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Introduction: Chronic pain (CP) is a major public health problem. Reliable
measurement of movement, activity, and other changes due to chronic pain
and its treatment is a challenge in healthcare. Wearable data collected from
randomized clinical trials contains potential signals that could be further
developed into digital biomarkers.

Methods: In a community clinic setting patients suffering from musculoskeletal
disorders with chronic pain used a novel digital therapeutic intervention using
virtual reality (Rohkea™ VR Therapy). Movement and clinical assessment data
were collected using the sensors in the Oculus Quest. Wearable data were
collected during the study interventions (frequent treatment sessions of
Rohkea™ VR Therapy). Data were analyzed using exploratory statistical analysis.

Results: In line with the earlier research, participants with chronic pain were able
to increase the movement speed of the hand controllers during the intervention.
They were also more cautious in moving their head compared to a reference
group. Participants were less likely to reach out with their active hand than the
reference group. Additionally, those with chronic pain had more difficulties with
exercises in which they were required to pick up virtual objects situated lower in
the virtual reality environment. Participants were able to increase their range of
motion during the intervention. Given the small sample size, the results should be
viewed as tentative and supportive of earlier findings from randomized
controlled trials.

Discussion/Conclusion: The findings reinforce previous results observed in the
randomized controlled trials. That similar findings occur in both a clinical trial and
a real-world environment is encouraging and is further support for
implementation of a virtual reality intervention in everyday clinical settings.
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Introduction

Chronic pain is defined as pain that persists or recurs for 3 months
or longer (Treede et al., 2019). It is a common condition, difficult to
assess and treat. In 2020, approximately 619 million people globally
were affected by low back pain, with projections reaching 843million by
2050 (GBD2021 LowBack Pain Collaborators, 2023). These individuals
weremore likely to have worse health status and to usemore healthcare.
Chronic pain can also result in structural degeneration, movement
impairments, disability, an increased risk of developing more severe
diseases (Lin et al., 2023), and is a significant public health issue,
increasing healthcare costs and causing substantial personal suffering
(Alford et al., 2010; Freburger et al., 2009; Pizzo and Clark,
2012).Although there is no clear consensus regarding the definition
of suffering caused by pain, it is evident that chronic pain leads to several
negative outcomes impacting the quality of life (Noe-Steinmüller et al.,
2024). Furthermore, for some conditions like nonspecific low back pain,
chronic pain may be considered a disease in its own right (Treede
et al., 2019).

The current gold standard for diagnosing chronic pain is patient
self-report (Rahman et al., 2023). However, interoception, the
identification of a bodily state and reporting on it, is influenced by
multiple psychosocial factors (Boring et al., 2021). Although an
objective measure of a subjective experience is not possible, the
measurement of behavioural or physiological changes that occur in
the context of pain is possible, and can be highly instructive, especially if
correlative, stable, and predictive of relevant outcomes. Sometimes,
these correlates are all one can measure, if self-report is not possible. A
variety of digital solutions include wearable or portable sensors that can
provide digital signals which show promise to provide what has become
known as a digital biomarker–a stable physiological and/or behavioural
correlate of pain. (Boring et al., 2021; Vitali et al., 2023).

