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This study investigates human engagement with a non-responsive, pre-recorded
avatar in VR environments. Rather than bidirectional collaboration, we focus on
unidirectional synchrony from human participants to the avatar and evaluate its
detectability using sensor-basedmachine learning. Using a random forest model,
we classified interactions into cooperation, conformity, and competition,
achieving an F1 score of 0.89. Feature importance analysis identified hand
rotation and head position as key predictors of interaction states. We
compared human-human and human interaction with a non-responsive
avatar (pre-recorded motion replay) during a joint Simon task by covertly
switching collaborators between humans and non-responsive avatars. Using
the classification model, a synchrony index was derived from VR motion data
to quantify behavioral coordination patterns during joint actions. The
classification indexes were associated with higher cooperation in human-
human interactions (p � 0.0262) and greater conformity in human interaction
with a non-responsive avatar (p � 0.0034). The synchrony index was significantly
lower in the non-responsive avatar condition (p<0.001), indicating reduced
interpersonal synchrony with non-responsive avatars. These findings
demonstrate the feasibility of using VR sensor data and machine learning to
quantify social interaction dynamics. This study aimed to explore the feasibility of
a sensor-based machine learning model for classifying interpersonal interactions
in VR, based on preliminary data from small-sample experiments.
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1 Introduction

We applied wearable sensor-based motion analysis and machine learning (decision
trees and linear mixed models) to classify interpersonal synchrony patterns under
human–human and human–avatar (non-responsive) conditions. This approach provides
quantitative insight into how interaction context modulates synchrony. We propose a
synchrony index derived from VR motion and gaze data, which captures behavioral
coordination patterns during joint actions. To examine variations in synchrony, we
designed an experimental setting in which participants engaged in a joint Simon task
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while their collaborator was covertly switched between a human and
a non-responsive avatar.

2 Joint simon experiment

The Simon effect (Simon, 1969) is a spatial compatibility effect
in which a match or mismatch between the spatial location of a
stimulus and its response influences behavior. For example, suppose
that red or green stimuli appear randomly on the left or right side of
a screen as targets, the response is delayed if the button and stimulus
positions do not match, whereas if the task is a Go/No-Go task, a
delay does not occur. However, when two stimuli are assigned
individually to a pair, the Simon effect reappears as if the pair
represents a single person, even though each individual’s task is
identical to that of the Go/No-Go task (Sebanz et al., 2003). This is
known as the joint Simon effect (JSE). Our research team has
confirmed that the JSE occurs in VR environments (Harada
et al., 2025). This study utilizes the same VR experimental setting
to examine how human-human and human interaction with a non-
responsive avatar influence social coordination and synchrony.

Explanatory theories suggest that the JSE reflects either (i) task
co-representation or (ii) spatial coding relative to the position of the
collaborator (Dolk et al., 2014). Experiments comparing these two
explanatory theories indicate that the latter, i.e., the reference-coding
hypothesis (Sellaro et al., 2015; Sangati et al., 2021), is supported by
more studies. However, as will be discussed below, the co-
representation hypothesis is not precluded because the JSE
weakens when collaborators are taught that they are unconscious,
non-living entities. These hypotheses relate to whether we recognize
non-living collaborators merely as reactive entities or as agents
capable of shared representations. This pilot study serves as a
proof-of-concept for applying sensor-based machine learning
models to classify social coordination patterns in immersive
virtual environments.

2.1 JSE with bot

Previous research on the JSE with non-human collaborators has
yielded conflicting results (Stenzel et al., 2016). reported that the JSE
occurs even when the collaborator is a non-living entity. In contrast
(Tsai et al., 2008), analyzed action indices and event-related
potentials and found that the JSE emerged only when
participants believed their partner to be human.

This discrepancy can be explained by the perception of
intentionality (Tsai et al., 2007; Stenzel et al., 2012).
demonstrated that the JSE is enhanced when the collaborator is
perceived as having intentionality, suggesting that recognizing
intentionality facilitates action simulation in the motor system.
Furthermore (Stenzel and Liepelt, 2014), found that the
perception of agency—i.e., seeing another person pressing a
button—precedes the cognition of that person’s intention.
Agency can be inferred by observing simple moving figures, even
in the absence of explicit social cues (Heider and Simmel, 1944).

