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Introduction:Neuroadaptive technology provides a promising path to enhancing
immersive extended reality (XR) experiences by dynamically tuning multisensory
feedback to user preferences. This study introduces a novel system employing
reinforcement learning (RL) to adapt haptic rendering in XR environments based
on user feedback derived either explicitly from user ratings or implicitly from
neural signals measured via Electroencephalography (EEG).

Methods: Participants interacted with virtual objects in a VR environment and
rated their experience using a traditional questionnaire while their EEG data were
recorded. Then, in two RL conditions, an RL agent tried to tune the haptics to the
user — learning either on the rewards from explicit ratings, or on implicit neural
signals decoded from EEG.

Results: The neural decoder achieved a mean F1 score of 0.8, supporting
informative yet noisy classification. Exploratory analyses revealed instability in
the RL agent’s behavior in both explicit and implicit feedback conditions.

Discussion: A limited number of interaction steps likely constrained exploration
and contributed to convergence instability. Revisiting the interaction design to
support more frequent sampling may improve robustness to EEG noise and
mitigate drifts in subjective experience. By demonstrating RL-based adaptation
from implicit neural signals, our proof-of-concept is a step towards seamless,
low-friction personalization in XR.
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1 Introduction

Extended Reality (XR) has the potential to create profoundly immersive and awe-
inspiring experiences. However, achieving an optimal experience requires fine-tuning
various settings, from brightness and field of view to haptic feedback (Ramsamy et al.,
2006) and spatial audio (Potter et al., 2022). Currently, users manually adjust these
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parameters to their liking through conventional menu interfaces
that closely resemble traditional desktop environments.

Unfortunately, this introduces significant friction. Frequent
interruptions, particularly during initial setup, can break immersion,
reduce excitement, and potentially lower long-term adoption rates.
Additionally, conventional settings menus may carry a higher cost than
just disrupting the immediate experience; they reposition the user into a
known, age-old computing paradigm that is entirely disconnected from
the immersive nature of XR. This disconnect makes personalization feel
like a chore rather than a seamless and intuitive part of the experience.

Given these challenges, we set out to develop a method that
effectively personalizes XR experiences while minimizing manual
configuration and preserving immersion. One promising approach
is to leverage Reinforcement Learning (RL), empowering an
autonomous system to learn user preferences over time
(Kaufmann et al., 2023). However, this presents its own
obstacles, such as the need for human-provided labels and the
challenge of balancing automation with user control.

One solution lies in obtaining implicit feedback from the user
through neural and physiological data (Zander et al., 2016). Instead
of relying on explicit user input, neural signals can serve as a real-
time indicator of a user’s preferences, engagement, and immersion.
Here, the term ‘neuroadaptive technology’ is used to mark the shift
from ‘direct control’ brain-computer interfaces (BCI) to implicit
adaptation (Zander et al., 2016; Krol and Zander, 2022).

We introduce ‘Neuroadaptive Haptics’, a novel neuroadaptive
system for a tailor-made, multisensory XR experience.
‘Neuroadaptive Haptics’ is an interactive system that integrates
real-time neural and physiological data to dynamically modify
haptics in XR environments. Our system leverages the output
from a BCI as a reward signal for RL. In this paper, we applied
our system to tune haptic parameters of a virtual reality (VR) system.
We tested whether the system was able to dynamically adjust the VR
settings to optimize users’ haptic experience over time without
requiring manual interventions.

2 Related work

Our research draws inspiration from neuroscience and
engineering work on BCIs, specifically neuroadaptive technology.
In order to situate our research, we provide a background on haptic
experiences in XR.

2.1 Haptic experiences in VR

Haptic feedback in VR has been shown to be a key component in
creating a realistic user experience. In fact, for a long time now,
researchers have argued that attaining haptic realism is the next
grand challenge in virtual reality (Brooks, 1999). In most use cases,
the goal of haptic devices is to render (i.e., generate artificial touch
sensations through devices) realistic sensations that mimic the
sensory experience a user would normally expect when
interacting with the real world. For instance, multisensory haptic
renderings can combine vibrotactile feedback with force feedback,
rendered via exoskeletons or electrical muscle stimulation (EMS), to
simulate not only the sensation of touch but also the resistance and

rigidity of objects (Lopes et al., 2015). Additionally, other sensory
cues–such as carefully synchronized auditory feedback or subliminal
EMS signals–are increasingly employed to enhance haptic illusions
(Cho et al., 2024; Takahashi et al., 2024). These methods can trick
the brain into perceiving properties like texture, weight, or even the
subtleties of material composition, by engaging multiple sensory
pathways simultaneously. However, complex haptic interactions are
still error-prone. The synchrony of sensory information relies on the
quality of motion tracking and the accuracy of feedback
presentation, and incongruous temporal feedback during object
interaction may occur due to technical reasons.

At its core, this relies on predictive coding mechanisms underlying
sensory integration–a framework in which our brains leverage
foundational models (Pouget et al., 2013), originally established
through interactions with the physical world, to interpret sensory
information in both real and virtual environments (see next section).
However, as evidenced by the significant technological leaps in each
new hardware release, next-generation VR technology still exhibits
frequent glitches and sensory mismatches, especially in key moments of
multisensory integration.

2.2 Sampling the predictive coding
mechanisms in the brain

The brain is frequently conceptualized as a predictive system
that continuously generates foundational models of the
environment to infer the causes of sensory input (Rao and
Ballard, 1999; Friston, 2010); Clark (2013). In this framework,
perception emerges from an iterative process in which
predictions are compared with incoming sensory data, and
discrepancies–known as prediction errors–drive model updates.
These processes have been widely studied in sensory perception
(Bastos et al., 2012; Keller and Mrsic-Flogel, 2018; Knill and Pouget,
2004), with research showing that the brain dynamically adjusts its
internal representations to minimize these errors.