Wearable sensors offer significant potential for detecting and
monitoring the effects of chronic pain in real-world settings (Vitali
et al., 2023). For example, sensing of movement in low back pain has
been reported bymany studies. Concrete examples include the use of
a wearable sensor for monitoring lower back activity (Baijot et al.,
2021) and the use of an inertial sensor for classification of low back
pain patients (Davoudi et al., 2020). Moreover, the use of multiple
sensors is likely to be even more beneficial. For example, Spencer
et al. introduces a strain sensor array which can be used to effectively
monitor spinal motion for more accurate biomechanical analyses
(Spencer et al., 2023), whereas Moon et al. have proposed a sensor
cluster for measuring lumbopelvic movements (Moon et al., 2023).
It has also been shown that a cost-effective motion-capture sensor
data can be used to categorize patients with low or high risk for
nonspecific low back pain (Abdollahi et al., 2020). Moreover, a 2-
year case report demonstrated that a commercially available smart
ring can be used for long-term monitoring of low back pain
symptoms (Fonseka et al., 2022). Wearable sensors do not only
provide data for the assessment of chronic pain parameters, but they
can also be used to predict the treatment response to different
therapies. For example, in the case of Spinal Cord Stimulation (SCS),
which is a well-established therapy for treating chronic pain, data
from wearable devices has been used to predict patient response to
SCS therapy (Heros et al., 2023; Patterson D. G. et al., 2023;
Patterson D. et al., 2023). Despite the encouraging use cases, it is
fair to acknowledge that the role of wearables in healthcare outcomes

in chronic disease is not always clear, and demonstration of causality
can pose a challenge in some cases (Mattison et al., 2022).

The use of digital signals shows great promise in assessment of
chronic pain and its impact. Sensor data can be used to supplement
traditional medical interventions which include methods such as
spinal injections, surgery, and pharmacological interventions
(Freburger et al., 2009). However, traditional treatments are often
associated with unwanted or adverse events and are not always
effective in treating chronic pain. It is crucial to recognize that the
experience of chronic pain patients can be improved through
education about pain and its consequences and giving the
patients a more active role in managing their own pain (Pizzo
and Clark, 2012). Virtual reality (VR)-based treatments offer a cost-
effective means to achieve this goal. The use of VR environments in
treating chronic pain (Darnall et al., 2020) and more specifically
chronic low back pain (Garcia et al., 2021; Eccleston et al., 2022;
Liikkanen et al., 2022) has been demonstrated to be effective in
controlled trial settings. The patients participating in the VR
treatments show improvements compared to the control group
on several pain-related outcomes, such as reduced pain intensity
(Garcia et al., 2021) and reduced kinesiophobia (Eccleston et al.,
2022). Moreover, the use of VR has been linked to increased
movement speed which correlated with a self-reported reduction
in pain-related fear of movement (Liikkanen et al., 2022). Gröhn
et al. reported that movement data gathered from VR environment
can also be used for identifying chronic low back pain patients from
healthy volunteers (Gröhn et al., 2023). These results suggest that
movement data from VR environments gathered under controlled
trial settings can be used as digital biomarkers for detecting pain. It
is, however, not clear whether the results obtained under controlled
trial settings translate into tangible benefits observable in a real-
world scenario.

In this study, we explore if similar results are observed in a real-
world setting, where participants suffering from musculoskeletal
disorders are allowed to use the VR environment at their own pace
and time. The aim of the study was to observe how participants use
the VR environment in a real-world setting. Based on previous
observations under RCT setting, our main hypothesis was that the
VR intervention would help participants improve their movement
speed. Additionally, the aim was to screen the data for potential
signals of pain-related fear of movement that could be used to
inform a digital biomarker for chronic pain.

Materials and methods

Study description

This was an open, non-randomized, real-world data study. An
immersive virtual reality environment, as described in earlier studies
(Eccleston et al., 2022; Liikkanen et al., 2022) was provided to
participants with the aim of reducing pain, movement related
fear of further pain and reinjury, and reducing disability. The VR
environment consisted of a summer cabin, which provided the user
access to three types of rehabilitative games. The three game types
were 1) picking different objects in a virtual orchard, 2) packaging
smaller boxes into a larger box, and 3) following the movements of a
slowly moving orb. The study outlined a set of predefined games
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each participant was suggested to do. Additionally, the participants
had the opportunity to engage in additional training in the VR
platform based on their personal preferences.

