G., et al. (2019). “Effects of shared gaze parameters on visual target identification task performance in augmented reality,” in Symposium on spatial user interaction (New York, NY, USA: Association for Computing Machinery). doi:10.1145/3357251.3357587

	Odermatt, I. A., Buetler, K. A., Wenk, N., Ozen, O., Nef, T., Mast, F. W., et al. (2021). Congruency of information rather than body ownership enhances motor performance in highly embodied virtual reality. Front. Neurosci. 15, 678909. doi:10.3389/fnins.2021.678909

	Oh, H., and Son, W. (2022). Cybersickness and its severity arising from virtual reality content: a comprehensive study. Sensors (Basel) 22, 1314. doi:10.3390/s22041314

	Pan, D., Xu, Q., Ma, S., and Zhang, K. (2018). “The impact of fear of the sea on working memory performance: a research based on virtual reality,” in Proceedings of the 24th ACM symposium on virtual reality software and technology (VRST ’18) (New York, NY, USA: Association for Computing Machinery). doi:10.1145/3281505.3281522

	Parton, B. J., and Neumann, D. L. (2019). The effects of competitiveness and challenge level on virtual reality rowing performance. Psychol. Sport Exerc. 41, 191–199. doi:10.1016/j.psychsport.2018.06.010

	Pastel, S., Chen, C.-H., Petri, K., and Witte, K. (2020). Effects of body visualization on performance in head-mounted display virtual reality. PLOS ONE 15, e0239226–18. doi:10.1371/journal.pone.0239226

	Philippe, S., Souchet, A. D., Lameras, P., Petridis, P., Caporal, J., Coldeboeuf, G., et al. (2020). Multimodal teaching, learning, and training in virtual reality: a review and case study. Virtual Real. and Intelligent Hardw. 2, 421–442. doi:10.1016/j.vrih.2020.07.008

	Quesnel, D., and Riecke, B. E. (2018). Are you awed yet? How virtual reality gives us awe and goose bumps. Front. Psychol. 9, 2158. doi:10.3389/fpsyg.2018.02158

	Radianti, J., Majchrzak, T. A., Fromm, J., and Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput. and Educ. 147, 103778. doi:10.1016/j.compedu.2019.103778

	Rauschnabel, P. A., Felix, R., Hinsch, C., Shahab, H., and Alt, F. (2022). What is xr? Towards a framework for augmented and virtual reality. Comput. Hum. Behav. 133, 107289. doi:10.1016/j.chb.2022.107289

	Redlinger, E., Glas, B., and Rong, Y. (2022). Impact of visual game-like features on cognitive performance in a virtual reality working memory task: within-Subjects experiment. JMIR Serious Games 10, e35295. doi:10.2196/35295

	Rosenfeldt Nielsen, M., Kristensen, E. Q., Jensen, R. O., Mollerup, A. M., Pfeiffer, T., and Graumann, O. (2021). Clinical ultrasound education for medical students: virtual reality versus e-learning, a randomized controlled pilot trial. Ultrasound Q. 37, 292–296. doi:10.1097/RUQ.0000000000000558

	Roy, H., Wasylyshyn, N., Spangler, D. P., Gamble, K. R., Patton, D., Brooks, J. R., et al. (2019). Linking emotional reactivity between laboratory tasks and immersive environments using behavior and physiology. Front. Hum. Neurosci. 13, 54. doi:10.3389/fnhum.2019.00054

	Rubio-Tamayo, J. L., Gértrudix, M., and García, F. (2017). Immersive environments and virtual reality: systematic review and advances in communication, interaction and simulation. Multimodal Technol. Interact. 1, 21. doi:10.3390/mti1040021

	Scharinger, C., Prislan, L., Bernecker, K., and Ninaus, M. (2023). Gamification of an n-back working memory task – is it worth the effort? An eeg and eye-tracking study. Biol. Psychol. 179, 108545. doi:10.1016/j.biopsycho.2023.108545

	Schmid, R., and Wagner-Hartl, V. (2023). “Emotional experience in real and virtual environments – does prior vr experience matter?,” in HCI international 2023 – late breaking papers ed . Editors J. Chen, G. Fragomeni, and X. Fang (Cham: Springer), 14058, 190–211. doi:10.1007/978-3-031-48050-8_14

	Schwind, V., Knierim, P., Haas, N., and Henze, N. (2019). “Using presence questionnaires in virtual reality,” in Proceedings of the 2019 CHI conference on human factors in computing systems , 1–12.