Thus, not all JSE-related co-representation processes rely on
higher-order cognition (Miss et al., 2022; Liepelt et al., 2016)
demonstrated that the JSE was intensified when activity in the

anterior cingulate cortex, which is associated with motor
intentions, was suppressed. Their findings suggest that when the
JSE occurs, the distinction between self and other motor intentions
becomes less defined. While the perception of agency is processed
automatically through perceptual cues, the intention of others is
subsequently inferred.

To further investigate factors influencing automatic JSE
processes, this study examines interpersonal synchrony as an
indicator of self-other undifferentiated states (Paladino et al.,
2010). Additionally, we explore whether participants recognize
the bot as a human in interpersonal synchronization.

2.2 Interpersonal synchrony

Face-to-face communication evokes a subconscious process of
spontaneous synchronization of attention, behavior, and brain
waves. A meta-analysis of synchrony studies showed that sensory
and interpersonal synchrony resulted in prosocial attitudes and
behaviors (Rennung and Göritz, 2016). As a causal effect in the
opposite direction, pro-sociality can promote synchrony. For
example (Fronda and Balconi, 2022), demonstrated that the act
of giving affected performance and brain-brain synchrony during
cooperative tasks. Smykovskyi et al. (2024) revealed that negative
emotions disrupted intentional synchrony during sensorimotor
interactions. Furthermore (Hao et al., 2024), showed that group
identity influenced brain-to-brain synchrony and cooperative
decision-making behaviors.

Interpersonal synchrony is assumed to be an automatic process
because it occurs within a short reaction time (RT) (Decety et al.,
2011). Synchrony studies have primarily been conducted by
measuring the cross-correlation coefficient (CCC) of
physiological data. For example (Guastello et al., 2023), proposed
a system in which each member’s physiological data was obtained
individually, and then cross-correlation was used to distinguish
multiple influences on others.

In the present study, we classified interpersonal activities using
sensor data related to pairwise units and applied them to human
activity recognition (HAR) research. HAR has yielded numerous
results through the use of smartphone sensor data and other
machine-learning sources to classify activity types, particularly in
exercise situations.

2.3 Social presence

Social presence refers to the perception of being attended to and
understood by another entity during an interaction. Recent studies
have shown that people can experience social presence even with
artificial agents under certain conditions. For example, Chen et al.
(2023) developed and validated a multidimensional scale for
assessing robot social presence, expanding traditional dimensions
such as physical presence and conscious awareness to include
interactional aspects like dialog behavior and emotional
understanding. Similarly, Sogemeier et al. (2024) reported that
temporal cues, such as response latency, were more influential
than visual realism in eliciting social presence with in-car voice
assistants, suggesting that behavioral responsiveness may be more
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critical than appearance in creating a sense of connectedness.
Munnukka et al. (2022) further demonstrated that perceived
anthropomorphism increased social presence in web-based avatar
interactions, which in turn fostered trust, although avatar
appearance itself had no significant effect on perceived
anthropomorphism. Based on these findings, the present study
implemented a non-verbal VR bot avatar that replicated recorded
human motion but did not engage in speech or dialog. Due to the
small sample size, we used only two 7-point Likert-scale items
assessing how realistic and human-like the avatar appeared.
These items formed a minimal composite index of perceived
social presence. At the end of the experiment, participants were
also asked to identify in which session they believed they had
interacted with a bot. Follow-up interviews were conducted to
explore when and how they noticed the bot—or whether they
failed to detect it at all. This combined qualitative and
quantitative data was used to construct a binary variable (“Bot-
Notice”) indicating whether the bot was consciously recognized.

3 Research question

In this study, we aimed to develop a machine learning-based
classification model for interpersonal interactions in VR using
sensor data. To validate this model, we examined differences
between human-human and human-bot interactions in a
joint Simon task.

Research Question 1: To what extent can interpersonal
interactions in cooperative tasks be effectively classified using VR
sensor data?

As part of our initial exploratory analysis, we conducted a
preliminary experiment to classify the activities of pairs in the
Simon task based on two basic types of interpersonal interaction
in the social sciences: competition and cooperation. We expected
that interpersonal synchrony would bemore prominent in behaviors
classified as cooperative.