VR pilot study participants were recruited from a larger pool of
patients participating in conventional rehabilitation by means of
physical therapy or group therapy based on individual need. VR
therapy was offered as a supplementary treatment on top of
conventional methods. Approximately 20% of the people who
were offered the VR treatment option took on the offer. Eleven
participants were recruited, all who had pain lasting for 3 months or
longer. The participants had a history of musculoskeletal disorders
and were mostly recruited through Finnish government sponsored
rehabilitation program (TULES). Independent healthcare
professionals examined all participants prior to entering the
program. All participants were assessed to benefit from
participation in a rehabilitation program under an outpatient
rehabilitation setting. The TULES rehabilitation program is
intended for individuals with properly diagnosed musculoskeletal
disorder affecting the back, neck, shoulder or upper/lower limb(s).
However, the individual diagnoses of the subjects participating in
the VR pilot were not separately recorded as a part of the study data.

Four participants withdrew from the study: one due to nausea,
one due to difficulty standing during exercises because of pain, and
two citing time constraints related to family and work. The study
was conducted in real-world settings, in which participants were
allowed to use the VR environment at their own pace and time. The
tentative study period suggested for the participants was 12 weeks,
but this was not mandated, and participants were allowed to use the
equipment for longer. Four participants without chronic pain
completed a set of pre-defined tasks in the VR experience to
provide an approximate real-world benchmark for the study. The
benchmark tasks were completed within 1 day. This reference group
consisted of healthy volunteers. Budgetary and project ownership
related reasons restricted the possibility of extending the length of
training sessions for the reference group to match the 12 weeks
provided for the pain group. Due to the feasibility and observational
nature of the study design, all participants were instructed to use the
VR environment freely to mimic real world usage. Table 1 shows the
demographics of the participants for the pain and reference groups.
We would like to emphasize that the small number of participants in
the current study makes it challenging to draw any definitive
conclusions, and ideally confirmatory studies with larger sample
sizes will be conducted in the future.

Statistical methods and data collection

This pilot feasibility study involved an exploratory data
analysis, to gather preliminary insights, by exploring trends

and patterns in the data. Data analysis was conducted using R
version 4.3.2 (R Core Team and R, 2023; Wickham et al., 2019).
In addition to base R, ggplot2 (Wickham, 2016), ggpubr
(Kassambara, 2023), RColorBrewer (Neuwirth, 2022), and
flextable (Gohel and Skintzos, 2025) packages were used in
image and table creation. Moreover, readxl (Wickham and
Bryan, 2025), lubridate (Grolemund and Wickham, 2011),
forcats (Wickham), stringr (Wickham, 2023), dplyr (Wickham
et al., 2023), readr (Wickham et al., 2024a), tidyr (Wickham et al.,
2024b), and tibble (Müller and Wickham, 2023) packages were
used for data analysis.

Statistical tests

Analysis of variance (ANOVA) was used for comparing group
means. Standard ANOVA assumptions were verified.

Data collection and processing

Data from the virtual reality environment were collected
from the participants using Meta Oculus Quest 2 VR equipment.
Most importantly, the data contained the x, y, z -coordinates for
the VR headset and the left- and right-hand controllers. The data
points were collected at approximately 30 ms intervals, with
some variation between individual data points. Metadata tags
were used to identify movement sections related to picking
objects in the VR environment. Each individual picking
movement section was tagged with a unique identifier tag
during data processing.

Movement speeds v(t)were calculated for all observations in the
picking movement sections by determining the distance between the
coordinates of consecutive time points and dividing the result by the
time difference between observations:

v ti( ) �
�������������������������������
xi − xi−1( )2 + yi − yi−1( )2 + zi − zi−1( )2

√
ti − ti−1

. (1)

A small percentage of the movement sections contained
individual outlier observations with very high movement speeds.
These outliers were attributed to the VR equipment momentarily
losing the reference coordinate value, which resulted in singular
unrealistically high movement speeds. These observations were
detected by marking any observations more than 10 Median
Absolute Deviations (MAD) away from the median speed of the
movement section as an outlier. The outliers were smoothed by
taking the average speed of the previous and following observations.
Moreover, movement sections where the total movement length

TABLE 1 Demographics for the study participants for the pain, dropout, and reference groups, respectively.