Prediction errors are particularly crucial in interactive and
multimodal contexts, where sensorimotor integration plays a key
role. Previous studies have demonstrated that the brain detects
visuo-haptic mismatches in real-time, measurable as Prediction
Error Negativity (PEN) in Electroencephalogram (EEG)
responses. This neural signature has been targeted as a marker of
error processing in VR scenarios, where prediction errors appear to
correlate with disruptions in user experience and physical
immersion (Gehrke et al., 2019; Singh et al., 2018; Si-mohammed
et al., 2020; Gehrke et al., 2022; 2024). These findings suggest that
predictive processing extends beyond passive perception and is
deeply embedded in embodied cognition, where action and
perception are considered to be tightly coupled.

2.3 Neuroadaptive technologies

Neuroadaptive systems are interactive technologies that adapt
their behavior based on real-time neural or physiological activity
(Hettinger et al., 2003). These systems aim to respond to internal
user states by dynamically modifying the interface or the
environment. A system can be considered neuroadaptive when it
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includes a closed-loop in which neural or physiological signals are
used not just for passive monitoring, but for actively shaping the user
experience. Some examples include adaptive interfaces that change
based on mental workload (Dehais et al., 2020) BCI-driven cursor
control (Zander et al., 2016), as well as neurofeedback systems in
learning and rehabilitation contexts (Mahmoudi et al., 2025).

Most applications to date have focused on desktop-based scenarios,
where the challenges related to signal stability, real-time processing, and
interface control are more manageable. Fewer studies have explored
neuroadaptive approaches in XR, largely due to the difficulty of
integrating physiological sensing in dynamic, multisensory
environments. Still, early XR applications have demonstrated promise
in areas likemeditation support (Kosunen et al., 2016), exposure therapy
for phobias (Weber et al., 2024), and adaptive training systems (Mark
et al., 2022). However, these implementations generally rely on
predefined scenarios and offer only limited autonomy to the
computer, which typically cannot decide when or how to seek
additional information from the user. Moving toward truly integrated
neuroadaptive XR requires empowering the system to autonomously
probe the user when necessary–sampling new data points to improve
adaptation (Krol et al., 2020).

Looking beyond the scope of EEG-based measurements, other
physiological data can be used for adaptive XR systems as well. For
example, eye tracking signals have been explored as a measure for
cognitive load in VR industrial training (Nasri et al., 2024), functional
near-infrared spectroscopy (fNIRS) has been used to modulate scene
intensity in a real-time VR horror experience (Berger et al., 2024),
cardiac measures have guided relaxation content in immersive nature
environments (Pratviel et al., 2024), and adaptive surface-EMG gesture
decoders during VR object manipulation improved task success and
reduced workload compared to static decoders (Gagné et al., 2025).
Peripheral modalities (measuring the eyes, heart, or muscles) have
strong potential, but their disadvantage is clear: They cannot access
central nervous system information, i.e., the neural basis of cognition
and stimulus processing and evaluation. Functional NIRS can do this,
but has a temporal disadvantage compared to EEG, as it relies on the
hemodynamic response, which lags several seconds behind the actual
processing (Mehta and Parasuraman, 2013). Since we are interested in
the direct neural responses of predictive processing, we relied on EEG in
our study.

In this work, we configured an RL agent to autonomously
sample the human-in-the-loop, aiming to find a haptic feedback
configuration that the user experiences as the most consistent with
their expectations. This approach moves beyond traditional
neuroadaptive applications by combining passive physiological
sensing with active decision-making in one interactive prototype,
paving the way for more intelligent and responsive XR experiences.
To tune the interaction over time, we used feedback, or labels, given
directly by the human-in-the-loop, a special form of RL from human
feedback (RLHF).

2.4 Reinforcement learning from
human feedback

RLHF is a paradigm that enhances traditional reinforcement
learning (RL) by incorporating human evaluative signals into the
learning process (Kaufmann et al., 2023; Knox, 2011; Li et al., 2019.

Instead of relying solely on a predefined reward function, RLHF
allows human feedback–either explicit, i.e., numerical ratings,
scores, and rankings, or implicit, i.e., physiological signals such as
EEG-based brain activity (Luo et al., 2018; Xavier Fidêncio et al.,
2022)–to shape an agent’s behavior dynamically. This approach is
particularly useful in domains where reward functions are difficult
to specify, such as in robotic interaction, as well as user experience
optimization as it applies in adaptive XR environments.

Traditional RL systems require extensive exploration to learn
optimal behaviors, which can be time-consuming and inefficient.
RLHF mitigates this by enabling systems to leverage human
expertise, reducing the sample complexity of learning tasks. For
instance, prior work has demonstrated the effectiveness of human
preference-based RL for training AI assistants, robotic control, and
interactive game agents (Li et al., 2019).

A key benefit of computing rewards based on EEG-based brain
activity in this context is that it enables a seamless and non-
disruptive interaction: the system can adapt to the user without
requiring them to stop and provide explicit input. In contrast, while
explicit labels might offer more reliable signals, they introduce
cognitive load and interrupt the immersive flow of the
experience. EEG-based approaches address this limitation by
allowing the system to adapt in the background, minimizing
disruptions while still responding to changes in the user’s
internal states. Studies on EEG-based RLHF have shown that
BCIs can provide real-time feedback signals that improve
learning efficiency while reducing human effort (Xu et al., 2021;
Xavier Fidêncio et al., 2022).

3 User study and methods

We set out to answer three questions: First, can we tune haptic
rendering to participants’ preferences using an RL agent based on
human feedback? Second, is this possible through implicit labels
obtained through a neural decoder? And third, are there
disadvantages when relying on implicit instead of explicit labels?

To investigate these questions, we designed a user study where
participants performed a pick-and-place task in VR: they had to pick
up virtual objects and move them to designated locations. During
object pick-up, visual, auditory, and haptic feedback were
systematically varied to create different combinations of sensory
cues. In an initial recording session, participants provided labels
about the interaction through answering a question. This labeled
data was then used to train a neural decoder of expected haptic
sensations. Next, participants completed two blocks in which an RL
agent tried to predict the haptic feedback participants deemed to
best match their expectation. In one block, the RL agent operated on
participants’ explicit scores on the questionnaire, and in the other, it
operated on the (implicit) output of the neural decoder.