The purpose of the preliminary experiment was to discover
important features for classifying interpersonal behavior from
various sensor data, while determining which phase of the
Simon task could be more accurately classified by dividing the
task into smaller phases. For this purpose, we used a random forest
model, which makes it easy to judge the importance of features,
and adopted the most important feature as an indicator of
synchrony. Random forest is a machine learning technique
widely used in machine learning competitions due to its high
prediction accuracy and robustness against overfitting. Sekitani
and Murakami (2022) compared 30 statistical and machine
learning models, including their combinations, using symmetric
mean absolute percentage error (sMAPE) and mean absolute
scaled error (MASE). Their results demonstrated that among
individual machine learning methods, Random Forest achieved
the highest accuracy. Unlike single decision trees, random forest
mitigates overfitting by aggregating multiple trees, enhancing
generalization performance. Additionally, it provides an
intuitive method for evaluating feature importance, making it a
valuable tool for understanding the contribution of each variable in
predictive modeling.

Research Question 2: What are the key differences between
human-human and human interaction with a non-
responsive avatar?

In the main experiment, we established a bot condition in which
a bot avatar was introduced as a collaborator and compared the bot
condition with a human condition, where participants performed
the joint Simon task with a human partner. The bot avatar was
created by tracing the sensor data of a human in a preliminary
experiment. In the bot condition, synchronization from human to
bot is expected, but synchronization from bot to human does not
occur. Therefore, it is expected that synchrony in the bot condition
will be reduced compared to the human condition. We hypothesized
that synchrony would be the key difference between the bot and
human conditions, while also exploring other potential differences.

4 Methods

4.1 Preliminary experiment

4.1.1 Participants
Eight participants (six men and two women; college students

aged 19–21 years) enrolled in the study. The participants were
segregated into four groups, with each pair referred to as
collaborators.

4.1.2 Participation-agreement procedures
Recruitment was open for 1 week from 17 February 2023.

Participants were given an explanation of the consent document
in the laboratory, and the informed consent procedure was carried
out. The participants were handed a paper that outlined the
experiment and data-handling procedures, which were explained
by the experimenter. All eight participants agreed to participate in
the study. The experimental data were obtained using anonymized
ID numbers. This ensured that the data were not linked to the
participants’ names.

4.1.3 Devices
The VR systems were established in two separate rooms. Each

system comprised a VIVE Pro Eye (HMD), two controllers (VIVE
Controller 2018), two base stations (SteamVR Base Station 2.0), and
a computer. The VR environment was created using Unity
(2021.3.1f1) in a server-client network using “Netcode for Game
Objects.” In this environment, paired participants entered the same
virtual space and interacted via physical actions. No audio
communication was available, and the VR environment featured
two avatars, buttons, a display, and a mirror (Figure 1). All
experimental configurations and spatial arrangements shown in
Figure 1 represent the layout within the virtual reality
environment, not the physical laboratory setup. The avatars were
able to move based on six-coordinate data (three positions and three
rotations) obtained from the HMD and two controllers. These
avatars were boxy and lacked personality traits, and their
movements were executed using the “Final IK (Inverse
Kinematics)” asset. Red- and green-labeled reaction buttons were
placed in front of the avatar in the VR space. The RTs were acquired
via collision detection when the avatar touched a button.
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The task comprised four phases: Phases 1-4 (time count, fixation
cross-presentation, target presentation, and blanks, respectively).
Phases 1 and 3 were the countdown and motion phases, respectively
(See Figure 2).

The participants were instructed to touch a button
corresponding to the target color, regardless of its location. Each
session comprised 16 or 32 consecutive trials, with the target color
and position randomized between the trials.

4.1.4 Procedure
The participants were allowed to select either the client or host

experimental booths. The terms “host” and “client” were designated
because paired data were transmitted as streamed data from the
client to the host PC. Following the instructions of the experimenter
stationed at each booth, the participants were instructed to wear the

HMDs and operate the controllers with both hands. Before each
session, the participants were briefed on the colors of the stimuli for
which they were responsible. Before commencing the joint task, the
participants were instructed to view their collaborators directly and
then confirm their avatars in the mirror set in the VR space.