Group n Prop. Male Avg. age Median age SD age Max age Min age

pain 7 0.29 51.7 53.0 9.4 60 32

drop out 4 0.75 52.0 52.5 9.4 63 40

ref 4 1.00 44.8 42.5 10.3 59 35

The table shows the number of participants per group, the proportion of male participants, as well as the average, median, standard deviation, maximum and minimum age of the participants.
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during the picking motion was less than 0.1 m were excluded from
the analysis.

Distance of the hand controller from the headset was calculated
via simple vector subtraction for both hands at each time point. For
example, given the headset position �H and the left-hand controller
position �L the vector between the left-hand controller and the
headset is calculated by subtracting the left-hand position vector
from the headset position. Next, the distance between the left-hand
controller and the headset dLH was calculated as the Euclidean norm
of the vector LH

��→
:

dLH�‖LH��→‖�
�������������������������������
Hx − Lx( )2 + Hy − Ly( )2 + Hz − Lz( )2

√
. (2)

The derived datasets for reproducing the results in this study are
available as open data (Liikkanen et al., 2025).

Linear regression and Monte Carlo simulations were used for
estimating improvements in observed movement speed.
Furthermore, standard error of the mean, was calculated from
the standard deviation for the fitted slopes by:

SE � SD�
n

√ , (3)

where n is the number of simulations and SD is the standard
deviation of the simulated slopes.

Questionnaire data

Fear of movement and re-injury
The Tampa Scale of Kinesiophobia (TSK) was used to measure

fear of pain and (re)injury on movement (Miller et al., 1991). The
questionnaire was completed by the participants at the beginning
and at the end of the study. This 17-item measure gives a score from
17 to 68, with higher scores indicating higher fear of pain or (re)
injury on movement.

Disability assessment
World Health Organization Disability Assessment Schedule

(WHODAS 2.0) was used to measure disability. WHODAS 2.0 is a
questionnaire which measures disability in six domains: cognition,
mobility, self-care, getting along, life activities, and participation. The
questionnaire was completed at the beginning and at the end of the study.

Quality of life
World Health Organization Quality of Life Brief Scale

(WHOQOL-BREF) was used to measure the quality of life of the
participants. WHOQOL-BREF is a 26-item questionnaire which
measures the quality of life in four domains: physical health,
psychological health, social relationships, and environment. The
questionnaire was completed at the beginning and at the end of the
study. TheWHOQOL-BREF score ranges from 0 to 100, with higher
scores indicating better quality of life.

Ethical approval
This study was performed as commercial pilot in real world

settings, and thus no ethical approval was obtained. Participants
gave their consent to participate.

Results

The data analysis focused on the picking game, where the
participants gathered mushrooms, raspberries and apples in an
orchard. Exploratory data analysis revealed that the data gathered
from the other two activities was challenging to analyze in a
meaningful way. The number of participants and the number of
unique picking events recorded per group is listed in Table 2. The
control group conducted all the VR assignments within a 1-day
session, whereas those with chronic pain had the opportunity to use
the VR equipment at home without a predefined schedule.

As the control group conducted all the VR assignments within
1 day, it is challenging to assess how the performance of these
subjects developed over time. However, for the pain group, we can
explore how the participants adapted to the VR environment over
time. One simple measure for assessing how comfortable they were
in using the VR equipment is to calculate how evenly they use their
hands. The active hand controller (left/right), i.e., which hand was
used to grab and release an object in the VR environment, is
recorded as a metadata tag in the data. Figure 1 shows the
calculated proportion of picking movements conducted with the
right-hand controller for each distinct study day. All participants
used their right hand more during the first few days, and most
started to use their hands more evenly as the study progressed.
Information regarding the participants’ dominant hand was
not recorded.

