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Introduction: Virtual reality (VR) has been increasingly used across safety-critical
industries for training procedures because it allows for practice without real-
world risks. Its effectiveness may be further influenced by individual differences.
This paper examined technology features, including immersion and interactivity,
and individual differences factors, specifically sex, spatial ability and personality
traits, that could affect learning in VR, particularly within the context of procedural
training. The study aimed to understand how VR functions and to identify who
benefits most from its use.

Methods: In the experiment, 79 undergraduate students were trained to conduct
an exterior preflight inspection of a passenger aircraft in VR, with varying levels of
immersion (desktop PC vs. immersive VR) and interactivity (passive learning vs.
active exploration). Participants were randomly assigned to one of four training
groups: PC Passive, PC Active, VR Passive, and VR Active. The PC group used a
mouse and keyboard, while the VR group used a head-mounted display and hand
controllers to interact with the VR environment. Individual differences in sex,
spatial ability, and personality traits were also investigated to determine their
effects on procedural learning outcomes. Learning outcomes were assessed
using two measures: a practical assessment using the desktop PC or immersive
VR and a post-knowledge test. Data analyses were conducted using analyses of
covariance (ANCOVAs) to examine the individual and combined effects of
interactivity and immersion on procedural learning outcomes while controlling
for pre-knowledge test scores. Additionally, stepwise multiple regression
analyses were employed to evaluate the effects of individual differences on
procedural learning.

Results: The results indicated no difference in procedural learning outcomes
across the levels of immersion and interactivity. Specific individual differences,
including sex, and spatial ability, however, significantly predicted VR procedural
learning outcomes.

Discussion: Our findings challenge the assumption that higher immersion and
higher interactivity alone, or in combination, always lead to better procedural
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learning outcomes. Furthermore, the study emphasizes the importance of
considering individual differences when implementing VR in learning
environments, as they play a critical role in shaping learning outcomes.

KEYWORDS

virtual reality, procedural training, individual differences, immersion, interactivity,
technology-human interaction

1 Introduction

With the advancements in technology, immersive virtual reality
(IVR) has become popular in research, education and training. The
ability to create immersive and interactive learning environments
offers unique opportunities for enhancing skill acquisition and
retention. VR, as used here, implies “reality simulated virtually”
(Li et al., 2020), and it affords learners in various fields the
opportunity to acquire skills in a fully immersed and highly
interactive environment.

Learners can progress at their own pace, benefiting from
personalization and training adaptability, for example, by using
gamification techniques (Marougkas et al., 2024). VR has been
recognized as an effective educational tool because it enables
users to visualize, explore, manipulate, and interact with objects
and environments in a simulated, computer-generated space, which
may encourage deeper learning (Parong and Mayer, 2018; Petersen
et al., 2022). Safety-critical industries such as aviation (Guthridge
and Clinton-Lisell, 2023), medicine (Li et al., 2017) and construction
(Akindele et al., 2024) often require that certain skills be mastered
before they can be performed efficiently in real-world settings. These
industries have benefitted from the realism offered by learning
procedures in VR, taking full advantage of the agency and
fidelity it affords learners (Scorgie et al., 2024).

Using virtual, immersive, and interactive simulations, trainees
can learn in realistic simulated experimental environments and
examine various phenomena, thereby advancing their cognitive
engagement and understanding (Lin et al., 2024; Wang et al.,
2024). Since practice is an important part of procedural training
(Ganier et al., 2014; Lorenzis et al., 2023), and VR requires some
activity from the learner, it has been found that VR could serve as a
valuable resource for learning procedures, offering several
advantages and applications in comprehension and retention
(Radianti et al., 2020). This has made VR particularly valuable in
fields where hands-on experience is crucial, offering a safe and
controlled environment for learners to master complex procedures
before applying them in actual work settings. VR can help pilots
learn to perform risky maneuvers (Hight et al., 2022), doctors can
utilize VR for surgical training (Ntakakis et al., 2023), and those in
manufacturing can use VR for training on emergency drills (Scorgie
et al., 2024). However, studies have reported mixed findings on how
the technology features of VR—immersion and interactivity—affect
procedural learning outcomes.

Researchers have demonstrated that IVR can effectively enhance
motivation and engagement (Makransky et al., 2019), but it can also
pose challenges during learning, particularly because learners may
become distracted by elements unrelated to the instructional goals,
thus increasing extraneous cognitive load. In VR, the immersive
visual experience can impose an additional visual burden on learners

(Mayer et al., 2023; Yang et al., 2023). This heightened visual
demand is also associated with simulation sickness, which can
negatively impact learning procedures.

Other researchers have found no significant differences in
learning procedures in immersive three-dimensional versus non-
immersive two-dimensional VR environments (Barrett et al., 2022;
Urhahne et al., 2011). Yet others have found positive effects of
immersive VR in learning procedures (Coban et al., 2022; Hamilton
et al., 2021). Furthermore, the high interactivity afforded by VR is
believed to enable learners to take on an active role in their learning,
allowing them to navigate through the material at their own pace. If
the interactions help in the generative processing of the content, it
may be more effective than just being in an immersive condition
(Jang et al., 2017; Johnson et al., 2022) However, Khorasani et al.
(2023) argued that increased interactivity does not necessarily lead
to better learning performance, particularly for procedural training
tasks. They emphasized the need to consider factors such as the
complexity of interactions, the alignment between the technology
and the learning task, and the cognitive demands placed on learners.

While previous studies have explored how immersion and
interactivity impact learning in VR environments, only very few
investigations have addressed both immersion and interactivity.
One notable study in this context is Johnson et al. (2022), who
investigated the effects of immersion (desktop display vs. HMD) and
interaction modality (gesture vs. voice) on procedural learning and
also studied how the effects were moderated by spatial ability. Their
findings suggested that gesture-based VR may be particularly
beneficial for learners with lower spatial ability. However, the
generalizability of their work was constrained by a focus on a
narrow task type, a limited participant sample, and reliance on
written recall measures alone. In contrast, our present study
integrated both system-level manipulations (immersion ×
interactivity) and person-level factors (sex, spatial ability, and
personality traits) within a 2 × 2 factorial design, using a realistic
aviation inspection task. Moreover, learning outcomes were assessed
using both practical performance and knowledge-based measures,
offering a more ecologically valid understanding of procedural
training effectiveness in VR.

2 Related work

2.1 VR in procedural learning

Learning procedures involve mastering a sequence of tasks or
steps, often with a focus on accuracy and efficiency. It involves
acquiring skills and knowledge through the repetition of specific
tasks. Training using VR is especially effective for learning
procedures, as it supports skill acquisition, retention, and
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transfer, and can improve both the effectiveness and efficiency of
training (Chang and Hung, 2019; Jongbloed et al., 2024). In the
study described here, the procedure to be learned was an exterior
preflight inspection (Table 1 provides details of the training task).
An exterior preflight inspection is a visual examination of the
external components of an aircraft to ensure they are in good
condition for safe flight operations.

VR may be particularly effective for learning procedures
(Conrad et al., 2024; Jongbloed et al., 2024), with significant
benefits in helping learners acquire, retain, and apply new skills
(Hamilton et al., 2021). Research shows that VR can improve the
effectiveness and efficiency of skill development. However, it may
not be suitable for all learners, as individual differences can influence
learning outcomes. Understanding how learner characteristics affect
outcomes can help tailor the learning content and process to
accommodate these differences. Therefore, the study addresses
the following research questions:

RQ1: Are there mean differences in learning procedures using VR
associated with immersion and interactivity (technology factors),
after adjusting for differences in pre-knowledge test scores?
RQ2: Do individual differences factors (sex, spatial ability,
personality traits) predict procedural learning outcomes in VR?