The host stood on the right, whereas the client stood on the left.
Figure 1 illustrates the experimental setup for the joint Simon task
and conformity/competition tasks within the virtual reality
environment. Participants interacted with color targets displayed
on screen, responding by pressing corresponding buttons in the
virtual environment according to task instructions. The host
operated the buttons in the VR space using the left hand,
whereas the client used the right hand. Thus, the right hand was
not used on the host side, and the left hand was not utilized on the
client side. The task involved pressing a button labeled with the

FIGURE 1
Experimental setup for the joint Simon task and conformity/competition tasks. Note: The upper section shows the joint Simon task procedure, while
the lower section illustrates the conformity and competition tasks.

FIGURE 2
Task phases in the joint Simon task. Note: Phase 1: A 3-s countdown display. Phase 2: Presentation of a black fixation cross, “+“, at the center of the
display for 1 s. Phase 3: Presentation of targets (red or green) on either the left or right side of the display until a response was obtained. Phase 4: A blank
interval of 0.5 s before the next countdown began.
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corresponding color name when the assigned color appeared. The
participants were instructed to halt if they felt uncomfortable, lift
their HMDs at the end of each session, and take breaks as required.

4.1.5 Sessions
The participants entered the space individually and completed

eight practice trials for the Go/No-Go task. During the practice
session, the correct answer was indicated when the correct button
was touched. An incorrect answer was revealed when another button
was touched or when a certain amount of time had elapsed without a
touch being detected. If a participant failed in all eight trials, then the
practice session was repeated. After the practice session was
completed, the following sessions were conducted.

Session 2 involved the procedure shown in the upper section of
Figure 1. The target colors in Session 3 were swapped to minimize
the learning effects. Sessions 4 and 5 involved the procedure shown
in the lower section of Figure 1. The detailed session structure for the
preliminary experiment is presented in Table 1.

Sensor data from Sessions 4 (conformity) and 5 (competition)
were used for machine learning and testing, respectively. In the
conformity task session, the participants were instructed that
“whichever target appears, touch the correct button at the same
time as your companion.” During the competition task session, the
participants were instructed that “whichever target appears, touch
the correct button before your companion.”

4.1.6 Data processing
In the preliminary experiment, we investigated the features

necessary for distinguishing between interpersonal behaviors in
VR environments. To identify subtle differences in subconscious

movements, we used the sensor data during Phase 1, i.e., the time at
which the participants were staring at the countdown, as shown in
Figure 1. The phases and procedures illustrated in Figure 1 were all
conducted within the virtual reality space.

The sensing data included gaze direction, eye position, pupil
size (left and right), head position and rotation, and the position
and rotation of the left and right controllers. For each of these,
XYZ three-axis data were recorded where applicable. The
transmission latency from the client to the host was
approximately 0.01 s. Signals were sampled at a variable rate
(80 Hz average), and after missing values were removed, the client
and host data were linked at intervals of approximately 0.02 s and
then used for machine learning. The features used for machine
learning were: distance, which was obtained as the root sum of
squares of the XYZ (Euler angle) of the position and gyro sensor at
each sampling point; the velocity from the time difference; and the
acceleration obtained from the time difference in velocity, which

FIGURE 3
Avatars used in the main experiment. Note: For box-shaped avatars, the leftmost avatar was used regardless of participant gender. For human-
shaped avatars, female participants used the middle avatar, while male participants used the left avatar. The avatars shown were generated using VRoid
Studio (© pixiv Inc.), which permits research use under its license.

TABLE 1 Session structure for the preliminary experiment.