Active hand speed

The speed of the active picking hand was calculated for each
time point using Equation 1. The average speed of the active hand
for each picking event was calculated for each participant. In order
to compare each individual starting level, the mean picking speed
from exercises performed on the first study day were compared to
the performance of the reference group. Figure 2 shows a
comparison between the groups for the mean speed of picking
events recorded during the first study day.

From Figure 2 we can see that there is a clear difference in the
mean picking speed of the active hand between the two groups. The
reference participants are faster on average. However, we want to
ensure that this is not caused by certain individuals only. Table 3
shows the nested ANOVA results for the average movement speeds
of the groups on day 1, where the participants are included as a
nested factor inside the two distinct groups. The results suggest that
the difference in the average movement speeds is affected by both the
user and the group they belong to.

In the beginning the pain group was slower than the reference
group. We were interested to discover if the VR intervention
influences the movement speed. Figure 3 displays the mean

TABLE 2 The number of participants by group, and the amount of unique
picking events analyzed.

Group Subjects Picking events

Pain 7 3695

Control 4 332
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FIGURE 1
Proportion of pickingmovements conductedwith the right-hand controller was calculated for each study day for the subjects in the pain group. The
line is fitted with local regression (LOESS) and is only intended to guide the eye. The panel on the top left shows the pooled data for all pain subjects.

FIGURE 2
Mean movement speed of the active hand for each picking event for the pain subjects and the reference group during day 1.
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movement speed of the active hand for each picking event for the
pain participants during the study as a function of study day. One
notable observation is that the data are sparse. Most participants
have large gaps in between exercise days, which underlines the real-
world study setting. Moreover, the general level of mean speed
values for the active hand differs somewhat between individuals.
Part of the sparseness is attributable to the option participants had
within the experience to undertake activities other than picking.

The sparseness of the data makes it more challenging to evaluate
the progress individuals might be making during the study. To assess
the expected evolution of active hand speed during the VR
intervention we decided to combine observations from different
participants. To do this we first normalized the data per individual to
span values from 0 to 1. Additionally, to mimic the randomness
involved in recruitment a Monte Carlo simulation was devised. At
each simulation round four pain participants were chosen at
random. The mean active hand speeds for the selected
participants were pooled together and a bootstrap sample of
1001 observations was drawn from the pooled data. In total
3000 simulations were run this way, and the slope of the linear
regression fit of the normalized data was recorded for each bootstrap
sample. This allowed us to simulate the randomness caused by the
patient population sample and the random differences between
individual picking events. In essence, this allowed us to create a
digital twin of the study population.

Figure 4 shows a distribution of the simulated slopes fitted to the
normalized mean speed data. A positive slope value indicates that
the participants can increase the movement speed of their active
hand during the study, and we can see that the majority of the
simulated slopes are positive. From the Monte Carlo simulations we
can estimate the mean and standard error for the slope of the active
hand speed during the program.

We can calculate the confidence interval for the average Monte
Carlo estimate for the slopes fitted to the normalized mean speed
data using Equation 3. Looking at Figure 4 we can see that theMonte
Carlo estimate for the slope is considerably larger than the point
estimate we get from fitting to all normalized mean speed
observations. This supports the notion that all participants do
not exhibit comparable performance, and individual
outcomes can vary.

The Monte Carlo estimate for the normalized data is quite
abstract. To get something more tangible we can easily calculate the
estimated speed improvement of the active hand during the 12-week
intervention. In order to do this, we need to convert the normalized
speeds back to the original scale. Since the speeds were normalized
per individual and the data were pooled, it makes little sense to
calculate the speed improvements for each study participant.
Instead, we calculate the speed improvement for a hypothetical
person with average movement speeds ranging from 0.15 m/s to

1.1 m/s. The estimated slope on the non-normalized scale is
expressed as:

βestimate � βnorm × vmax − vmin( ), (4)
where βnorm is the estimated slope on the normalized scale, and vmax

and vmin are the maximum and minimum speeds of the hypothetical
subject. Table 4 shows the estimated improvement rate calculated
with Equation 4 for this synthetic patient which is a representation
of the patient population.