While existing research has explored certain individual differences
such as sex and spatial ability in VR, there remains a gap in our
understanding of how these factors specifically influence procedural
learning. There has been a disconnect between the technology and the
individual characteristics of the user that could impact procedural
learning, and this poses a challenge that needs to be addressed. As a
result, the goal of this paper is to redress this issue by examining VR
effectiveness for training procedures from the individual learner’s
perspective. The aim is to contribute to the literature on how
technology-learner interaction may lead to better outcomes for
trainees. The focus was first on isolating the technology factors of
VR (immersion and interactivity) by investigating whether immersive
virtual reality (using a head-mounted display and controllers) wasmore
effective than desktop virtual reality (using a personal computer,
keyboard, and mouse) for learning a procedure. Then, we examined
how certain individual characteristics predicted learning outcomes.
Understanding these key variables in VR learning can inform both
research and practical applications for procedures training. This
approach was taken because the effectiveness of VR training may
vary depending on individual learner factors and the specific VR
implementation. Note: While VR is widely used across various
industries, this study focuses on its application for training purposes.

To effectively answer the research questions, the study
integrated the technological affordances of VR with individual
learner characteristics, drawing on Salzman et al. (1999)
technology media model, which emphasized the input, process,
and output mechanisms (Figure 1 details the technology
media model).

2.2 Technology factors in VR learning

In VR learning environments, the level of immersion influences
learning outcomes (Conrad et al., 2024). Two common display
formats that differ in immersion, how the virtual content is
presented, and the level of sensory engagement are desktop
virtual reality and immersive virtual reality.

2.2.1 Desktop virtual reality (DVR) and immersive
virtual reality (IVR)

VR systems can operate on relatively inexpensive platforms, such as
desktops. This type of VR is referred to as desktop virtual reality (DVR),
allowing users to interact within VR using a monitor, keyboard and
mouse (Lee et al., 2010; Liu et al., 2024). Research has shown positive
learning outcomes in DVR when compared to traditional classroom
training (Lee et al., 2010; Makransky and Petersen, 2019). DVR also
limits the inherent issue of simulation sickness associated with using
head mounted displays (HMDs) (Stanney et al., 2020). DVR has been
known to provide a low sense of presence for learners. However, the
sense of presence in a virtual environment is not an inherent
characteristic of the environment itself, rather, it is a psychological
state induced by representational fidelity and user interactivity (Lee
et al., 2010). The combination of these elements can create a compelling
sense of presence, even without the use of specialized immersive
hardware like the HMD.

IVR, on the other hand, operates using HMDs and hand
controllers to provide a more immersive experience that blocks
out the physical world during learning. This technology fosters a
strong sense of presence and immersion in VR (Slater, 2009),
allowing users to feel as though they were present in the
simulated space. However, IVR has drawbacks, including the
need for costly specialized hardware and the potential to cause
motion sickness or discomfort for some users.

Some researchers argue that learning procedures in IVR is more
effective than using a desktop PC. While some studies suggest that IVR
enhances the recall of abstract concepts and improves procedural
knowledge acquisition compared to non-immersive technologies,
other studies have found no significant advantages. As pointed out

TABLE 1 Description of exterior pre-flight inspection procedural task in the simulation.

Task Description Duration

Task 1: Tutorial Participants learn simulation controls in both desktop virtual reality (DVR) and immersive virtual reality (IVR). Tricks include
teleporting, movement, pointing to objects and other interface interactions

5 min

Task 2: Training Participants perform an exterior preflight inspection: Learning to identify faults, errors, and damage on a simulated Boeing 737. They
are placed in either a passive or active condition.

20 min

Task 3: Assessment Participants apply learned steps from the training phase to inspect the aircraft, identifying faults, missing parts, or damage. This is
done using the mouse in DVR or VR controllers in IVR. Procedural learning was measured by calculating the total number of faults or
damages accurately identified on the aircraft

10 min
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earlier, one reason for this is that learners tend to pay attention to the
semantic details and not to the main learning content, however, DVR
eliminates the extraneous cognitive load caused by the distractive
elements of IVR. Another reason is that many of these learners lack
prior IVR experience since technology and task familiarity also impact
learning outcomes. A meta-analysis conducted by Coban et al. (2022)
andWu et al. (2020) revealed that IVR has a small advantage over non-
immersive learning environments. It is essential to recognize here that
even minor effects on learning can have considerable practical
implications in real-world scenarios. IVR has demonstrated
particular strengths in areas that require visual and spatial
perception, making it especially effective for tasks such as safety and
medical training (Conrad et al., 2024; Hamilton et al., 2021). IVR also
shows promise in the development of psychomotor and practical skills,
potentially offering advantages over non-immersive technologies like
desktop computers.

Two key technological factors that set VR apart from other
training tools are immersion and interactivity (Johnson-Glenberg,
2018; Makransky and Petersen, 2021). These elements play crucial
roles in shaping the learning experience in VR. As we pointed out
above, very few studies have investigated both immersion and
interactivity within the same research (e.g., Johnson et al., 2022),
and our research here extends this work by systematically
manipulating both in a 2 × 2 design and also investigating the
effects of three individual-differences variables.

2.2.2 Immersion and interactivity
Immersion can be described both objectively and subjectively.

From the objective standpoint, it is viewed as the capacity of
computer displays (such as the hardware and software) to create

a comprehensive and vivid illusion of reality that surrounds the
user’s senses (Slater et al., 2022; Slater and Wilbur, 1997). System
immersion is determined by features such as visuals, audio, haptics,
tracking, and the alignment of multiple sensory inputs (Slater and
Wilbur, 1997). It is also measured using metrics like stereoscopy,
image quality, and the field of view or field of regard (Bowman and
McMahan, 2007; Cummings and Bailenson, 2016). Subjectively,
immersion is described as the psychological state where users feel
their senses are isolated from the real world. It refers to the degree to
which learners feel present in the virtual environment, achieved by
HMDs that provide a 360-degree view and isolate them from the
physical world. It encompasses factors such as the degree of physical
reality exclusion, the range of sensory inputs, the display resolution
and accuracy (Cummings and Bailenson, 2016; Slater and Wilbur,
1997). The attractive aspect of immersive virtual reality (IVR) for
learning is that high immersion leads to a greater sense of presence
(Makransky and Petersen, 2021; Petersen et al., 2022), which in turn,
is thought to boost the learner’s motivation and engagement in the
learning content. With this understanding, we suggest that there will
be a main effect of immersion on procedural learning outcomes
meaning that the level of immersion significantly affects how well
individuals learn procedural tasks, on average, across all groups or
conditions.

However, the same immersive quality that makes IVR attractive
can also present itself as an obstacle that impedes effective learning.
High immersion can divert the learner’s attention from the core
content, resulting in extraneous cognitive load - where learners focus
on the non-essential elements and decrease essential processing
which is necessary for understanding procedures and processes. The
risk is that learners may become distracted by aesthetics causing

FIGURE 1
Input process output mechanism.
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them to lose focus on the main lesson objective. Also, due to the
limited capacity of the human working memory (Baddeley, 1992;
Chandler and Sweller, 1991; Mayer, 2022), when a learner focuses on
irrelevant content (extraneous information), there will be
insufficient mental capacity for essential processing which is the
cognitive processing required for meaningful procedural learning
outcomes. Thus, we hypothesize that:

Hypothesis 1a: There will be a significant effect of immersion on
procedural learning outcomes suggesting that those in high-
immersive condition will demonstrate better procedural learning
outcomes compared to those in low-immersive conditions.