Session Task Target assignment Trials

1 Go/No-Go task Individual sessions for assigned
target

32

2 Joint Simon task Host: green; Client: red 32

3 Joint Simon task Host: red; Client: green 16

4 Conformity task Simultaneous touching 16

5 Competition
task

Touch before opponent 16
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was used as the analysis data. After deleting samples with missing
values, we used the Python sklearn Random Forest Classifier (n_
estimators = 250, random_state = 42) as the random forest model.
A set of decision trees was constructed for a subset of randomly
sampled training data, and predictions based on a subset of these
features were aggregated to obtain the final prediction. After
testing various feature types, we found that distance features
yielded relatively high classification accuracy, whereas models
using velocity and acceleration performed poorly. Therefore, we
decided to use only distance features, except for triaxial gaze data,
which were retained as they are considered essential for
synchronization. To evaluate classification accuracy, cross-
validation was conducted by iteratively designating data from
three out of eight participants as the test set, while data from the
remaining five were used for training. This process was repeated
to ensure that each participant appeared in the test set at least
once. The final model was trained on the full dataset after cross-
validation.

4.2 Main experiment

4.2.1 Participants
The participants of this experiment were recruited through a

university website, and assigned to each experimental day.
Recruitment was open for 2 months from 14 May 2023, and
the informed consent procedure was the same as the preliminary
experiment, but was obtained in advance via a web-based
questionnaire in order to avoid coercion in obtaining consent
due to face-to-face situations in the laboratory. Owing to the
absence of one participant, the final number of participants was
18, which comprised seven men, nine women, and two other
genders. The average age of the participants was 19.83 years
(standard deviation [SD] = 1.04). All participants were assessed
for handedness using a self-report questionnaire. Of the
18 participants, 16 were right-handed, 1 was left-handed, and
1 reported being ambidextrous or having no hand preference.
After the experiment, the participants were instructed to
complete a questionnaire survey and interview, for which they
received an honorarium of approximately $10 (1,500 yen) after
completion. The device and experimental procedures were
identical to those used in the preliminary experiments. Two

types of avatars, i.e., a box and a human, were designed for
other research purposes (Figure 3).

4.2.2 Sessions
All participants completed the sessions in the same fixed order

shown in Table 2.

4.2.3 Dependent variable
Correct response rate: Correct responses were counted when

participants touched the correct color target in trials where they
were required to respond and refrained from touching in trials
where they were not. Subsequently, the correct response rate was
divided by the number of trials.

JSE: The mean RT delay (RTs for incompatible targets minus
RTs for compatible targets) during the joint Simon task
(Sessions 2, 3, 6, and 7) minus that of the Go/No-Go task
(Session 1) was calculated. The RTs for correct responses
with more than two standard deviations from the mean RT
were excluded as outliers. Additionally, pairwise data from
participants whose RT could not be measured because of
equipment failure were excluded.

Bot cognition: After the experiment, a structured assessment
combining questionnaires and follow-up face-to-face interviews was
conducted to systematically evaluate participants’ awareness of the
bot condition. The assessment protocol was designed to minimize
leading questions and retrospective bias. A participant who
perceived the human collaborator to be a bot was assumed to be
unaware of the discrimination between humans and bots. In the data
analysis, binary values of 1 and 0 were used to indicate the awareness
and unawareness of bots, respectively. As a proxy for perceived
social presence, we also included a two-item measure rated on 7-
point Likert scales. The items assessed how realistic and how
human-like the avatar appeared. The sum of these two items was
used as an index of social presence (Mean = 8.78, standard
deviation [SD] = 2.29).

Sensor data: By performing the procedures of the preliminary
experiment, the distance was obtained as the root sum of squares of
the XYZ (Euler angle) of the position and gyro sensor at each
sampling point; the velocity was the time difference between the
two; and the acceleration was the time difference between the two.
Because the accuracy of the classification model using velocity and
acceleration data was low during the machine learning process, we

TABLE 2 Session structure for the main experiment. Conformity task: participants were instructed to touch the correct target simultaneously. Competition
task: participants were instructed to touch the correct target faster than their partner. Joint Simon task: participants were instructed to touch the button
only when the target color assigned to them appeared.