Pain related movement differences

Expecting or experiencing pain alters the way a person moves
(Kantak et al., 2022). People tend to minimize or avoid movements
which are thought to cause or exacerbate pain. This leads to reduced
movement trajectories (Gizzi et al., 2019). Previous studies have shown
that people with chronic low back pain showed a strong correlation
between headset movements and clinical endpoints related to fear of
movement, overall health, and quality of life (Liikkanen et al., 2022). To
examine if similar signs can be found from real-world data, we compared
the headset speeds between the two groups. Figure 5 shows the mean
headset speeds for the participants and the reference group.

The results suggest that the pain group move their head more
slowly on average than the reference group. This is consistent with
the idea that subjects with chronic pain avoid movement. Table 5
shows the nested ANOVA results for the mean head speeds where
the participants are nested within the group. The results further
support the notion that the difference in the mean head speeds is
affected by both the user and the group they belong to.

The height of the object to be picked can affect the picking speed.
It was hypothesized that fear of pain and (re)injury in chronic
musculoskeletal pain will make it more difficult to pick up objects
which are situated in the lower quadrant of space, out of reach of
upper body movement and so requires forward spinal flexion to
achieve. In other words, in order to pick mushrooms, one has to
bend. Figure 6 illustrates the height distributions of different objects
within the VR environment.

Figure 7 shows the picking speed of the mushrooms by
group. Mushrooms were the only object within the picking
exercise which exhibited a statistically significant difference in the
average speed of the active hand between the groups. As expected,
participants with chronic pain were slower in picking up
the mushrooms.

Finally, we wanted to investigate the range of motion during the
VR intervention. To this end, the distance between the hand
controllers and the headset were calculated according to Equation 2.
Figure 8 shows themean distances between the hand controllers and the
headset for the active and passive hand. The length of a person’s

TABLE 3 Nested ANOVA results for factors contributing to the average movement speeds of the active hand on day 1.

Term df sumsq Meansq Statistic p.Value

group 1 2.175 2.175 51.528 <0.001

group:user 9 5.051 0.561 13.293 <0.001

Residuals 364 15.367 0.042 - -

The results suggest that the difference in the average movement speeds is affected by both the user and the group they belong to.
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outstretched arms is roughly correlated to their height. Unfortunately,
the height of the participants was not recorded, which makes it
challenging to account for it. However, based on the results of

passive hand distance from the headset it seems that the groups are
approximately equal in this regard, which allows for comparison.
Moreover, there is an interesting difference in the distance of the

FIGURE 3
Mean movement speed of the active hand for each picking event for the pain subjects during the study. Linear regression line was fitted to the
observations to visualize the trend.
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active hand. Those with pain do not reach out as far as the
reference group.

It is not surprising that the participants in the pain group do not
exhibit the same range of motion as the reference group. However, it
is interesting to see if those in the pain group are able to increase
their range of motion during the study. We can estimate this by
using a similar Monte Carlo approach as we did with the active hand
speed. We again normalize the results per subject to span from 0 to
1 and repeat the same sampling procedure. The results of the Monte
Carlo simulation are shown in Figure 9.

There is an observable difference in improvement when the
picking motion has been performed with the right hand. Based on
Figure 1 it seems most if not all participants are right-handed. At
least none of the subjects dominantly uses their left hand. There is an
interesting contrast when we look at the left-hand results from
Figure 9. Here it seems that the range of motion has decreased. It
should be noted that participants are able to move freely within the
VR environment, which allows them to pick up maximum of two
items simultaneously. It is therefore plausible that as they get more
comfortable with the VR environment, they start to use both hands

more often. This could partly explain the decrease in the range of
motion for the left hand.

We can calculate speculative improvements in hand to headset
distance for a hypothetical user by using the converted slope
estimates. The range of motion improvements for this synthetic
patient with minimum and maximum recorded reach distance from
0.45 m to 0.8 m are shown in Table 6. Subtle improvements in the
range of motion can be seen for the active hand in general.