3.1 Participants

14 participants (M = 29 years, SD = 5.2) were recruited from our
local institution and through the online participant pool of the
institute. Nine participants self-identified as women, 5 as men. All
were right-handed (self-identification, no test). Participants were
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compensated with course credit or 12 € per hour of study
participation. Before participating, they were informed of the
nature of the experiment, recording, and anonymization
procedures, and signed a consent form. The project was
approved by the local ethics committee of the Department of
Psychology and Ergonomics at the TU Berlin (Ethics protocol
approval code: BPN_GEH_220421).

The first five participants only completed the training part of the
experiment, which means that they did not complete the two
additional blocks with the RL agent. One participant in the
group who completed the blocks with the RL agent had to be
excluded from any analyses concerning the agent, since they did
not complete at least one of the experimental blocks due to technical
issues with the EEG recording hardware. Hence, statistics for all
analyses about the agent were computed for eight participants and
all other analyses were computed for the full sample of
14 participants.

3.2 Apparatus

The experimental setup, depicted in Figure 1, comprised: (1) a
VR headset with a built-in eye tracker, (2) a haptic glove with an
attached motion tracker, (3) a 64-channel EEG system, and a VR
capable computer (CPU: AMD Ryzen 5 5600X, GPU: AMD
RADEON RX 6600 XT 8GB). To assist readers in replicating our
experiment, we provide the necessary technical details, the complete
source code for the VR experiment, the collected data, and the
analysis scripts1.

(1) VR. We used an HTC Vive Pro Eye 1 headset (HTC
Corporation, Taiwan) to display the scene and sampled
eye-tracking using SRanipal (Tobii AB, version Core SW
2.16.4.67). We replaced the stock strap of the headset with

the Vive Deluxe Audio Strap to ensure a good fit and reduce
discomfort potentially caused by the EEG cap.

(2) Haptic Glove. The SenseGlove Nova V1.0 (SenseGlove,
Netherlands) was used to sample finger movements and
render vibro-tactile sensations. To track hand movements,
an HTC Vive tracker was attached to the glove, as
recommended by the manufacturer.

(3) EEG Setup. EEG data was recorded from 64 actively
amplified wet electrodes using BrainAmp DC amplifiers
(BrainProducts, Germany) with a high-pass filter set at
0.016Hz. Electrodes were placed according to the 10-
system (Chatrian et al., 1985). One electrode was placed
under the right eye to provide additional information about
eye movements (vEOG). After fitting the cap, all electrodes
were filled with conductive gel to ensure proper
conductivity, and electrode impedance was brought
below 10kΩ where possible. EEG data was recorded with
a sampling rate of 250 Hz. The reference electrode was ‘FCz’
and the ground electrode ‘AFz’.

Motion data of the hand and eye-gaze was streamed using
custom scripts of ‘labstreaminglayer’ (LSL) (Kothe et al., 2024).
Additionally, EEG data and an experiment marker stream that
marked sections of the study procedure were streamed using LSL.
LSL’s LabRecorder was used to collect all data streams with
timestamps.

3.3 Task

In the task, participants were instructed to pick up an object
and then place it in a target location. They were instructed to be
accurate while maintaining a steady pace. The object was placed
on a table in front of them and for grabbing they used the grab
functionality of the haptic glove. Successful grabbing required
them to use all fingers, ensuring that both the thumb and at least
one other finger securely held the object. After picking up the
object, the participants moved it to the center of a semi-
transparent sphere that visually indicated the location of the
goal. Once the object was released, participants received feedback
about their placement accuracy, displayed as a numerical value in
centimeters on the table, indicating the distance between the
object’s placement and the center of the goal sphere.

Depending on the trial condition (see procedure below),
participants were then asked to rate their experience concerning
the prompt “My experience in the virtual environment seemed
consistent with my experiences in the real world.” (translated)
which was chosen from the Multimodal Presence Scale
(Makransky et al., 2017). The anchors of the prompt were
“completely disagree” and “strongly agree”. To give their answer,
participants could move a (continuous) slider handle by grabbing it
in the same way as they were grabbing the object in the task; see
Figure 2. For every trial the slider handle was reset to the center,
i.e., a score of 0.5.

3.3.1 Interface conditions
The pick-and-place interaction was designed to simulate a

multimodal interaction with visual, auditory, and haptic
feedback. To this end, the following sensations were rendered:

FIGURE 1
Experimental setup featuring a participant equipped with EEG
(BrainProducts), Head-mounted display (VIVE Pro Eye), haptic
feedback (SenseGlove Nova), motion capture (VIVE Tracker), and
audio output (earcup speaker).

1 https://lukasgehrke.github.io/neuroadaptive-xr
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(1) Visual Baseline. The object changed its color from white to
red when it was grabbed.

(2) Visual with Sound. Together with the color change from
white to red, a sound was played at 50% volume through the
Vive’s earcup speakers. We used a simple ‘plop’ like sound
with a duration of 200 m.

(3) Visual with Vibrotactile. With the color change, vibrotactile
sensations were rendered at the tip of the thumb, index–and
middle finger, and the back of the hand.

(4) Visual with Sound and Vibrotactile. Color change, sound,
and vibrotactile feedback were rendered together.

3.3.2 Procedure
In total, participants completed three experimental blocks. In

the first block, 140 trials had to be completed, with each interface
condition being experienced 35 times. The order of the interface
conditions was randomized. After every pick-and-place, the
questionnaire was presented and participants had to give their
score of the preceding pick-and-place interaction. These labeled
data were later used to train and assess the neural decoder.