Session Task description Avatar type Trials

1 Go/No-Go task (individual) Box avatar 32

2 Joint Simon task (human-human pair) Box avatar 32

3 Joint Simon task (human-human pair, target colors swapped) Human avatar 32

4 Conformity task (human-human pair) Human avatar 16

5 Competition task (human-human pair) Human avatar 16

6 Joint Simon task (human vs. Bot pair) Human avatar 32

7 Joint Simon task (human vs. Bot pair, target colors swapped) Box avatar 16
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adopted a model that used only distance features. The resulting
features were the HMD position, HMD rotation, and 12 variables
of position information for the left- and right-controller positions
and rotations (Figure 2). The eye-gaze and pupil size features used
in the preliminary experiments were not used in the main
experiment because no sensing data corresponded to the bot.
Under the bot condition, only trace data from Phase 3 were
used; thus, data from Phase 3 were used to formulate the
classification model. Samples with missing values on the host or
client side were deleted. After removing missing values, the
number of observations obtained from Sessions 3, 4, and 5 was
16,759 for training and testing, out of a total of
124,193 observations (approximately 86.9% of the original data
were retained). Sensor data from Sessions 2, 6, and 7 were prepared
as files on the host and client sides to compare the human and bot
conditions.

Pair Activity Probability: Details of machine learning, angular
transformations, and statistical models are described in Section 4.3.

Synchrony Index: As in the preliminary experiment, the most
important feature for classifying paired activities was the rotation of
the unused hand (host side right-hand rotation). Therefore, the
cross-correlation (CCC) of the sensor data for the host side right-
hand rotation and client-side left-hand rotation was calculated for
each trial and then used as the interpair synchrony index using
MATLAB’s XCORR function. After normalizing the sensor data for
each trial, the maximum value obtained at lag0 was used as the
CCC index.

4.3 Data analysis and modeling procedures

4.3.1 Machine learning classifier
We used the MATLAB Classification Layer application for the

machine learning model to compare the decision trees, random
forests, support vector machines (SVMs), and neural nets. The
results showed that even a single decision tree provided a correct
answer rate exceeding 90%, which is comparable to the performance
of other methods. Thus, we adopted a decision tree model to identify
the most important features. The Gini diversity index was used as
the splitting criterion.

Each of the sensor datasets in the three training sessions was
subjected to machine learning, with target variables for classification
(10% was used for data verification and cross-validation).

The Receiver Operating Characteristic (ROC) value calculated
from the true-positive and false-positive rates exceeded 0.98, which
was sufficient for classification accuracy. The ROC curves are
presented in the Supplementary Appendix. The final number of
branching nodes was 191.

The most important features for classifying joint activities were
the right-hand rotation unused by the host and the left-hand
rotation unused by the client. The features of the model were
similar to those of the preliminary experiments, which classified
conformity and competition in the countdown phase, thus
suggesting that joint action in the subconscious movement can
be classified using the categorization model based on the
motion phase.

Using MATLAB’s trained predict function, we applied the
classification model to Sessions 2, 6, and 7 as test sessions using

the 12 feature variables. The classification probability results for each
observation were the activity indices of cooperation, conformity, and
competition.

4.3.2 Angular transformation and index calculation
These probability values were angularly transformed using

arcsin( ���������
probability

√ ) × 180/π. We adjusted for a probability of
0 by setting arcsin( ������

0.0833
√ ) × 180/π and a probability of 1 by

setting arcsin( ���������
1 − 0.0833

√ ) × 180/π. These corrections were
performed based on the usual adjustment (1/4N) for angular
transformations. Thus, the minimum and maximum possible
values were 16.54 and 78.69, respectively. These values were
averaged for each trial and used as cooperation, conformity, and
competition indices for the pair activity.

The term 1/4N used in the angular transformation refers to the
usual adjustment for proportions, where N is the number of
response options. After applying this correction, the angular
transformation of the minimum and maximum possible
proportions (0 and 1) results in values of 16.54 and 78.69,
respectively. These are dimensionless values resulting from the
arcsine transformation of relative proportions; therefore, no
physical units are associated with them.

4.3.3 Linear mixed models
Because the human condition comprised data that switched

from the client to the host for comparison with the bot condition, we
analyzed the condition effects via multilevel analysis. For the linear
mixed model, paired groups were specified as random-effect factors
after centralization was performed, in which the mean value of each
paired group was subtracted from each indicator.