Interactivity refers to the degree of engagement and reciprocal
communication between learners and the VR environment. It relates to
the user’s ability to manipulate objects, typically using hand-held
controllers or gesture-based commands. By allowing learners to
manipulate virtual elements, make decisions, and receive instant
feedback, interactivity contributes to more dynamic and
participatory learning experiences. This active engagement may be
associated with deeper understanding and improved knowledge
retention. The interactive elements in VR may support generative
processing by aiding in the selection, organization, and integration
of information. These interactive elements may be more effective than
immersion alone in supporting learning outcomes (Jang et al., 2017;
Johnson et al., 2022). It is sometimes easy to assume that interactivity or
active VR automatically means active learning, while the more
traditional or passive VR means passive learning. However, this view
can be misleading. The key point here is that true active learning is not
determined by outward behavior but rather by the level of cognitive
engagement (Mayer, 2021; Mayer, 2022). According to the cognitive
theory ofmultimedia learning (CTML,Mayer, 2022;Mayer et al., 2023),
it is the depth of mental processing specifically essential processing
(understanding the steps and processes during procedural learning) and
generative processing (integrating new information with existing
information), that define active learning. This means that a
seemingly passive activity like training in a desktop environment or
using an iPad can be considered active learning if it stimulates cognitive
engagement. On the other hand, an outwardly interactive experience
like a poorly designed immersive learning environment might result in
superficial engagement but not meaningful learning. With this
understanding, we hypothesized that:

Hypothesis 1b: There will be a significant effect of interactivity on
procedural learning outcomes suggesting that those in the high
interactive (active) condition will demonstrate better procedural
learning outcomes compared to those in the low-interactive
(passive) condition.

Research on the combined effects of immersion and interactivity
on VR learning has yielded varied outcomes. Some studies have
found that higher levels of immersion lead to increased feelings of
presence and agency which leads to improved declarative learning
outcomes and embodied learning (Petersen et al., 2022). Others, like
Johnson et al. (2022), found no significant interaction between
immersion and interactivity when learning procedures in VR.
Buttussi and Chittaro (2017) reported that using an HMD
resulted in a greater sense of presence and engagement and not
safety knowledge when compared to learning the same content on a
desktop PC. Cummings and Bailenson (2016) also conducted a

meta-analysis that revealed a strong relationship between
immersion and participant-reported presence. Various theories
like the CTML (Mayer, 2024; Parong and Mayer, 2018) have
considered how the technological capabilities of VR and the
human cognitive processing capacity influence learning. The
fundamental principles of CTML have been applied to
understand how immersion and interactivity may drive
meaningful learning in VR. The first principle is dual channels,
developed from the dual coding theory (Paivio, 1990) which means
that humans process verbal and visual information through different
pathways, hence, when the learning content is presented in multiple
modes, learners benefit more as long as the channels are
complementary. The second principle of limited capacity
recognizes that our ability to process information is constrained
by the finite capacity of our working memory. This principle is
particularly important to manage cognitive load. The third principle
is active processing which emphasizes that meaningful learning is
not a passive reception of information, but rather an active cognitive
process. As learners interact in the VR environment, it increases
generative processing which may be essential for enhancing their
understanding and recall of procedural tasks. Integrating the above,
we suggest that there will be an interaction effect between immersion
and interactivity meaning that the effect of immersion on procedural
learning outcomes may differ depending on whether interactivity is
low or high. Thus, we hypothesized that:

Hypothesis 1c: There will be an interaction effect between
immersion and interactivity such that those in the high
immersion (VR) group and high interactivity (active) group will
have disproportionately positive procedural learning outcomes.

The effectiveness of immersion and interactivity in VR learning
may be influenced by individual differences among learners. Spatial
ability, for example, plays an important role in how individuals
interact with and benefit from 3D virtual environments. Sex is also
associated with differences in spatial cognition, technology
acceptance and the occurrence of simulation sickness, which
could influence VR learning outcomes. Additionally, personality
traits such as openness to experience, conscientiousness and
agreeableness may affect how individuals engage with and
learn from VR.

2.3 Individual differences factors

For this paper, we adopted the viewpoint that the effectiveness of
immersive technology is not solely dependent on the media used,
but rather on the alignment between the learning environment and
the individual characteristics of learners. Individual differences play
an important role in learning procedures and can account for
learning outcomes in VR. In this study, we refer to individual
differences as the differences in sex, spatial ability, and
personality traits among learners engaging with VR for
procedural training.

2.3.1 Sex
Research has shown that sex can influence spatial cognition and

technology acceptance, which may, in turn, affect VR learning
outcomes. Generally, males have been found to outperform
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females on certain spatial tasks, such as mental rotation (Sneider,
2015;Wei, 2016), for example, because males have more interest and
experience with spatial tasks, such as interactive spatial video games.
Sex has also been identified as a significant factor influencing
experiences and outcomes in VR, particularly concerning the
phenomenon known as simulator sickness.

Research has indicated that women are generally more
susceptible to simulator sickness than men, in part due to the
design of HMDs (i.e., sub-optimal inter-pupillary distance, IPD;
Munafo et al., 2017), but also due to lower chronic adaptation
(Grassini and Laumann, 2020; MacArthur et al., 2021). Thus, we
hypothesized that:

Hypothesis 2: Sex will significantly predict procedural learning
outcomes, with males demonstrating higher procedural learning
outcomes compared to females because of more experience and
interest in technology particularly video games and differences in
visuo spatial working memory.

2.3.2 Spatial ability
As briefly mentioned with respect to the difference between

males and females above, sex-based differences in spatial ability have
been identified as a critical factor in how individuals interact with
and learn from 3D virtual environments. It refers to the cognitive
capacity to mentally manipulate spatial information and it plays a
vital role in how users interact with and navigate virtual
environments. However, even after accounting for sex differences,
spatial ability is an important predictor of performance in spatial
tasks. According to the ability as compensator hypothesis, low
spatial ability learners benefit more from VR environments
because it helps them build their mental representation whereas
high spatial ability learners can create mental visualizations by
themselves (Huk, 2006; Mayer 2001). In IVR, spatial ability is
crucial for tasks like navigating complex virtual worlds,
understanding spatial relationships, and manipulating objects
within the 3D space. Individual differences in spatial ability can
significantly impact performance and learning outcomes in VR
(Johnson et al., 2022). In the context of procedural learning,
spatial ability may be relevant for tasks that involve
understanding spatial relationships between objects or
components. Many VR environments are not designed
specifically to train spatial navigation skills, but their spatial
layout and navigational demands can significantly affect
procedural learning outcomes, as efficient navigation is often
necessary for engaging with the content. With this
understanding, we hypothesized that:

Hypothesis 3: Spatial ability will significantly predict procedural
learning outcomes, with higher spatial ability associated with better
performance on procedural tasks because high spatial ability enables
individuals to process spatial information more efficiently, reducing
cognitive load and freeing up mental resources for task
performance in VR.

2.3.3 Personality traits
Personality traits include the enduring patterns of thoughts,

feelings, and behaviors that define an individual (Thorp et al., 2023).
In VR, traits like openness to experience, curiosity, risk-taking, and

preference for autonomy can influence engagement, exploration,
and learning outcomes.

Few studies have investigated the impact of individual
personality traits on VR learning, and none related to the effect
of personality on learning procedures in VR. Among those that have
been conducted, only a limited number have identified significant
relationships. For instance, research examining the relationship
between surgeons’ technical performance and personality traits in
VR settings found no significant correlation between these traits and
technical performance outcomes (Rosenthal et al., 2013). Other
studies have indicated that certain personality traits may correlate
with better academic performance. For example, Thorp et al. (2023)
found that high agreeableness and low conscientiousness
significantly predict knowledge transfer in VR. Komarraju et al.
(2011) also found positive relationships between conscientiousness
and agreeableness on academic performance. In the current study,
personality trait was measured using the five-factor model which
conceptualizes personality through five dimensions: extraversion,
agreeableness, conscientiousness, emotional stability, and openness.
We hypothesized that:

Hypothesis 4: Personality traits will significantly predict
procedural learning outcomes, with high conscientiousness, high
agreeableness and high openness positively associated with better
procedural learning outcomes.