Self-report questionnaires

The improvement during the intervention was estimated using
three questionnaires. The change during the study according to the
WHOQOL-BREF is presented in Table 7. Table 8 shows the change
in the Tampa Scale of Kinesiophobia and WHODAS disability
assessment during the study. For TSK, a negative change
indicates a reduction in the fear of movement and re-injury.
Figure 10 shows a visual representation of the questionnaire data,
with the calculated average improvements.

Looking at Tables 7, 8 we can see that four of those in the pain
group showed overall improvements in the fear of movement and re-
injury, two showed no change and one worsened. Except for two people
the level of disability decreased during the study for most subjects.
Figure 10 displays how the average score has improved in all categories.

Discussion

In a Real World Evidence (RWE) observatory study of
participants we found that those with chronic pain showed
micro-avoidance movement patterns compared to those without

FIGURE 4
Monte Carlo simulation of slopes fitted to bootstrapped samples from normalizedmean speed data. The red dashed line is the slope value of a linear
model fitted to all normalized observations. The blue dashed line is themean of the simulated slopes, and the blue shaded area shows the 95% confidence
intervals for the estimated mean slope.

TABLE 4 Monte Carlo estimates for a hypothetical subject with average
speeds ranging from 0.15 m/s to 1.1 m/s.

Hand Lower
95%

Rate improvement
(m/s)

Upper
95%

Right 0.0556 0.0565 0.0574

Left 0.0261 0.0281 0.0300

Both 0.0395 0.0409 0.0422

The table shows the estimated active hand speed improvement during a 12 weeks VR,

intervention with 95% confidence intervals.
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in their experience of the VR intervention. Specifically, they moved
their head less often and in a narrower range of motion and were less
likely to reach out with their active hand than the reference
group. Further, as expected they were slower to reach for objects
in the virtual environment placed at a height that required forward
spinal flexion (bending). However, participants were able to increase
their range of motion after the intervention and were able to increase
the movement speed of the hand controllers during the intervention.

FIGURE 5
Mean movement speeds of the headset for each picking event during picking of objects.

TABLE 5 Nested ANOVA results for the mean head speeds of the subjects in
two groups during day 1.

Term df sumsq Meansq Statistic p.Value

group 1 1.725 1.725 78.229 <0.001

group:user 9 2.284 0.254 11.51 <0.001

Residuals 364 8.025 0.022 - -

FIGURE 6
Distribution of picking heights for different objects.
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The observed improvement in movement speed supports previous
reports conducted under a clinical trial setting (Liikkanen
et al., 2022).

Table 1 shows a difference in the female to male (F/M) ratio
between the groups. The study group started with the 11 participants
(including dropouts) out of which 6 were females, whereas the

reference group consisted entirely of males. Ideally the F/M ratio
would be roughly the same. However, due to budgetary restrictions
this was not possible. Roivainen et al. have reported that in a group
of Finnish outpatients, where 87% of the patients suffered from
musculoskeletal disorders, no statistically significant difference was
observed in the Grooved Pegboard Test, which measures fine motor

FIGURE 7
The mean speed of the active hand during picking of Mushrooms. Unlike with Apples and Raspberries, which are located higher up, there was a
statistically significant difference between the groups.

FIGURE 8
Mean distances between the hand controllers and the headset for the active and passive hand.
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speed (Roivanen et al., 2021). This was in contrast to the gender
difference found in the general population (Roivanen et al., 2021).
Given the similarities between the participants in this study, we
might expect that perhaps gender does not significantly affect the
picking speed trends observed in this study. Nevertheless, we suggest
that gender is more carefully accounted for in future studies.