As the Akaike Information Criterion (AIC)s of each indicator’s
random intercept and random slope models were similar or lower
for the random slope model, we report the results for the random
slopemodel here. Considering the few people in the random variable
and a p-value that is likely to be high, we report the results of the
robust model obtained via the log-likelihood ratio test. Owing to the
low overall variance, we report the fixed-factor effects of the mixed
model, as well as the results of the test using marginal mean
estimation (in contrast to the human condition set to 1 and the
bot condition set to 0).

5 Results

5.1 Preliminary experiment

A random forest model was applied to 21 features selected
during the training sessions. The results showed that the confusion
matrix between the model predictions and observed data was 88%,
and the F1 score was 0.8925 (precision = 0.8066; recall = 0.9988).

Table 3 shows the top features selected by the decision tree
classifier in the preliminary experiment. Features with importance
≥ 0.10 are listed individually, and all others are summarized in
a single row.

The most important features for classification were the position
and rotation of the left and right controllers, followed by the position
and rotation of the head-mounted display (HMD), and finally, the
gaze and pupillary reflexes. The higher importance of host-side
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features was probably due to a slight delay in data transmission from
the client side. This finding suggests that conformity or competition
can be predicted by the twisting motion of the hands of a person who
does not touch the button. Therefore, using the normalized variables
of the host’s right-hand rotation and its counterpart, i.e., the client’s
left-hand rotation, we calculated the measure of synchrony for each
of the four pairs, and the cross-correlation coefficient (CCC) was
calculated for each of the four pairs as a measure of synchrony.

Using this conformity or competition classification model, we
analyzed how the ratio of conformity or competition status changed
during the countdown phase in the joint Simon session. We
discovered that the occurrence probability of a category classified
as competition increased every second in Groups 3 and 4, whereas it
decreased in Groups 1 and 2. The CCCs for each pair of groups in
Groups 1–4 were 0.8872, 0.9998, 0.8581, and 0.8436, respectively.
These results indicate that the synchrony index tended to be higher
in Groups 3 and 4, whose competitive activity was higher than that
of Groups 1 and 2.

6 Discussion

The preliminary experiments showed that sensor data from
the countdown phase, which had less motion, can be used to
identify the differences between conformity and competition
training sessions. Hand and head rotations contributed more
significantly than position and gaze direction. The activity
during the countdown phase in the joint Simon session
showed two patterns: one in which the ratio of competitive
activities increased during the countdown phase, and another in
which it decreased, with the former characterized by greater
synchrony. This result contradicts the prediction that
synchrony occurs in conformity activities. Therefore, in the
main experiment, we added a joint Simon task as a
“cooperation” target for training and created three categories:
cooperation, conformity, and competition.

The bot conditions used in the main experiment were created by
monitoring the behavior during the motion phase. Therefore,
although the countdown phase was involved in the preliminary
experiment, a classification category was created in the main
experiment using the motion phase. The preliminary experiments

showed that hands that were not used for button touching were
more important for classification and that they gradually increased
or decreased during the countdown up to the motion phase. Based
on these results, we expect the features of the classification model
using the countdown phase to appear in the classification model
using the motion phase.

6.1 Main experiment

6.1.1 Decision tree
Details of machine learning, angular transformations, and

statistical models are described in Section 4.3.
The ROC value calculated from the true-positive and false-

negative rates exceeded 0.98, which was sufficient for the
classification accuracy. The confusion matrix and ROC curves are
presented in the Supplementary Appendix. The final number of
branching nodes was 191. The classification criteria for the top six
branches of the decision tree are shown in Figure 4.

The confusion matrix is presented in Figure 5.

6.1.2 Effects of human or bot conditions
Avatar behavior varied systematically between conditions. In the

human condition, avatars reflected participants’ real-time
movements via the VR tracking system, providing natural
responsiveness to each participant’s actions. In the bot condition,
avatars replayed pre-recorded human movements from earlier
experimental sessions, with no adaptive responses to participant
behavior. All bot avatar motions were pre-recorded in all bot
sessions (Sessions 6 and 7), and there was no dynamic
adjustment to participant behavior.

Details of machine learning, angular transformations, and
statistical models are described in Section 4.3.