2.4 Research hypotheses

In summary, we stated the following hypotheses for this study
on the basis of our theoretical framework and review of the
literature:

H1a: There will be significant differences in procedural learning
outcomes based on the level of immersion. This means that
participants in high-immersion conditions (VR) will demonstrate
better procedural learning outcomes compared to those in low-
immersion conditions (PC) regardless of the level of interactivity.

H1b: There will be significant differences in procedural learning
outcomes based on the level of interactivity. This suggests that
participants in high-interactivity conditions (active) will
demonstrate better procedural learning outcomes compared to
those in low-interactivity conditions (passive) regardless of the
level of immersion.

H1c: There will be an interaction effect between immersion and
interactivity on procedural learning outcomes. This means that the
effect of immersion on procedural learning outcomes will depend on
the level of interactivity. Specifically, participants in the high-
immersion and high-interactivity condition (VR active group)
will demonstrate the best procedural learning outcomes
compared to all other conditions (high-immersion/low-
interactivity, low-immersion/high-interactivity, and low-
immersion/low-interactivity).

H2: Sex will significantly predict procedural learning outcomes,
with males demonstrating higher procedural learning outcomes
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compared to females because of more experience and interest in
technology particularly video games and differences in visuo spatial
working memory.

H3: Spatial ability will significantly predict procedural learning
outcomes, with higher spatial ability associated with better
performance on procedural tasks because high spatial ability
enables individuals to process spatial information more
efficiently, reducing cognitive load and freeing up mental
resources for task performance in VR.

H4: Personality traits will significantly predict procedural learning
outcomes, with high conscientiousness, high agreeableness and high
openness positively associated with better procedural learning
outcomes. This is because learning procedures in VR often
involve exploratory, adaptive, and trial-and-error methods and
people with high conscientiousness exhibit a strong preference
for structure, orderliness, and goal-directed behavior. Openness
to experience is linked to curiosity, imagination, and willingness
to explore new concepts.

Individuals high in openness may be more engaged and
receptive to visual-spatial cues, and problem-solving tasks,
leading to better procedural learning outcomes.

Note: We measured procedural learning outcomes using a
practical assessment in the simulation using desktop PC or
immersive VR and post-knowledge test scores. The reason for
this was to avoid the “getting good at the game effect” (Parong
and Mayer, 2018) where learners can perform procedures virtually
but not transfer to the real world, which is what is considered
procedural knowledge.

3 Methods

3.1 Power analysis

We conducted a sample size estimation using G*Power software
to find the optimal number of participants (Faul et al., 2007). Earlier
studies have found bigger effect sizes, so we chose to adopt a similar
approach by choosing a large effect size of d = 0.40, which is
supported by existing literature (Mayer, 2017). By setting the
significance level at 0.05 and the desired power at 0.80, we
determined that a total sample size of 64 participants would
be necessary.

3.2 Design

We utilized both 2 (Immersion: PC vs. VR) × 2 (Interactivity:
Passive vs. Active) between-subjects analysis of covariance
(ANCOVA) and stepwise multiple regression analyses. For the
ANCOVAs, the independent variables were immersion and
interactivity, with pre-knowledge test scores as the covariate. The
dependent variable was procedural learning outcomes measured
using a practical assessment and post-knowledge test scores. The
scoring range for the procedural learning outcomes was theoretically
0 to 15 points. Sex, spatial ability and personality traits were the
predictor variables in the Multiple Regression/Correlation Analyses.

We employed a stratified random assignment method, ensuring that
students were randomly assigned to one of four groups (PC passive,
PC active, VR passive, VR active), each varying in levels of
immersion and interactivity, and stratified for participant sex.

3.3 Participants

A total of 83 undergraduate students recruited from a large
public university in the Southeastern United States signed up to
participate in the study. However, four participants were excluded
due to technological issues, simulation sickness or lack of interest in
completion. This resulted in a final sample size of 79 students. All
participants received course credits for research participation. The
sample included 69 participants between the ages of 18–20 and
10 between the ages of 21–30. There were 43 females and 36 males.
Forty-two participants were randomly assigned to the VR group and
thirty-seven were assigned to the PC group. None of the participants
had prior experience with aviation or with using desktop virtual
reality (DVR) or immersive virtual reality (IVR) for learning
instructional content. Table 2 has details of participants and
experiment conditions.

3.4 Apparatus

3.4.1 Simulation testbed: flightcrew procedures
experimental training (FlightPET)

The simulation testbed for the experiment was a virtual reality
simulation of an exterior preflight inspection for a generic
commercial aircraft developed at the Institute for Simulation &
Training of the University of Central Florida (Sonnenfeld et al.,
2023). This system was developed using the Unity 3D gaming engine
(Figures 2, 3 has images of the simulation testbed). The simulation
allowed participants to interact in VR under two conditions: a 2D
environment using a desktop PC, keyboard and mouse, and a 3D
environment using an HTC Vive HMD and controllers (Figure 4
provides an image of the HMD).

The training included a radial tool that enabled students to select
various instructional components for each aircraft section (Figure 5
has an image of the instructional components), such as text, audio,
point-to-object interactions, state comparisons, animations, and a
question-and-answer feature. During the practical assessment,
participants utilized a laser pointer—controlled via a mouse in
DVR or hand controllers in IVR—to identify and select flaws in
aircraft components, following the guidance provided in
the training.

TABLE 2 Participant distribution by condition.

Condition Immersion Interactivity n

PC - Passive Low Low 18

PC - Active Low High 19

VR - Passive High Low 22

VR - Active High High 20

Note. N = 79.
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3.5 Materials

3.5.1 Pre-test
3.5.1.1 Demographic survey

Participants provided general demographic information. They
were asked about their age (in age groups of 18–21 and 21–30), sex,
handedness (right-handed, left-handed, and ambidextrous), and any
vision correction methods (none, contact lenses, glasses). Additional
questions pertained to aviation experience, such as employment as a
pilot and holding various pilot certificates.

Participants were asked about their prior experience with VR
procedure trainers, including whether they had used such trainers
before and a description of their experience. They rated their skill
levels in using various VR interfaces, such as a mouse and keyboard,
touchscreen devices, handheld controllers, and motion-tracking
controllers, using a 5-point self-assessment scale with the
following levels: Novice (no prior experience), proficient (basic
familiarity with occasional use), competent (comfortable with
independent use), advanced (frequent use with a high level of
efficiency), and expert (extensive experience, including the ability

FIGURE 3
The flightcrew procedures experimental training (FlightPET) simulation testbed.

FIGURE 2
Experimental research design.
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to troubleshoot and instruct others). Additionally, participants
reported the frequency of experiencing symptoms like nausea,
headache, dizziness, fatigue, and eye strain while using these devices.

3.5.1.2 Paper folding test
Spatial ability was measured using the Paper Folding Test (PFT;

Ekstrom and Harman, 1976). The PFT consists of two sets of ten
items that participants completed within 3 min for each section.
Each item presented images illustrating a piece of paper being folded
with a hole punched through it. Participants were required to select
one of five images that accurately depicted how the paper would
appear when unfolded. Scoring involved counting the number of
correct answers. The paper folding task was chosen because it
requires both mental rotation and maintenance of mental
alterations in working memory.