While statistical analyses were conducted, the small sample size
limits the significance of the findings, which should be interpreted as
observational data. Further, this was undertaken in a RWE context
which led to inevitable research performance problems. For

FIGURE 9
Monte Carlo simulation estimating the slope of the linear regression fit of the normalized distance of the active hand controller from the headset as a
function of study days. A positive slope indicates an increased range of motion during the study.

TABLE 6 Estimated change in range of motion for the active hand during
12 weeks VR intervention for a synthetic patient with minimum and
maximum recorded distances of 0.45mand 0.8mbetween the headset and
the active hand.

Hand 95% CI
lower

Range
improvement (cm)

95% CI
upper

Both 0.123 0.146 0.170

Left −2.356 −2.305 −2.254

Right 2.551 2.609 2.666

TABLE 7 Individual patient change scores in the WHOQOL-BREF self-assessment questionnaires during the study.

User WHOQOL-BREF:
Environment

WHOQOL-BREF:
Physical health

WHOQOL-BREF:
Psychological

WHOQOL-BREF: Social
relationships

rwd-
user-19

0 12 25 31

rwd-
user-21

18 0 0 0

rwd-
user-22

0 6 19 19

rwd-
user-23

19 0 0 −6

rwd-
user-24

0 6 6 0

rwd-
user-33

−6 0 0 0

rwd-
user-37

−6 0 0 −6

A positive change indicates an improvement in the quality of life.
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example, the structure of the gathered data is not as complete as it
would be for a randomized controlled trial (RCT). The study also
lacks a comparator treatment group, which makes it challenging to
assess any absolute effectiveness of the VR intervention. However,
that the benefits of a VR intervention have been shown under RCT
settings in previous studies (Garcia et al., 2021; Eccleston et al., 2022;
Liikkanen et al., 2022), and the observation made in the current
study are supportive of these earlier findings. The RWE settings also
increase the risk for observing something akin to the survivorship
bias, where participants who do not judge the VR intervention to be
helpful stop doing the exercises early on. This could lead to an
overestimation of the effectiveness of the VR intervention. Although
the sample size is small, the wearable data generated are rich and
plentiful. Still, more research with larger samples is required now
that the candidate biomarkers have been identified. Active controller

speed, speed of the headset, a combination of these two, and hand/
headset distance are good candidate digital biomarkers that can be
taken into implementation in larger studies of both the natural
progression of disease, and of treatment mechanism.

Conclusion

Restrictions in movement, best explained by micro-avoidances
due to fear of pain and re-injury are a promising biomarker of
chronic musculoskeletal pain. In particular, a narrow range of
motion of head and neck movements, and a reduction in reach
movements are very promising candidates for stable biomarkers of
biomechanical inefficiencies known to be significant risk factors of
disability in chronic low back pain. Further, placing objects in a
lower spatial quadrant that requires spinal flexion produces as large

marker of avoidance. Further, this Real-World Extension of a
Virtual Reality intervention for chronic pain supports earlier
evidence to the efficacy of an intervention aimed at promoting
engagement with feared movement to reduce disability. The results
suggest that previous results from controlled clinical trials extend
beyond the clinical setting. Further studies are needed to confirm the
validity of the proposed biomarkers under a more controlled
study setting.

Data availability statement

The original contributions presented in the study are publicly
available. This data can be found here: Liikkanen et al. (2025),
https://data.mendeley.com/datasets/vdz5j9nfmk/1.

TABLE 8 Change in the TSK and WHODAS self-assessment questionnaires
during the study.

User TSK WHODAS (%)

rwd-user-19 0 −0.08

rwd-user-21 −6 −6.25

rwd-user-22 −7 −6.25

rwd-user-23 −7 −4.17

rwd-user-24 0 6.25

rwd-user-33 2 0.00

rwd-user-37 −2 −10.42

A negative change indicates a reduction in the fear of movement and re-injury in TSK,

score. In WHODAS, a larger number indicates a more severe disability, which is why a

negative change indicates an improvement.

FIGURE 10
Visual representation of the questionnaire data. The red squares show the reported average change in each category.
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