After this first block, the features for the decoder were extracted
from the EEG data, and the decoder was trained. This took about
5–10 min, during which participants could rest. Next, the two
experimental conditions of interest were conducted. The order in
which the conditions were tested was counterbalanced across
participants.

In the explicit condition, participants rated every interaction
using the slider. The slider values were extracted as 0–1 and fed
forward to the RL agent, see 3.4 for technical details on the leveraged
RL implementation. The agent then selected the interface condition
of the next trial. In the implicit condition, the question was omitted
and instead the output from the decoder, after normalization to the
0–1 range, was fed to the agent. As in explicit, the agent then selected
the interface condition of the following trial.

For both experimental conditions, we set the agent to stop after
picking the same interface condition 5 times in a row, i.e., the
convergence criterion–a threshold selected based on a series of pilot
experiments. With this criterion we hoped to approximate a
practical level of confidence that the agent will stabilize on a
preferred policy. Furthermore, this threshold limited the overall
interaction time, kept the experiment feasible for participants and

prevented fatigue while at the same time provided some robustness
against noisy or inconsistent feedback, ensuring that convergence
was not triggered by brief fluctuations or outlier responses in the
reward signal.

3.4 Reinforcement learning agent

Our RL agent was designed to select the interface condition that
best matched the participant’s expectation and, given that our
experimental setting involved a single state, the problem reduced to
a multi-armed bandit with four possible actions–essentially, a scenario
where the agent repeatedly chooses from four options to maximize its
reward over time. Given that our experimental setting involved a single
state, the problem reduced to a multi-armed bandit with four possible
actions, i.e., a scenario where the agent repeatedly chooses from four
options to maximize its reward over time. In this respect, our
environment was similar to that of (Porssut et al., 2022), and we
adopted their validated implementation, while acknowledging that
other features of the environment might not be equivalent. By
following (Porssut et al., 2022), our agent also employed a combined
strategy consisting of an epsilon-greedy approach and the Upper
Confidence Bound (UCB) method (Auer et al., 2002), thereby
balancing exploration and exploitation. This combined strategy
promotes the selection of actions with high estimated Q-values
while still encouraging the exploration of less-visited actions.

For our setting with A � 4 actions, let A � {1, 2, 3, 4} denote the
set of available interface conditions. We defined the UCB value as:

UCB a( ) � Q a( ) + c

�������
log10 t( )
N a( )

√
,

where action a was one of the four discrete interface conditions,
Q(a)was the current Q-value estimate for action a (initially set to 1),
c was the exploration parameter (set to 0.25) and N(a) was the
number of times action a had been selected up to time t. For actions
that had not yet been chosen (i.e., N(a) � 0), the corresponding
UCB value was set to∞ to ensure they were explored. The constant
c � 0.25 was chosen in a small suite of pilot simulations using the
pure UCB algorithm under our human-feedback noise model. We
swept c ∈ {0.25, 0.5, 1.0} and found that 0.25 offered the most robust

FIGURE 2
Task and data flow in baseline (top), explicit (top) and implicit (bottom) experimental conditions.
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convergence behavior. In addition to time constraints, we carried
this same c value forward into the hybrid model for data collection to
preserve consistency and stability when layering ε-greedy
exploration on top of UCB. This also helped minimize
unexpected agent behavior during the real-time user-facing
experiment.

At each time step t ∈ N0, the agent selected an action at ∈ A
according to the following policy:

at �
a random action chosen
uniformly from A with probability ε t( ),
argmax

a∈A
UCB a( ) with probability 1 − ε t( ).

⎧⎪⎪⎨⎪⎪⎩
After executing the chosen action and observing a reward r, the

agent updated its Q-value for that action using:

Q a( ) ← 1 − α( )Q a( ) + α r − γmax
a′∈A

Q a′( )( ).
Any action not selected on a given trial simply retained its

Q-value from the previous time step. Additionally, this update
rule differs from the traditional Q-learning rule, but in our tests
it converged more quickly and reliably. We suspect that, due to
the inherent noise in both human and neural feedback,
individual Q-value estimates may fluctuate. By using
maxa′Q(a′) as a reference, the update was anchored to the
best observed performance across all actions, which
minimized the impact of these fluctuations and mitigated the
risk of unreliable updates when an action’s Q-value temporarily
deviated due to noise.

Unlike the reference implementation (Porssut et al., 2022),
which used an adjusted reward defined as the mode of the reward

history for action a, we chose to use the actual, non-adjusted
reward r since this yielded better performance in our pre-tests.

The initial learning rate α was set to 0.5, the exploration rate ε
was initially set to 1, and the discount factor was set to γ � 0.95. Both
α and ε decayed over time as follows:

α t( ) � max αmin, α − log10 t + 1( )
40

( ) with αmin � 0.001,

ε t( ) � max εmin, ε − log10 t + 1( )
20

( ) with εmin � 0.01.

This decay mechanism follows the reference implementation in
(Porssut et al., 2022) and allowed the agent to gradually shift from
exploration to exploitation as it gathered more information about
the user’s preferences. All parameters, with the exception of the UCB
exploration constant c, were initialized to the same values as in the
reference implementation (Porssut et al., 2022), as our simulations
confirmed that these settings were suitable for our task. Figure 3
illustrates the agent performance for one episode.

3.5 Neural signal decoder

For loading, synchronizing, and pre-processing the EEG data
from the 140 trials of labeled training data, we utilized the EEGLAB
(Delorme and Makeig, 2004) toolbox with wrapper functions from
(BeMoBIL-pipeline Klug et al., 2022) running in a MATLAB 2023b
environment (The MathWorks Inc., USA).

Our goal was to design a general decoder of the expected ‘haptic’
sensations in VR. Therefore, we presumed the most salient neural
data to be present directly following the ‘haptic’ event of picking up
the object in our pick-and-place task. Hence, we extracted 1 s long
data segments following this event and trained a binary model to
score expected–unexpected sensations.