3.5.1.3 Ten-item personality inventory (TIPI)
The ten-item personality inventory (TIPI; Gosling et al., 2003)

was used to measure personality traits. Participants rated their

agreement with ten statements on a 7-point scale ranging from 1
(strongly) to 7 (strongly agree). The TIPI assesses the big five
personality domains: extraversion, agreeableness,
conscientiousness, emotional stability, and openness.

3.5.1.4 Practical assessment task
In the practical assessment task, participants performed an

exterior preflight inspection based on the procedures learned
during training. Using either the desktop PC or immersive VR
setup, they walked around the aircraft to identify any flaws, faults, or
missing or damaged components. Each participant was given 10min
to complete the task. During the simulation, participants remained
seated to ensure standardization and safety. In the VR condition,
interaction was facilitated through hand-held controllers and mouse
with a visible laser pointer. No full-body avatar or locomotion was
implemented. The environment was visually realistic but lacked
ambient audio, environmental changes, or haptic feedback.

3.5.1.5 Pre and post-knowledge questions
Participants completed pre and post-knowledge questions on

exterior preflight inspection procedures (Nguyen et al., 2023). Pre
and post-knowledge questions were similar in content and structure.
The content validity of both tests was determined by expert
judgment. The evaluation included a variety of question formats,
including three multiple-choice, three fill-in-the-blank, and three
scenario-based questions. It covered key aspects of the training on
preflight inspections, such as its purpose, the recommended
sequence for inspecting an aircraft’s exterior, and specific
components within each inspection criteria. The tests measured
learning outcomes cognitively based on the number of questions
answered correctly. The scoring range for the pre and post-
knowledge test was theoretically 0 to 15 points (see
Supplementary Appendix A for a complete set of questions).

FIGURE 5
Radial tool for learning component selection.

FIGURE 4
Htc Vive 3 headset.
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3.5.2 Post-training questionnaire
After exposure to the simulation training in desktop PC or

immersive VR, data was obtained on participants’ perceived efficacy,
motivation, and cognitive load. Participants responded to a series of
standardized questionnaires designed to measure their confidence in
learning, their motivation levels, and the mental effort they applied
during the training phase.

3.5.2.1 Self-efficacy
Self-efficacy was measured using items adapted from Meyer

et al. (2019) using self-ratings on a five-point Likert scale ranging
from 1 (strongly disagree) to 5 (strongly agree). Participants
responded to statements such as “I am confident I have the
ability to learn the material taught about exterior preflight
inspection” and “I believe that if I exert enough effort, I will be
successful on the assessment about exterior preflight inspection.”
Responses were used to assess participants’ confidence in their
ability to understand and perform tasks related to the exterior
preflight inspection.

3.5.2.2 Motivation
Motivation was assessed using items adapted from Lee et al. (2010)

and Makransky and Petersen (2019) using self-ratings on a five-point
Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree).
Participants rated their agreement with statements like “The VR
application could enhance my learning interest” and “The realism of
the VR application motivated me to learn.” These items were designed
to gauge how effectively the VR training environment stimulated
participants’ interest in engaging with the material.

3.5.2.3 Cognitive load
Cognitive load was measured using items adapted from

Andersen and Makransky (2021) using self-ratings on a five-
point Likert scale ranging from 1 (strongly disagree) to 5
(strongly agree). Participants indicated the amount of mental
effort they spent learning about preflight inspection. Statements
included “The interaction technique used in the simulation was very
unclear” and “It was difficult to find the relevant learning
information in the virtual environment.” These measures helped

evaluate the mental effort required to learn and perform tasks within
the VR training environment.

3.5.3 Debrief questions
The debrief questions obtained participant’s qualitative feedback

on the training they received. It included questions asking
participants to describe the best and worst parts of the training
experience and to suggest improvements. Participants were asked to
evaluate the training’s effectiveness, providing insights into how well
the training met their learning needs and expectations. This
feedback was used to assess the overall satisfaction and perceived
value of the VR training.

3.6 Procedure

The study was approved by the institutional review board at the
university. We used an experimental design for this study (Figure 6
provides an overview of the research procedure). Upon arrival at the
research laboratory, participants were guided through the initial steps of
the study. First, they reviewed the informed consent document, which
detailed the study’s purpose, procedures, potential risks, and their rights as
research participants. After ensuring they understood the information
provided, they gave their verbal consent to participate in the research.
Once consent was obtained, participants proceeded to complete a
demographics and individual differences survey, which took
approximately 30 min. This survey was designed to gather data on
various factors that could influence learning outcomes, including
demographics (such as age, sex and handedness), prior VR experience,
spatial ability, personality traits, and existing knowledge about exterior
pre-flight inspection procedures using pre-knowledge test questions. The
insights gained from this survey were essential for understanding the
baseline characteristics of each participant and for analyzing how these
factors might interact with the instructional interventions.

After completing the survey on demographics, spatial ability and
personality traits, participants were randomly assigned to one of four
experimental conditions: PC Passive, PC Active, VR Passive, or VR
Active and stratified by sex. Each participant then engaged in a 5-
minute simulation tutorial using a desktop PC or immersive VR

FIGURE 6
Screenshots of the virtual learning environment: FlightPET. Note. Training scenario: The left picture (A) is a good version of the aircraft radome with
instructions for the participants to check the radome and ensure that the static strips are secure. The right picture (B) is a full-blown image of a damaged
version of the radome. The instructional picture shows a picture of a good and damaged radome, with instructions for learners to ensure that the radome
is undamaged and functional.
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designed to familiarize them with the simulation controls. The tutorial
was essential for ensuring that all participants had a basic understanding
of how to navigate within the VR learning environment.

After the tutorial, participants completed a 20-minute
simulation training session using the desktop PC or immersive
VR that provided detailed procedural instructions for conducting
an exterior pre-flight inspection. An exterior preflight inspection is a
crucial safety procedure conducted by pilots before each flight,
involving a walk-around of the aircraft to ensure its
airworthiness. The inspection involves the pilot walking around
the aircraft in a clockwise manner to examine critical components
like the wings, landing gears, and engines for damage, leaks and
obstructions. The training was structured to equip participants with
both theoretical knowledge and practical skills necessary for
performing the task effectively.

After the simulation training, participants filled out a
questionnaire that assessed various psychological factors such
as self-efficacy (their confidence in performing tasks), motivation
(their enthusiasm for learning), and cognitive load (the mental
effort required during training). The questionnaire provided
valuable insights into how participants felt about their

learning experience and their readiness to apply what they
had learned.

Next, participants completed a practical assessment using either
the desktop PC or HMD VR that lasted exactly 10 min. During this
assessment, participants were tasked with identifying faults or
damages on various aircraft components in a clockwise manner,
consistent with the procedure used during the training phase.
Participants indicated the identified faults by pointing at them
using a laser pointer controlled via either a mouse (in the PC
condition) or hand controllers (in the VR condition). A
researcher directly observed the participants during the task,
monitoring their actions in real time. The researcher manually
recorded the participants’ responses, and this data was stored for
later review and analysis. This practical evaluation was scored on
accuracy and adherence to inspection procedures, allowing the
researcher to gauge each participant’s ability to apply their skills
in a realistic context. Finally, after completing the practical
assessment, participants took a post-knowledge test designed to
measure their performance outcomes in terms of knowledge
retention and application. This test included various question
formats such as multiple-choice, fill-in-the-blank and scenario-
based questions that assessed their understanding of pre-flight
procedures. At the end of the experiment, qualitative feedback
(debrief) was obtained to gather participants’ opinions about the
training experience, their perceptions of VR, and their views on the
effectiveness of instructorless training methods.

4 Results

4.1 Data pre-screening

Data from four participants were excluded from the analyses for the
following reasons: one participant encountered technical difficulties,
another experienced severe simulation sickness, and two withdrew
due to a lack of interest in continuing the study. These exclusion
criteria were applied to ensure that external factors, such as technical
issues or discomfort from simulation sickness did not compromise the

TABLE 3 Demographic characteristics of participants.