	Seeliger, A., Netland, T. H., and Feuerriegel, S. (2022). Augmented reality for machine setups: task performance and usability evaluation in a field test. Procedia CIRP 107, 570–575. doi:10.1016/j.procir.2022.05.027

	Setu, J. N., Le, J. M., Kundu, R. K., Giesbrecht, B., Höllerer, T., Hoque, K. A., et al. (2024). Mazed and confused: a dataset of cybersickness, working memory, mental load, physical load, and attention during a real walking task in vr. arXiv Prepr. arXiv:2409.06898 , 1048–1057. doi:10.1109/ismar62088.2024.00121

	Shaw, L. A., Buckley, J., Corballis, P. M., Lutteroth, C., and Wünsche, B. C. (2016). Competition and cooperation with virtual players in an exergame. peerj Comput. Sci. 2 (oct. 2016), e92. doi:10.7717/peerj-cs.92

	Son, H., Ross, A., Mendoza-Tirado, E., and Lee, L. J. (2022). Virtual reality in clinical practice and research: viewpoint on novel applications for nursing. JMIR Nurs. 5, e34036. doi:10.2196/34036

	Stanney, K., Kingdon, K., Graeber, D., and Kennedy, R. (2002). Human performance in immersive virtual environments: effects of exposure duration, user control, and scene complexity. Hum. Perform. 15, 339–366. doi:10.1207/S15327043HUP1504_03

	Stanney, K., Lawson, B. D., Rokers, B., Dennison, M., Fidopiastis, C., Stoffregen, T., et al. (2020). Identifying causes of and solutions for cybersickness in immersive technology: reformulation of a research and development agenda. Int. J. Human–Computer Interact. 36, 1783–1803. doi:10.1080/10447318.2020.1828535

	Stanney, K. M., Archer, J., Skinner, A., Horner, C., Hughes, C., Brawand, N. P., et al. (2021). Performance gains from adaptive extended reality training fueled by artificial intelligence. J. Def. Model. Simul. 19, 195–218. doi:10.1177/15485129211064809

	Svarverud, E. (2022). “Dynamic accommodation is affected after performing an executive function task in mixed reality,” in SPIE AR, VR, MR industry talks 2022 ( Bellingham, WA: International Society for Optics and Photonics SPIE), 11932. doi:10.1117/12.2632507

	Tan, N. C., Lim, J. E., Allen, J. C., Wong, W. T., Quah, J. H. M., Muthulakshmi, P., et al. (2022). Age-related performance in using a fully immersive and automated virtual reality system to assess cognitive function. Front. Psychol. 13, 847590. doi:10.3389/fpsyg.2022.847590

	Tang, Y. M., Au, K. M., Lau, H. C. W., Ho, G. T. S., and Wu, C. H. (2020). Evaluating the effectiveness of learning design with mixed reality (mr) in higher education. Virtual Real. 24, 797–807. doi:10.1007/s10055-020-00427-9

	Tang, M., Liu, X., Dong, Y., Tang, Z., Huo, H., Fan, L., et al. (2023). Absence of inertial load on hand decreases task performance in virtual reality interaction. Int. J. Human–Computer Interact. 40, 3219–3233. doi:10.1080/10447318.2023.2184960

	Teng, M. F. (2022). The effectiveness of multimedia input on vocabulary learning and retention. Innovation Lang. Learn. Teach. 17, 738–754. doi:10.1080/17501229.2022.2131791

	Tremmel, C., Herff, C., Sato, T., Rechowicz, K., Yamani, Y., and Krusienski, D. J. (2019). Estimating cognitive workload in an interactive virtual reality environment using eeg. Front. Hum. Neurosci. 13, 401. doi:10.3389/fnhum.2019.00401