In the first step to prepare the data for decoder training, noisy
(extremely large amplitude fluctuations) trials were rejected. To this
end, the EEGLAB function ‘autorej’ was used on the EEG data,
keeping the default parameters: a voltage threshold of 1,000 μV, a
standard deviation cutoff of 5, a maximum rejection rate of 5% per
iteration, and all channels included. This function iteratively rejects
epochs with improbable data based on standard deviation
thresholds, adaptively increasing the threshold when too many
epochs exceed the limit.

Next, further trials were flagged and removed by detecting
extreme outliers in participants’ behavior. We used Tukey’s
method Tukey (1949), excluding values exceeding ±1, 5 p IQR
(Interquartile Range) to determine trials where participants’
behavior deviated significantly with respect to the placement
accuracy of the target object. This resulted in the exclusion of an
average 16.1 (SD = 2.9) per participant.

In line with earlier work, the EEG data was band-pass filtered to
retain frequencies from 0.1 to 15 Hz via Fast Fourier Transform
(FFT) prior to feature extraction (Gehrke et al., 2022; Zander
et al., 2016).

3.5.1 Features
To obtain a robust decoder with many samples for training, we

reduced the classification problem to a binary situation. Using a

FIGURE 3
Performance of a Q-learning agent over time. (a) Evolution of
Q-values for different actions, with each line representing a specific
action. Line segments between successive markers are for illustration
only; Q-values are updated only at discrete trial steps, and each
segment simply connects the Q-value at step t to that at step t + 1 (b)
Reward, alpha, and epsilon metrics.
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median split on the questionnaire scores, we grouped all trials below
the median into a mismatching expectation class and all trials above
into matching expectation, resulting in a balanced dataset with two
classes of, at most, 70 trials per class (minus the rejected trials).

The filtered data of all channels was then segmented into
12 epochs of interest of 50 m size from 0 to 600 m following the
grab event. The samples in each 50m segments were then aggregated
using the mean, resulting in a matrix of 64 channels X 12 aggregated
time windows. Next, baseline correction was performed by
subtracting the first time window, i.e. 0–50 m after the grab. the
event was used to subtract the physical noise of the vibrotactile
stimulation from the data. This post-event window was chosen to
capture and remove early physical artifacts from the vibrotactile
stimulation. The first two time windows were discarded, resulting in
a 64 X 10 feature matrix retained for each trial.

For each participant, a paired t-test was performed for each
feature (channel and time window) to identify the most
discriminative features between the mismatching and matching
conditions. The absolute value t-statistics were then sorted and
stored. The top 100 were then used in a grid-search on the number of
features to use for decoding. To this end, the decoder’s accuracy was
assessed at 10 to 100 features, increasing in steps of 5. The number of
features resulting in a model with the highest accuracy was saved for
real-time application. These models were always fit on 80% of the
data (80–20 train-test split using a 5-fold cross-validation scheme).
To assess the decoder’s performance, the following performance
metrics were calculated: Accuracy, F1 score, and ROC.

We used a linear discriminant analysis (LDA) with shrinkage
regularization (automatic shrinkage using the Ledoit-Wolf lemma
(Ledoit and Wolf, 2004)) using the implementations from scikit-
learn (Pedregosa et al., 2012). To normalize LDA scores during real-
time application to the 0–1 range, we extracted the LDA scores of the
20% test data held out during model fitting. Then, for min-max
normalization, the 5th and 95th percentiles were taken from that
distribution and stored for normalization of single trials during real-
time application. After normalization, any value that exceeded either
0 or 1, was then set to 0 or 1, respectively. This allowed us to retrieve
0–1 values from single trials from the binary representation of
matching vs mismatching feedback expectations.

3.5.2 Real-time application
During real-time application, the EEG data was buffered for one

second following a grab. The data was band-pass filtered analogously
to the training data from 0.1 to 15 Hz. Next, the features from the
best performing model were extracted and, using that model,
transformed to an LDA score. Using the min-max anchors, the
score was normalized to the 0–1 range and sent to an LSL stream in
order to be fetched by the RL agent.

3.6 Hypotheses and statistical testing

To answer whether haptic rendering can be tuned using an RL
agent, we inspected whether the agent arrived at the true label. The
true label was operationalized by selecting the interface condition
with the highest mean score in block 1, i.e., the training data.

We hypothesized that the RL agent would require the same
number of steps until convergence in both implicit and explicit

feedback conditions. Hence, the system would perform identically,
irrespective of the origin of the feedback. As a reminder, the agent
finished picking when it chose the same label 5 times in a row. To
test the hypothesis, two one-sided ttest (TOST) were conducted. We
decided to set the equivalence bounds to five steps, meaning that
within ±5 steps difference, we determined the systems to
perform equally.

To test whether our experimental manipulation was effective a
linear mixed effects model was fit to explain the single-trial
questionnaire scores. The interface conditions were entered as a
fixed effect and a random intercept was added for each participant.
Hence, the model was specified as ‘score ~ interface-condition +
(1– participantID)’ and fit using the pymer4 package Jolly (2018). A
test statistic was obtained by calculating likelihood-ratio tests
comparing the full model as specified above against the null
model’s score ~ 1 + (1– participantID)’. All parameters were
estimated by maximum likelihood estimation Pinheiro and Bates
(2006). We computed post-hoc pair-wise tests for ‘interface-
condition’ corrected for multiple comparisons (Tukey method)
using the emmeans package (Lenth et al., 2020).

In this work, we did not formulate any a priori hypotheses
regarding the cortical sources or specific electrode sites contributing
to the EEG-based classification. Our approach was exploratory, with
all channels initially considered. Sensor-level importance emerged
through a data-driven feature selection process during grid search,
rather than through predefined regions of interest (ROIs). However,
we present ERP waveforms at electrode Cz for visual inspection,
given its central location and frequent use in prior literature.