Constructs n % M SD

Age 0.13 0.34

18–21 69 87.3

21–30 10 12.7

Sex 0.46 0.501

Female 43 54.4

Male 36 45.6

Handedness 0.09 0.29

Right-handed 72 91.1

Left-handed 7 8.9

Immersion 0.53 0.502

PC 37 46.8

VR 42 53.2

Interactivity 0.49 0.503

Passive 40 50.6

Active 39 49.4

Personality Traits

Extraversion 5.04 1.98

Agreeableness 5.19 2.2

Conscientiousness 4.74 2.13

Emotional Stability 5.77 2.02

Openness 4.59 1.801

Affective Factors

Self-Efficacy 15.97 4.28

Motivation 13.28 4.48

Cognitive Load 26.29 7.65

Test Scores

Pre-training Test 6.73 2.06

VR Assessment 7.13 2.29

Post training Test 7.51 1.83

Note. N = 79.

TABLE 4 Regression analysis on procedural learning outcomes (post-
training test).

Variable B SE t p 95% CI

Model 1

Constant 5.21 0.66 7.92 <0.001 [3.9, 6.5]

Pretraining test 0.34 0.09 3.66 <0.001 [0.16, 0.53]

Model 2

Constant 3.52 0.90 3.90 <0.001 [1.72, 5.32]

Pretraining test 0.35 0.09 3.82 <0.001 [0.17, 0.52]

Cognitive Load 0.06 0.02 2.63 0.010 [0.02, 0.11]

Model 3

Constant 2.24 1.08 2.08 0.04 [0.09, 4.38]

Pretraining test 0.343 0.09 3.89 <0.001 [0.17, 0.52]

Cognitive Load 0.07 0.02 2.93 0.004 [0.02, 0.12]

Spatial Ability 0.11 0.05 2.08 0.04 [0.004, 0.21]

Note. CI, confidence interval; SE, standard error; N = 79.
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accuracy and reliability of the data. As a result, the subsequent analyses
include data from 79 participants.

4.2 Test scoring criteria

Scoring for the pre-knowledge test, practical assessment, and
post-knowledge test was done on a 15-point scale. For the pre-
knowledge test and post-knowledge test, multiple-choice and fill-in-
the-blank questions were scored dichotomously, with correct
responses receiving one point and incorrect responses receiving
zero. Scenario-based questions were evaluated using a rubric that
specified required words and phrases, awarding one point for a fully
accurate response and 0.5 points for a partially correct answer. For
the practical assessment, participants received one point for
correctly identifying a flaw in an aircraft component and zero
points for incorrect or missed identifications.

4.3 Descriptive statistics

A total of 79 students participated in the study (Table 3 provides
details on demographics), and they were randomly assigned to one
of four experimental groups, which varied based on immersion level
(PC or VR) and interactivity level (Passive or Active) and stratified
by participant sex. The sample predominantly consisted of
individuals aged 18 to 21 (n = 69), with a sex distribution of
43 females and 36 males, and participants were mostly right-
handed (n = 72).

Means, SDs, and bivariate correlations of the variables of interest
can be found in Table 4. The analysis focused on the relationships
between the technology factors (immersion and interactivity),
performance measures (pre-knowledge test scores, practical
assessment scores, and post-knowledge test scores), and affective
mechanisms (cognitive load, motivation, and self-efficacy). Self-
efficacy was found to have a positive correlation with both
motivation, r (77) = 0.403, p < 0.001 and, cognitive load, r (77) =
0.311, p = 0.005. Motivation was positively correlated with cognitive
load, r (77) = 0.373, p < 0.001. Cognitive load also demonstrated a
significant positive correlation with post-knowledge test scores, r (77) =
0.435, p < 0.001 while pre-knowledge test scores were positively
correlated with post-knowledge test scores, r (77) = 0.266, p = 0.018.

4.4 Equivalence assessment across
immersion and interactivity

A 2 (Immersion: PC vs VR) x 2 (Interactivity: Passive vs Active)
analysis of variance (ANOVA) was conducted to verify that the
random assignment of participants between the conditions of
immersion and interactivity worked. Across all variables of
interest including spatial ability, personality traits and pre-
knowledge test scores, there were no significant differences
(Table 5 provides details on the equivalence test). For sex, there
were roughly equal men and women in each group. For immersion,
female participants had a distribution of 21 in the PC condition and
22 in the VR condition, while male participants had 16 in the PC
condition and 20 in the VR condition. Regarding interactivity,
female participants were distributed as 21 in the passive
condition and 22 in the active condition, whereas male
participants had 19 in the passive condition and 17 in the active
condition. Hence, we concluded that random assignment worked
based on sex, pre-knowledge test, spatial ability and
personality traits.

4.5 Effect of immersion and interactivity on
procedural learning outcomes

We employed a 2 (Immersion: PC vs VR) x 2 (Interactivity:
Passive vs Active) between-subjects analysis of covariance
(ANCOVA) to investigate the main effects and interaction of
immersion and interactivity on procedural learning outcomes
(measured using the practical assessment and post-knowledge
test scores) while controlling for pre-knowledge test scores. The
scoring range for all tests (pre-knowledge, practical assessment, and
post-knowledge) was theoretically 0 to 15 points. However, in
practice, participant’s actual scores ranged from 2 to 11.5 for
pre-knowledge, 2 to 12 for the practical assessment scores and
1 to 11 for the post-knowledge scores.

Before conducting the analysis, weevaluated the normality of the
model residuals using Q-Q plots and the assumptions of
normality were met.

For the practical assessment scores, the means for the levels of
immersion were–PC (M = 6.62) and VR (M = 7.58). The main effect
of immersion was not statistically significant albeit close, F (1, 74)

TABLE 5 Descriptives and correlations between technology factors and affective factors.

Variable M SD 1 2 3 4 5 6 7 8

1. Interactivity 0.49 0.50 -

2. Immersion 0.53 0.50 −0.04 -

3. Self -Efficacy 15.97 4.28 −0.06 −0.02 -

4. Motivation 13.28 4.48 −0.095 0.15 0.40** -

5. Cognitive Load 26.29 7.65 −0.12 0.07 0.31** 0.37** -

6. Pre-training 6.73 2.06 0.09 −0.11 −0.08 −0.02 −0.009 -

7. VR Assessment 7.13 2.29 −0.06 0.197 −0.03 0.19 0.12 0.10 -

8. Post-training 7.51 1.83 −0.14 −0.08 −0.007 0.07 0.26* 0.39** 0.20 -

*p < .05. **p < .01. N = 79.
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=3.41, p = .07, ηp2=.04, as measured by practical assessment scores
between students in desktop PC and VR conditions. Furthermore,
the means for the levels of interactivity were–passive (M = 7.25) and
active (M = 6.96). The main effect of interactivity was also not
significant F (1, 74) = 0.31, p = 0.58, ηp2 = 0.004 between the active
and passive conditions.

Additionally, the interaction between immersion and
interactivity (Figure 7 details the ANCOVA results visually) was
not statistically significant F (1, 74) = 0.44, p = 0.51, ηp2 = 0.006.
Overall, these results indicate that neither immersion nor
interactivity, independently or in combination, had a significant
effect on procedural learning outcomes as measured by the practical
assessment scores. The small effect sizes further support the lack of
substantial impact of these factors on the learning outcomes.