	Trepkowski, C., Eibich, D., Maiero, J., Marquardt, A., Kruijff, E., and Feiner, S. (2019). “The effect of narrow field of view and information density on visual search performance in augmented reality,” in Proceedings of the 2019 IEEE conference on virtual reality and 3D user interfaces (VR) ( IEEE), 575–584. doi:10.1109/VR.2019.8798312

	Tussyadiah, I. P., Wang, D., Jung, T. H., and Tom Dieck, M. (2018). Virtual reality, presence, and attitude change: empirical evidence from tourism. Tour. Manag. 66, 140–154. doi:10.1016/j.tourman.2017.12.003

	Van de Merwe, D. B., Van Maanen, L., Ter Haar, F. B., Van Dijk, R. J. E., Hoeba, N., and Van der Stap, N. (2019). “Human-robot interaction during virtual reality mediated teleoperation: how environment information affects spatial task performance and operator situation awareness,” in Virtual, augmented and mixed reality. Applications and case studies ed . Editors J. Chen, and G. Fragomeni (Cham: Springer), 11575, 163–177. doi:10.1007/978-3-030-21565-1_11

	Vekony, T., Pleche, C., Pesthy, O., Nemeth, D., and Janacsek, K. (2022). Speed and accuracy instructions affect two aspects of skill learning differently. npj Sci. Learn. 7, 27. doi:10.1038/s41539-022-00144-9

	Wang, Y., Liu, W., Meng, X., Fu, H., Zhang, D., Kang, Y., et al. (2016). Development of an immersive virtual reality head-mounted display with high performance. Appl. Opt. 55, 6969–6977. doi:10.1364/AO.55.006969

	Wang, X., Southwick, D., Robinson, I., Nitsche, M., Resch, G., Mazalek, A., et al. (2024). Prolonged exposure to mixed reality alters task performance in the unmediated environment. Sci. Rep. 14, 18938. doi:10.1038/s41598-024-69116-w

	Wells, T., and Miller, G. (2020). The effect of virtual reality technology on welding skill performance. J. Agric. Educ. 61, 152–171. doi:10.5032/jae.2020.01152

	Wickens, C. D., Helton, W. S., Hollands, J. G., and Banbury, S. (2021). Engineering psychology and human performance. 5th edn. Abingdon, Oxfordshire, United Kingdom: Routledge. doi:10.4324/9781003177616

	Willemsen, P., Jaros, W., McGregor, C., Downs, E., Berndt, M., and Passofaro, A. (2018). “Memory task performance across augmented and virtual reality,” in 2018 IEEE conference on virtual reality and 3D user interfaces (VR) , 723–724. doi:10.1109/VR.2018.8446457

	Witmer, B. G., and Singer, M. J. (1998). Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators and Virtual Environ. 7, 225–240. doi:10.1162/105474698565686

	Wong, E., Hui, R., and Kong, H. (2023). Perceived usefulness of, engagement with, and effectiveness of virtual reality environments in learning industrial operations: the moderating role of openness to experience. Virtual Real. 27, 2149–2165. doi:10.1007/s10055-023-00793-0

	Wrzus, C., Frenkel, M. O., and Schöne, B. (2024). Current opportunities and challenges of immersive virtual reality for psychological research and application. Acta Psychol. 249, 104485. doi:10.1016/j.actpsy.2024.104485

	Wu, J., Guo, R., Wang, Z., and Zeng, R. (2019). Integrating spherical video-based virtual reality into elementary school students’ scientific inquiry instruction: effects on their problem-solving performance. Interact. Learn. Environ. 29, 496–509. doi:10.1080/10494820.2019.1587469

	Yang, Z., Shi, J., Jiang, W., Sui, Y., Wu, Y., Ma, S., et al. (2019). Influences of augmented reality assistance on performance and cognitive loads in different stages of assembly task. Front. Psychol. 10, 1703. doi:10.3389/fpsyg.2019.01703