3.6.1 Post-hoc analysis: Participants’ scoring
consistency over time

In this study, we were generally interested in how an RL agent
can handle the noise inherent any reward provided through a neural
interface. On top of that, we noticed that participants scoring
behavior also exhibited some noise (over time). To address this
source of noise in subjective scoring behavior a correlation analysis
between time on task and subjective scores was conducted. The
Pearson correlation coefficient (Pearson, 1895) between trial
number and corresponding score was computed as a summary
statistic per participant. Next, we tested whether the coefficients
differed from 0 using ttest (Student, 1908) on the group level.

FIGURE 4
(a) Contingency table of implicit and explicit convergence states,
with color intensity representing frequency, (b) Box plot of steps until
stoppage for implicit and explicit feedback conditions. Overlaid line
depicts the mean trend and grey squares represent individual
participants.
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4 Results

The contingency table in Figure 4a summarizes the cases of
convergence when either implicit or explicit labels were used. We
observed that three out of eight times, the agent converged on the
‘correct’ feedback when using explicit user scores as rewards. On
the other hand, the agent converged correctly for 2/8 participants
when using implicit rewards. For two participants, the agent
converged correctly using explicit rewards, but incorrectly using
implicit rewards. For four participants, neither reward origin
resulted in the agent converging.

b. However, the equivalence bounds were not met (lower bound:
t(7) � 1.22, p � .26, upper bound: t(7) � 1.22, p � .26). Hence, we
observed evidence that there actually is a difference in convergence
time. We noticed that for either reward source, several runs
converged after about 25–30 picks by the agent.

The mean difference in the number of steps to convergence
between implicit and explicit reward sources was 0 (SD = 11.6),
see Figure 4b. However, the TOST procedure did not yield
significance (lower bound: t(7) � 1.22, p � .26; upper bound:
t(7) � 1.22, p � .26), meaning that statistical equivalence
within the predefined bounds could not be established.

4.1 Task validation

The four interface conditions significantly influenced
participants’ ratings of how consistent the virtual experience
felt compared to their real-world expectations (χ2(3) � 9.6,
p � .02). Among the conditions, vibration feedback was rated
as most consistent with real-world experience, while sound
feedback received the lowest ratings. A follow-up comparison
revealed that vibration was rated significantly higher than sound
(t(45.2) � 2.8, p � .037); see Figure 5a.

We found that in both interface conditions ‘baseline’
(t(14) � 2.41, p � .031), and ‘vibration’ (t(14) � 2.28, p � .04)
participants changed their scoring behavior over time, see
Figure 5B. In these conditions, their scoring became
increasingly more positive with time on task (Pearson ρ for
‘baseline’: M = 0.25, SD = 0.38, and ‘vibration’: M =
0.15, SD = 0.25).

4.2 Decoder performance

Visual inspection of the amplitudes at electrode Cz revealed an
increase in the difference between high and low scored trials towards
the later stages of the 100–500 m window used for classification, see
Figure 6a. Indeed, the most frequently leveraged time windows as
determined by the grid-search were the last three windows,
i.e., 400–450, 450–500, and 500–550 m following the grab event
(see Figure 6b). In terms of sensors, the five most leveraged channels
were TP10, AFz, AF8, T8, and C6, see Figure 6c.

The automatic selection of the number of features used for
classification for each participant resulted in an average of 40.7
(SD = 25) features being picked by the procedure. The classifier
cross-validation resulted in a mean accuracy of 0.7 (SD = 0.06) and a
mean F1 score of 0.8 (SD = 0.06), see Figure 6d for the mean, as well
as individual participants’ ROC.

5 Discussion

In this paper, we set out to answer three questions: (1) Can we
tune haptic rendering to participants’ preferences using an RL agent
based on human feedback? (2) Is this possible through implicit labels
obtained through a neural decoder? And (3) are there disadvantages
when relying on implicit instead of explicit labels?

We investigated these questions by building a novel, proof-of-
concept, neuroadaptive system comprising an LDA-based EEG
decoder and a UCB-based RL agent. The system was designed to
automatically select the multisensory haptic experience for the
human-in-the-loop in each following trial. We found the EEG
decoder to operate at satisfactory levels (Mean F1 score of ~ .8).
However, in our real-time application scenario, we observed
considerably poor performance with the agent converging to the
‘correct’ solution in around 25% of cases across the two different
reward sources. Due to the small number of participants completing
the full RL protocol (n � 8), and the limited number of converged
runs, the statistical confidence and generalizability of our findings
are constrained. Future work should aim to expand the sample size
to improve reliability and enable more robust conclusions about
system performance and user variability. Here, we discuss our
exploratory findings and provide a roadmap for future work.

5.1 RL agents learning from (noisy)
human feedback

Regarding the first question–whether we can tune haptic
rendering to participants’ preferences using an RL agent based on
human feedback–we found the performance of our prototype to be
hindered by noisy rewards, particularly those derived from the EEG
decoder. In human-in-the-loop settings, where rewards can be both
noisy and non-stationary, effective exploration becomes critical.
This contrasts with conventional RL scenarios, where reward
functions are typically stable and well-defined.

In our study, the RL agent took approximately 25–30 steps per
episode to converge on one of the four haptic feedback conditions.
While this relatively short duration aligns with the simplicity of our

FIGURE 5
(a) Box plot of scores in the training block across haptic profiles.
(b) Box plot of Pearson’s correlation coefficient between trial number
and scores in the training block across haptic profiles. In both plots,
the overlaid line represents the mean trend.
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VR pick-and-place task, it contrasts significantly with typical RL
scenarios that often involve thousands or millions of actions (e.g., in
game-playing AI or simulated robotics environments). Shorter
episodes facilitate rapid convergence and manageable
computational demands, making them practical for real-time
neuroadaptive applications. Futhermore, they reduce cognitive
and physiological fatigue, resulting in more stable neural rewards.
Conversely, longer episodes, e.g., exceeding 10 min, risk significant
shifts in cognitive states.