In the post-knowledge test, the means for the levels of
immersion were–PC (M = 7.36) and VR (M = 7.15). The main
effect of immersion was not statistically significant, F (1, 74) = 0.12,
p = 74, ηp2 = 0.002 between students in desktop and VR conditions,
as measured by the post-knowledge test scores. Similarly, the means
for the levels of interactivity were–passive (M = 7.39) and active
(M = 7.12), the main effect of interactivity was not significant, F (1,
74) = 0.07, p = 0.79, ηp2 = 0.001. and statistical analysis indicated no
significant difference in scores between the active and passive
conditions. The interaction between immersion and interactivity
(Figure 8 details the ANCOVA results visually) was also not
statistically significant, F (1, 74) = 1.10, p = 0.299, ηp2 = 0.02.
The results suggest that immersion and interactivity, both
independently and in combination, do not significantly impact
procedural learning outcomes in this context.

4.6 Effect of sex, spatial ability and
personality trait on procedural learning
outcomes measured with practical
assessment scores

We conducted a stepwise multiple regression analysis to
examine the predictors of procedural learning outcomes
(measured with the practical assessment scores). We measured
individual sex differences (coded: 0 = female, 1 = male), spatial
ability, and personality traits. Analysis was performed using IBM
SPSS regression and explore for evaluation of assumptions.
Assumptions for normality, linearity, and homoscedasticity of
residuals were met. The criteria for variable entry and removal
were set at a probability of F to enter p < 0.05 and a probability of F
to remove p > 0.10. The final model retained sex as a significant
predictor of VR performance, F (1, 77) = 17.42, p < 0.001,
explaining 18.5% of the variance in practical assessment scores
(R2 = 0.185, Adjusted R2 = 0.174). The unstandardized regression
coefficient (B = 1.96, SE = 2.08) indicated that males scored, on
average, 1.96 points higher than females on the practical
assessment (95% confidence interval [1.03, 2.90]). The
standardized regression coefficient (β = 0.43) suggested that sex
had a moderate positive effect on practical assessment scores,
relative to other variables.

Spatial ability and personality traits were excluded from the final
model because they did not significantly contribute to the prediction
of practical assessment scores (p > 0.10).

4.7 Effect of sex, spatial ability and
personality trait on procedural learning
outcomes measured with post-knowledge
test scores

A stepwise multiple regression analysis was performed with
procedural learning outcomes as the outcome variable measured
with post-knowledge test scores and sex, spatial ability and
personality traits as the predictor variables (Table 6 details the
multiple regression results).

Analysis was performed using IBM SPSS regression and
explore for evaluation of assumptions. Assumptions for
normality, linearity, and homoscedasticity of residuals were
met. The criteria for variable entry and removal were set at a
probability of F to enter p < 0.05 and a probability of F to remove
p > 0.10. In the first model, pre-knowledge test scores were
entered as the sole predictor, explaining 14.8% of the variance
in post-knowledge test scores (R2 = 0.148, Adjusted R2 = 0.137), F
(1,77) = 13.41, p < 0.001. The unstandardized coefficient (B =
0.343, SE = 0.094, t = 3.66, p < 0.001) and standardized coefficient
(β = 0.385) indicated that higher pre-knowledge test scores were
significantly associated with better post-training performance. In
the second model, cognitive load was added, which contributed
an additional 7.1% of the variance (ΔR2 = 0.071, F (1,76) = 6.91,
p = 0.010. Together, pre-knowledge test scores and cognitive load
explained 21.9% of the variance (R2 = 0.219, Adjusted R2 = 0.199).
The unstandardized coefficient for cognitive load (B = 0.064, SE =
0.024, t = 2.63, p = 0.010) and standardized coefficient (β = 0.266)
suggest that greater cognitive load during training is positively
associated with higher post-training performance. In the third
model, spatial ability was added as a significant predictor,
contributing an additional 4.3% of the variance (ΔR2 = 0.043,
F (1,75) = 4.32, p = 0.041). The final model explained 26.2% of the
variance in post-knowledge test scores (R2 = 0.262, Adjusted R2 =
0.232). Spatial ability (B = 0.11, SE = 0.05, t = 2.08, p = 0.04) was a
significant predictor, indicating that higher spatial ability was
associated with better post-knowledge test scores.

4.8 Exploratory analysis

We conducted an exploratory analysis to examine the
correlations between variables in our study. The analysis focused
on the relationships between the technology factors (immersion and
interactivity), performance measures (pre-knowledge test scores,
practical assessment scores, and post-knowledge test scores), and
affective mechanisms (cognitive load, motivation, and self-efficacy).
Bonferroni correction was not applied in the correlation analysis
because it can be overly conservative in exploratory research,
potentially masking meaningful relationships (Streiner and
Norman, 2011). The correlation analysis (see Table 5 details the
correlation analysis) identified several significant relationships
between the variables studied. Self-efficacy was found to have a
positive correlation with both motivation, r (77) = 0.403, p <
0.001 and, cognitive load, r (77) = 0.311, p = 0.005. This suggests
that individuals with higher self-efficacy tend to experience greater
motivation and cognitive load. Additionally, motivation was
positively correlated with cognitive load, r (77) = 0.373, p <
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FIGURE 8
Interaction between immersion and interactivity on post-training test scores.

FIGURE 7
Interaction between immersion and interactivity on practical assessment scores.
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0.001, indicating that as motivation increases, so does cognitive load.
Cognitive load also demonstrated a significant positive correlation
with post-knowledge test scores, r (77) = 0.435, p < 0.001. This
implies that a higher cognitive load is associated with better
performance on the post-knowledge test. Furthermore, pre-
knowledge test scores were positively correlated with post-
knowledge test scores, r (77) = 0.266, p = 0.018, suggesting that
individuals who performed well before training were likely to
maintain their performance after training. No other significant
correlations were found among the variables.

5 Discussion

5.1 Empirical contribution

The goal of the present study was twofold: first, to examine the
influence of the technological affordances of VR (immersion and
interactivity) on procedural learning; second, to test the influence of
individual differences factors (sex, spatial ability, and personality traits)
on procedural learning. The results revealed no significant main effects
or interactions of immersion and interactivity on learning outcomes;
even if the means trended in the direction as predicted in the
hypotheses. The findings thus did not support our hypothesis that
higher immersion and higher interactivity would influence procedural
learning outcomes in virtual reality. This was consistent with Johnson
et al. (2022) finding that students performed equally well in learning a

mechanical maintenance procedure using both DVR and IVR. These
results suggest that deploying a HMD to learn procedures in VR may
not be strictly necessary if those same skills can be effectively learned
using a desktop PC, keyboard, and mouse. However, further research is
needed to confirm these findings and explore the underlying
mechanisms.

Several studies have explored the impact of technological
features, such as immersion and interactivity on learning in
virtual reality have yielded insights consistent with our findings
(Makransky and Petersen, 2021; Petersen et al., 2022; Yang et al.,
2023). According to the cognitive-affective model of immersive
learning proposed by Makransky and Petersen (2021), effective
learning in VR requires the integration of cognitive and affective
factors, not just immersion and interactivity because these variables
in themselves do not directly affect learning. Similarly, Makransky
et al. (2019) and Petersen et al. (2022) demonstrated that while
immersion can enhance feelings of presence and enjoyment in the
virtual learning environment, it does not necessarily lead to better
learning outcomes. These findings suggest that the relationship
between technological affordances and learning outcomes is
complex and mediated by additional factors, such as cognitive
load, engagement, and individual learner characteristics.