	Yang, Y., Sun, X., Gao, J., Zhou, Z., Zhang, S., and Yang, C. (2024). “Identifying influencing factors of immersion in remote collaboration,” in Virtual, augmented and mixed reality ed . Editors J. Chen, and G. Fragomeni (Cham: Springer), 14707, 128–144. doi:10.1007/978-3-031-61044-8_10

	Yi, K., Wu, Y., Liu, Y., and Xu, Z. (2024). Immersive empathy in digital music listening: ideas and sustainable paths for developing auditory experiences in museums. SAGE Open 14, 21582440241256339. doi:10.1177/21582440241256339

	Yildirim, C. (2022). Point and select: effects of multimodal feedback on text entry performance in virtual reality. Int. J. Human–Computer Interact. 39, 3815–3829. doi:10.1080/10447318.2022.2107330

	Yin, J., Chng, C., Wong, P., Ho, N., Chua, M., and Chui, C. (2020). Vr and ar in human performance Research—an nus experience. Virtual Real. and Intelligent Hardw. 2, 381–393. doi:10.1016/j.vrih.2020.07.009

	Zhang, C. (2020). The why, what, and how of immersive experience. IEEE Access 8, 90878–90888. doi:10.1109/access.2020.2993646

	Zhang, B., and Robb, N. (2021). A comparison of the effects of augmented reality n-back training and traditional two-dimensional n-back training on working memory. SAGE Open 11, 21582440211014507. doi:10.1177/21582440211014507


Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2025 Ahmed, Wu, Huang, Jung, Rheem, Tan, Imani and Islam. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
OPS/images/frvir-06-1589256-g005.jpg
Categories

System Factors

UI/UX Factors

Individual Factors

Other Factors

BvVvrR WAR [ MR

Number of Papers





OPS/images/frvir-06-1589256-g006.jpg
Multimodal feedback
Sense of presence
Information Density
Embodiment
Interface design
Multi-level precueing

Room acoustics

[ Physiological [ Cognitive I Psychophysiological

(a) UI/UX Factors
[EE]
N=1 EE]
________N-5 | (b) System Factors
N=1
Latency N=2
FoV N=2 N=1
OF I'EX

Scene Complexity
Interaction type

User movement control
Task difficulty
Cybersickness

Congruency of information

Exposure Duration IEN
Dsiplay Technology
Intertia Load WEF!

N=2 Display Fidelity EF]

Representativeness [

o
-
N
w
»
v
o
-
N

Number of Papers Number of Papers





OPS/images/frvir-06-1589256-g003.jpg
Screening Identification

Eligibility

Included

N = 6878 records were
identified from PoP database
* Searched by pre-specified
keywords

* No patents

* Year (2015-2024)

N = 2718 records
after duplicates
removed

N = 265 records were
screened

N = 113 full-text records
were assessed for
eligibility

N = 79 studies were
included in the
quantitative synthesis

N = 2453 records were excluded

* No relevant keywords (e.g. AR/VR/MR) in title
(N = 1568)

* Review, survey, meta-analysis, pilot-studies (N
=798)

« Non-english (N = 87)

N = 152 records were excluded

* Marked as irrelevant by reading abstract (N =
104)

* Full-text unavailable (N = 11)

« Studies not involving human participants (N =
37)

N =34 records excluded

* Not relevant to immersive systems (N = 12)
« Not in the domain of HTP (N = 18)

« Irrelevant study design (N = 4)





OPS/images/frvir-06-1589256-g004.jpg
I Within Subject [l Between Subject [ Mixed Design

(a) Cognitive Tasks in XR (b) Physiological Tasks in XR (c) Psychophysiological Tasks in XR

Memory Task Motor Sports Cognitive Inhibition

Rehabilation Motor Coordination

Training

Learning Training Occupational Training

Collaborative Task Assembly
Gait and Mobility Assessment
Spatial Processing Motor Functions

Game Based

Walking

o] 1 2 3 4 5 6
Number of Papers Number of Papers Number of Papers





OPS/images/frvir-06-1589256-g009.jpg
Mixed/Other

African

American

European

Asian

(a)Number of Papers by Ethnicity

o

Number of Papers

1 2 3 4 5 6 7

(b)Number of Papers by Age Group

Older Adults (61+)