However, limited episode length inherently restricts the agent’s
ability to explore the action space thoroughly. In our data, with just
25–30 steps per episode, the RL agent might not have gathered
sufficient experience to robustly model nuanced haptic expectations
or adapt effectively to subtle reward variations over time. Indeed, the
instability in convergence we observed indicates that limited step
count posed a crucial bottleneck. The noise and variability in
participant ratings also highlight the need for higher-frequency
sampling. Future improvements in interaction design, such as
brief, minimally intrusive feedback probes or passive, implicit
feedback triggered by specific user behaviors, could enhance
sampling frequency without disrupting user immersion.

Conversely, while longer episodes might provide richer
exploration, they introduce challenges such as user fatigue and
drift in subjective ratings, complicating the agent’s policy
learning. Future research could thus explore hybrid or
hierarchical RL approaches, incorporating long-term memory or
meta-learning frameworks designed to better handle limited step
counts and dynamic user feedback. Dynamically adjusting episode
lengths based on real-time measures of learning progress or reward
consistency could further optimize the balance between exploration
depth, computational efficiency, and user experience.

In our implementation, we chose to combine ε-greedy with
UCB exploration but omitted additional noise-handling
mechanisms. Both ε-greedy and UCB are mechanisms
designed to ensure exploration, and thus one might consider
using both simultaneously to be redundant. One could argue that
to achieve a higher level of exploration–one of the reasons given
by Porssut et al. (2022) for this dual approach–it would suffice to
simply increase the UCB exploration constant c, thereby pushing
the algorithm to explore more aggressively. However, in practice
this is not equivalent. UCB’s exploration bonus naturally
decreases as actions are sampled, meaning that in noisy or
non-stationary settings, the associated confidence intervals can

shrink too quickly, which may lead the agent to prematurely
settle on suboptimal actions. By contrast, a fixed ε in an ε-greedy
strategy guarantees that even well-sampled arms are occasionally
revisited, an advantage that becomes especially important when
human feedback is noisy and the environment is subject
to change.

Our Q-learning update deviated from the traditional rule by
anchoring each step directly to maxa′Q(a′). Although this
modification was introduced to accelerate convergence under
noisy human and neural rewards, it also served as an implicit
regularizer: by filtering out erratic spikes or dips in individual
action values, it promotes smoother learning trajectories.
However, this anchoring may bias the agent toward historically
high-valued actions, which could reduce exploratory behavior in
environments where reward contingencies shift over time. Future
work could investigate adaptive anchoring strategies or hybrid
update schemes that retain robustness to noise while preserving
sufficient exploration, especially in multi-state or non-
stationary settings.

In this work, we decided against using a perturbed rewards
mechanism in the final solution, deviating from previous
implementations Porssut et al. (2022). The combination of UCB
with ε-greedy exploration already averages out random fluctuations
in the reward signal over many trials; when the noise is moderate,
the RL agent’s inherent averaging means that extra
corrections—such as majority voting—do not significantly change
the outcome.Moreover, our empirical data showed that the RL agent
converged to a stable threshold even without the perturbed rewards,
suggesting that this additional mechanism was redundant since its
intended effect of cleaning up noisy rewards was already achieved by
the standard exploration–exploitation dynamics.

5.2 BCI

Turning to the second question–whether tuning is possible using
implicit labels from a neural decoder–we observed that the
difference in the number of steps to convergence between explicit
and implicit rewards was zero. However, the TOST procedure did
not confirm statistical equivalence (i.e., performance was not
significantly similar within the predefined bounds). This does not
imply a meaningful difference between the two, but rather that the
data were insufficient to establish equivalence. Across both reward

FIGURE 6
(a) ERP at CZ for the preference split dark Gy bar near the x-axis indicates time window considered for classification, light Gy bar indicates baseline;
(b) Number of times time window was selected for classification; (c) Number of times channel was selected for classification; (d) ROC curves for all
participants. The dashed diagonal line represents random classification, while the solid curves indicate model performance.
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sources, several runs converged after roughly 25–30 selections,
indicating overall similar but highly variable convergence behavior.

Our implementation used a simple, linear EEG classifier that was
subject-specific. This choice was motivated by the implementation
simplicity, the need for low-latency deployment (low camputational
demands), as well as the near-optimal performance of linear models
on EEG features with roughly homoscedastic class distributions
(Blankertz et al., 2011; Lotte et al., 2018). Classifiers were trained on
labeled data collected around 10 minutes prior to deployment.
While necessary for counterbalancing, this setup introduced a
risk of temporal overfitting where the model may have adapted
too specifically to neural states at training, and performed less well if
participants’ cognitive states shifted during the session (Hosseini
et al., 2020).

For a first look at interpretable signals, we visualized ERP
waveforms at electrode Cz. However, this was a post-hoc
decision rather than based on predefined ROIs. Future work
should more systematically relate decoding features to known
ERP components such as the P3 or Prediction Error Negativity
(PEN). In particular, fronto-central sites like electrode FCz, which is
often associated with activity originating in or near the anterior
cingulate cortex (ACC), may be especially informative due to their
established role in feedback evaluation. Our grid search for feature
selection consistently prioritized late time windows (e.g., 400–550 m
after the grab event), aligning with the temporal dynamics of
evaluative ERP components like the P3 complex (Metcalfe, 2017),
and suggesting that decoding relied more on later-stage cognitive
appraisal processes than early sensory encoding. Understanding
which brain regions contribute to decoding is especially
interesting given our multisensory task, where participants
evaluated haptic and multimodal stimuli, likely engaging a broad
network spanning primary and secondary sensory cortices (via
modality-specific thalamic inputs), posterior insula, and posterior
parietal cortex (Sathian, 2016; Andersen and Buneo, 2002). The
rating process itself probably involved valuation networks including
the insula, dorsal anterior cingulate cortex, and prefrontal areas such
as the orbitofrontal, dorsolateral, and ventromedial cortex (Menon
and Uddin, 2010; Bartra et al., 2013). This distributed cortical
activation may explain the absence of a single dominant spatial
feature (see scalp map in Figure 6c) and supports the view that
classification relied on signals distributed across multiple
EEG channels.