We also found sex and spatial ability as significant predictors of
procedural learning. Previous studies have shown that sex, spatial
ability, and personality traits can significantly influence learning
performance across different modalities. For example, individuals
with higher spatial ability are often better equipped to understand
and manipulate 3D environments, giving them a distinct advantage
in VR learning tasks (Keehner et al., 2008). Conversely, Lee and
Wong (2014) found that individuals with low spatial ability
performed well in DVR. Similarly, sex differences in spatial
cognition, such as men often outperforming women on mental
rotation tasks, may partially explain variations in performance
outcomes in spatially demanding VR tasks. Research suggests
that this disparity may stem from differences in cognitive
strategies. Men are more likely to use holistic, spatial
visualization approaches that align with the demands of mental
rotation tasks, whereas women often adopt more analytical, step-by-
step strategies, which may be less effective (Voyer et al., 1995).
Another contributing factor to disparities in spatial ability is
experience. Experience plays a critical role in developing spatial
skills. Men often have greater exposure to activities that enhance
spatial reasoning, such as video games, sports, and construction-
related tasks, which provide repeated practice and foster the
development of spatial visualization abilities. For personality
traits, our results showed no significant effect of any of the items
in the five-factor model on learning outcomes. However, research
has found conscientiousness and openness to experience to be
associated with learning transfer in VR (Thorp et al., 2023).
Conscientious learners may be more likely to engage with task
instructions and maintain focus, leading to better procedural skill
acquisition, while individuals with high openness to experience may
benefit from the novelty and engagement offered by immersive VR
environments. Overall, these findings emphasize the importance of
considering individual differences when designing and
implementing VR across any training system, by tailoring VR
environments to address diverse learner needs such as providing
adaptive support for those with low spatial ability. Future research

TABLE 6 Assignment check across immersion and interactivity.

Variable Immersion/Interactivity N M

Spatial ability PC
VR

Passive
Active

37
42
40
39

10.44
10.53
10.76
10.21

Extraversion PC
VR

Passive
Active

5.34
4.80
4.65
5.49

Agreeableness PC
VR

Passive
Active

5.64
4.81
5.28
5.17

Conscientiousness PC
VR

Passive
Active

4.41
5.06
4.54
4.92

Emotional stability PC
VR

Passive
Active

5.77
5.77
5.41
4.79

Openness PC VR
Passive Active

4.79
4.45
4.88
4.35

Pretraining test PC
VR

Passive
Active

6.95
6.53
6.57
6.92

Note. p < .05. ; N = 79.
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should further explore these interactions to develop personalized VR
environments that maximize learning for all users.

5.2 Practical contribution

By examining the effects of technological affordances
(immersion and interactivity) and individual differences (sex,
spatial ability and personality traits), this research suggests
strategies for optimizing the design and use of VR learning
systems. This study found no significant effect of immersion or
interactivity on learning outcomes, suggesting that the decision to
implement VR should be driven by the specific requirements of the
learning task rather than the assumption that VR inherently
enhances learning. For tasks that do not require physical
immersion or high interactivity, cost-effective desktop-based
systems using a keyboard and mouse may suffice, offering
similar outcomes for procedural learning. Training
organizations can use these insights to allocate resources more
strategically and avoid unnecessary expenditures on high-end VR
setups. Furthermore, the significant effects of individual
differences such as sex, spatial ability, and cognitive load on
learning outcomes suggest the need for personalized and
adaptive training in VR which artificial intelligence can provide.
Learners with low spatial ability may benefit from additional
guidance, such as interactive tutorials, scaffolding, or simplified
spatial tasks to reduce cognitive load and improve performance.
Additionally, the practical assessment results showed that VR is
particularly beneficial for tasks that require physical practice or
spatial navigation. Industries where hands-on skill acquisition is
critical, such as healthcare, aviation, and construction, can benefit
from using VR for procedural training in safe and controlled
environments.

6 Limitations and suggestions for
future research

The study identified that learning occurs in VR and individual
differences like spatial ability and sex could affect procedural learning
outcomes (Petersen et al., 2022). However, a key limitation of this study
was the small number of participants, which makes it difficult to
generalize the findings to a larger population. The limited sample
size also prevented the use of more advanced statistical methods
that could have provided deeper insights into how the variables
relate to each other. This study was designed to detect larger, more
pronounced effects rather than subtle, smaller effects, which may have
gone unnoticed due to the constraints of the sample size. Also, the
effects observed were relatively small, meaning the results should be
interpreted with caution, as the study may not have been adequately
powered to capture more nuanced relationships. This raises questions
about the generalizability of the findings to broader populations or
different contexts. Future research with larger samples could help
strengthen these findings, enabling the detection of both large and
small effects and allowing for more detailed and sophisticated analyses
that better capture the complexity of these relationships.

Also, several key constructs were not explored in this study.
Factors such as presence, agency, and representational fidelity,

which are known to play significant roles in VR experiences,
were not measured. These variables may have provided deeper
insights into how users interact with and experience VR
environments, potentially influencing learning outcomes. For
instance, presence which is the feeling of being physically there
in the virtual environment (McCeery et al., 2013; Schroeder, 2002)
could enhance engagement and procedural learning.

Agency and representational fidelity which refers to the degree
to which VR accurately represents real-world experience (Bonfert
et al., 2024) could also impact the effectiveness of VR training.
Future studies should include these constructs to assess their
influence on procedural learning outcomes.

Furthermore, stepwise multiple regression has been criticized
for several key methodological weaknesses. It often capitalizes on
chance, leading to overfitting and the inclusion of spurious
predictors that may not generalize to other datasets. The method
is also inherently unstable, with small changes in the data producing
drastically different models (Antonakis and Dietz, 2011).

Additionally, stepwise regression ignores theoretical
considerations, focusing solely on statistical criteria, which can
result in models lacking interpretability and meaningfulness
(Antonakis and Dietz, 2011). Moreover, the iterative selection
process inflates the risk of Type 1 errors and biases the
estimation of coefficients, making them unreliable. Also, it fails
to address fundamental assumptions of regression, such as
homoscedasticity and measurement error, further undermining
the validity of its results (Antonakis and Dietz, 2011). Future
research should replicate the results of this study to validate its
conclusions.

In addition, although cybersickness was not systematically
assessed using validated instruments such as the Simulator
Sickness Questionnaire (SSQ), no participants explicitly
reported symptoms like nausea, fatigue, or eye strain during or
after the VR session. The only participant who experienced
discomfort had been feeling unwell prior to the study and was
excluded from the analysis. A 10-minute break was also provided
between the 20-minute VR training and the 10-minute assessment,
reducing the likelihood of continuous exposure-related effects.
While no adverse effects were observed in this study, future
research could benefit from including standardized
cybersickness assessments and documenting post-session
experiences to refine exposure durations and system design so
as to optimize learning experiences and outcomes.

Another limitation is the content of the training itself, which was
aviation-based and targeted novice participants. The specific context
of aviation training may limit the generalizability of these findings to
other domains. Moreover, since participants were novices, their
unfamiliarity with the subject matter may have influenced the
results. Future research could explore how prior experience or
expertise in the training content affects procedural learning
outcomes in VR. Exploring whether novices and experts benefit
differently from VR training could provide insights into how to
tailor VR environments to meet the needs of different learners.

Finally, future studies should examine how combinations of
technological features and individual differences influence learning
across various domains. Such research will help refine VR
applications for training and ensure they deliver maximum value
to learners.
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7 Conclusion

We explored the technology features (immersion and
interactivity) of VR and the individual differences factors that
are predicted to influence procedural learning in virtual reality.
We found no significant difference to suggest that higher
immersion or higher interactivity meant better procedural
learning. However, sex and spatial ability were significant
predictors of procedural learning. It shows that while VR offers
unique advantages for practical assessments and physical skill
development, its value is task-specific and dependent on
individual learner characteristics. Training organizations should
carefully evaluate the necessity and cost-effectiveness of VR for
their training objectives, ensuring that technological solutions
align with the needs of the learners. By adopting targeted,
evidence-based strategies, VR can be effectively integrated into
learning environments to optimize procedural knowledge and
ensure equitable access to training opportunities.
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