Middle-Aged Adults (41-60)

Adults (26-40)

Young Adults (18-25)

Adolescents (13-17) 1

Children (0-12) 4

0 2 4 6 8 1012 14 16 18

Number of Papers





OPS/images/frvir-06-1589256-g007.jpg
I Physiological I cog

[ Psychophysiological

(a) Individual Factors (b) Other Factors

Cognitive competency
Gender =

Physiological competency s Spatial understanding
Prior experience NIEFI—

Age

Skill level NErm—— Task familliarization
o 1 2

Physiological training intensity

Coordination

o 1
Number of Papers Number of Papers





OPS/images/frvir-06-1589256-g008.jpg
Female

25 A
)
®
20 A @
°
154
°
®
10 A ® o
e o
°
°
5 1 . Task Type
® Psychophysiological
® Physiological
® Cognitive
0 L I
0 10 20 30 40 50 60 70

Male





OPS/xhtml/nav.xhtml
Table of Contents

		Cover

		Human task performance and associated internal states in extended reality: a systematic review of cognitive, psychophysiological, and physiological dimensions		1 INTRODUCTION

		2 HUMAN TASK PERFORMANCE IN EXTENDED REALITY		2.1 Human-performed task categories in XR		2.1.1 Cognitive tasks

		2.1.2 Physiological tasks

		2.1.3 Psychophysiological tasks





		2.2 Factors of human task performance		2.2.1 System factors

		2.2.2 UI/UX factors

		2.2.3 Individual factors

		2.2.4 Other factors





		2.3 Measures of human task performance		2.3.1 Subjective measures

		2.3.2 Objective measures









		3 REVIEW METHOD		3.1 Keyword and search criteria

		3.2 Paper extraction process		3.2.1 Identification

		3.2.2 Screening

		3.2.3 Eligibility

		3.2.4 Inclusion









		4 RESULTS		4.1 Tasks performance in XR		4.1.1 Cognitive task performance in XR

		4.1.2 Physiological task performance in XR

		4.1.3 Psychophysiological task performance in XR





		4.2 Impacts of XR on human task performance

		4.3 Factors of human task performance in an XR system		4.3.1 Impact of system factors

		4.3.2 Impact of UI/UX factors

		4.3.3 Impact of individual factors

		4.3.4 Impacts of other factors









		5 DISCUSSION		5.1 Major challenges in XR task performance

		5.2 Potential research gaps (PRGs)		5.2.1 PRG1: factors influencing task performance in XR

		5.2.2 PRG2: adaptability to different types of tasks

		5.2.3 PRG3: experimental design on XR task performance

		5.2.4 PRG4: cognitive load in XR systems









		6 CONCLUSION

		DATA AVAILABILITY STATEMENT

		AUTHOR CONTRIBUTIONS

		FUNDING

		CONFLICT OF INTEREST

		GENERATIVE AI STATEMENT

		SUPPLEMENTARY MATERIAL

		REFERENCES









OPS/images/cover.jpg
’ frontiers | Frontiers in Virtual Reality

Human task performance and
associated internal states in
extended reality: a systematic
review of cognitive,
psychophysiological, and
physiological dimensions





OPS/images/frvir-06-1589256-g001.jpg





OPS/images/frvir-06-1589256-g002.jpg
"""""""""""""""""""""""" p Factors of Human Task Performance

Performance Measures ] 3 1—1—1—1 L
Subjective Measures System UI/UX Individual Other ;

Factors Factors Factors Factors

Objective Measures et

Type of the Tasks Type of the Inmersion

(T
5 Cognitive Tasks : : ’
Physiological Task a -
Psychophysiological Tasks

’ i Augmented Reality Virtual Reality






OPS/images/frvir-06-1589256-g010.jpg
Mixed Design

31.6% Within Subject

35.4%

Between Subject
32 9%









OPS/images/crossmark.jpg
©

|





OPS/images/logo.jpg
P frontiers | Frontiers in Virtual Reality