While our linear decoder served as a baseline, more expressive
models (e.g., CNNs or RNNs) could be explored. Coupled with
explainable AI techniques such as saliency maps or layer-wise
relevance propagation (Farahat et al., 2019; Nam et al., 2023),
these could help reveal which spectral and/or spatial EEG
components drive feedback decoding. This could not only
improve classification but also provide deeper insight into the
neural underpinnings reflecting how user experience
unfolds over time.

As EEG devices become wireless (Niso et al., 2023), more
compact (Kaongoen et al., 2023), and increasingly integrated into
XR hardware2, questions of wearability and long-term comfort are

moving into focus, an essential step toward real-world deployment
of neuroadaptive systems. Still, key challenges remain. EEG is highly
prone to artifacts from movement and muscle activity, especially in
naturalistic settings (Jungnickel et al., 2019; Gramann et al., 2011;
Makeig et al., 2009; Klug et al., 2022). Real-time deployment also
requires low-latency pipelines, which limits the complexity of
models and preprocessing. Moreover, EEG signals vary
substantially within and across individuals, often requiring
personalized calibration or adaptive learning approaches (Wan
et al., 2021; Wu et al., 2022). Finally, data privacy is a critical
concern: because neural signals are sensitive and potentially
identifiable, processing EEG data locally on the XR device instead
of streaming it to external servers, can help minimize privacy risks
while supporting faster, more secure interaction.

5.3 Task and procedure

Finally, regarding the third question–are there disadvantages when
relying on implicit rather than explicit labels–we observed several
challenges. A primary difficulty was the variability of user-provided
labels over time. As discussed above, RL algorithms typically rely on
stable reward signals, yet participant ratings often fluctuated.
Correlation analyses revealed gradual shifts in subjective scores in
some haptic feedback conditions as the experiment progressed,
specifically for the visual-only baseline and vibration. This suggests
that repeated exposure influenced participant judgments and
potentially introduced biases into the RL process.

A related methodological consideration was our convergence
criterion: the RL agent stopped adapting after selecting the same
feedback condition five consecutive times. Participants were not
informed about this convergence criterion, potentially leading to
unintended confusion or frustration if they perceived no clear pattern
in system responses. Future studies might explicitly communicate
adaptive goals or provide intermediate feedback to clarify the
system’s intent, helping participants form more consistent expectations.

We also observed substantial individual differences in rating
distributions. Some participants showed near-binary preference
structures, consistently rating one condition as highly consistent
with real-world experience while rejecting others, whereas others
exhibited more graded preferences, implying nuanced perception of
sensory integration. This divergence complicates RL-based
adaptation, as binary structures favor rapid convergence, while
graded responses introduce greater noise. Note that in this study
the slider was reset to the midpoint after each trial, potentially
inducing a central-tendency bias. Such a bias might have dampened
extreme ratings, thereby flattening the reward gradient and slowing
adaptation. Consequently, our findings in fact may underestimate
rather than overestimate the achievable performance of the RL
agent. Furthermore, as participants repeatedly moved the slider
using substantial arm movements, first to grab the handle and
then to drag it, fatigue likely increased over time. This may have
led to two effects: (1) reduced rating variability, amplifying the
central-tendency bias, and (2) a directional bias favoring the
physically more comfortable movement direction. Future
iterations, leveraging a scale without a pre-placed handle, may
eliminate this confound to some degree, thereby sharpen the
reward signal and accelerate convergence.2 https://galea.co
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Another potential confounding factor was an anchoring effect.
Depending on the haptic condition participants first experienced,
subsequent ratings might have been influenced by initial exposure.
Ideally, pseudo-randomizing the initial condition to balance early
experiences could mitigate this effect. However, in our study, the
starting condition was fully randomized.

Together, these anchoring and scale biases may have further
complicated training and interpreting the neural decoder. High
heterogeneity in rating distributions, ranging from bimodal to
unimodal response patterns, made it challenging to generate consistent
labels for classifier training. Overall, while implicit neuroadaptive rewards
offer an interesting alternative to explicit ratings, human perception and
neural appraisal remain dynamic, context-sensitive, and influenced by
both methodological and psychological factors. Future work should
explore adaptive mechanisms accounting for evolving preferences,
biases, and individual variability, ultimately supporting robust and
scalable neuroadaptive XR systems.

6 Conclusion

In this study, we presented a proof-of-concept neuroadaptive
XR system using RL to adapt multisensory haptic feedback based on
explicit user ratings and implicit EEG-derived feedback. Although
our EEG decoder achieved satisfactory offline performance, real-
time RL performance was hindered by noisy and non-stationary
feedback signals, resulting in an RL agent with poor performance.

Several critical challenges emerged from our study. Short episodes
allowed rapid convergence but limited the RL agent’s exploration
capacity, resulting in poor overall performance. Conversely, longer
episodes risk cognitive fatigue and shifting user preferences. Future
work should explore interaction designs that enable higher-frequency
feedback sampling. Regarding EEG-based implicit rewards, potential
temporal shifts in user cognitive states complicated decoder
generalization. Periodic recalibration or transfer learning paradigms
spanning multiple sessions or users could mitigate this. Our linear EEG
decoder prioritized later ERP components. We think it to be important
to systematically link EEG decoding features with established ERP (e.g.,
P300, PEN) and spectral components, to enhance interpretability and
neuroscientific insights, a promising avenue for future research. Finally,
we noted significant variability in explicit user ratings. These biases
likely introduced additional noise, impeding RL adaptation.

While we believe implicit EEG-based rewards offer an
interesting alternative with a high upside to using explicit labels,
we encountered both approaches to be challenged by dynamic,
noisy, and context-sensitive human feedback. Addressing these
challenges will be key to advancing neuroadaptive XR systems
that are more attuned to the nuances of human experience.
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