These three activity indices (cooperation, conformity, and
competition) exhibit mutually constrained relationships. The
correlation between concordance and competition was
uncorrelated in both conditions, whereas the correlation between
cooperation and competition indicators was r = −.5432 (p = 0.0198)
in the human condition and −.5078 (p = 0.0314) in the bot
condition. The correlation between the cooperation and
conformity indices was r = −.7821 (p < 0.001) in the human

TABLE 3 Feature importance scores from the decision tree classifier (preliminary experiment). Features with importance < 0.10 are summarized in one row.

Importance Feature name(s)

0.16 Host right-hand rotation

0.15 Client left-hand rotation

0.14 Host left-hand position

0.10 Host right-hand position

<0.10 Host left-hand rotation, Client head position, Host head position

Host head rotation, Client left-eye pupil size, Client right-eye

pupil size, Client right-hand position, Client gaze direction

Host right-eye pupil size, Host gaze (x, y, z), Client left-eye

pupil size, Client head rotation, Client gaze (x, y, z)
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condition and r = −.6061 (p = 0.0077) in the bot condition, both of
which were high. Therefore, to examine the effect of the conditions
on the three activities, we examined each dependent variable
individually. Figure 6 shows the angular-transformed mean
values for each condition before centralization by the group mean.

Figure 6 shows the angular-transformed mean values for
cooperation, conformity, and competition activity indices under
human and bot conditions. Cooperation activity was significantly
higher in the human condition, whereas conformity activity was
significantly higher in the bot condition.

An analysis of the human or bot-condition effect with the
cooperation indicator as the dependent variable revealed that the
estimated value of 7.37 (SE = 3.25) was significant (t(9) = 2.27,
p = 0.0495). Similarly, a comparison of the mean estimate of the
neighborhood with the human and bot conditions of 1 and 0,
respectively, was significant (z = 2.22; Holm’s p = 0.0262). As
shown in Figure 6, the ratio of cooperation activity in the human
condition was higher than that in the bot condition. An
examination of the human- or bot-condition effect with the
conformity activity as the dependent variable showed that the
estimated value of −6.56 (SE = 2.24) was significant (t(9) = 2.93,
p = 0.0167) and that the difference in the marginal mean estimate
was substantial (z = 2.93; Holm’s p = 0.0034), i.e., statistically
significant. As shown in Figure 6, the conformity activity in the
bot condition was higher than that in the human condition. An
examination of the human-/bot-condition effect with
competition activity as the dependent variable showed that the
estimated value for the condition effect was insignificant,
i.e., −1.43 (SE = 2.28). No difference in competitive activity
was observed; however, cooperation activity was significantly

greater in the human condition, whereas conformity activity
was significantly greater in the bot condition.

An analysis of the human- and bot-condition effects with the JSE
as the dependent variable revealed that the estimated value of 0.0033
(SE = 0.009) was insignificant. Meanwhile, an examination of the
human- and bot-condition effects with the percentage of correct
responses to the joint Simon task as the dependent variable found
that the estimated value of −0.0111 (SE = 0.0043) was significant
(t(8.55) = 2.61, p = 0.0294). Although a trend toward a higher
percentage of correct responses was observed in the bot condition, a
test of the difference between the marginal estimates showed z =
1.03 (p = 0.0535), which was not significant. The correct response
rates are presented in Figure 7. The variance in the percentage of
correct responses was higher in the human condition, whereas that
in the bot condition was minimal. This is presumably because the
bots consistently provided correct answers to the questions. In the
bot condition, bots replayed pre-recorded human movements taken
from correct trials, resulting in consistently correct responses for
every trial.

Figure 7 presents the percent correct responses for the joint
Simon task in each condition using a raincloud plot, which shows
the distributions and box plots for each condition.

An analysis of the effect of the human or bot conditions on
the synchrony index as the dependent variable showed the
estimated value was 0.274 (SE = 0.0035), which was significant
(t(7.73) = 3.65, p < 0.001). Additionally, the difference in the
marginal estimates was significant (z = 6.68, p < 0.001). The
results for each group are illustrated in Figure 8, where lower
means and higher variances for synchrony were indicated under
the bot condition. The lack of synchrony with the bot may have

FIGURE 4
The classification criteria for the decision tree. Note: Branching conditions up to the third level are shown in the Supplementary Appendix. The
decision tree shows branching conditions based on VR sensor measurements. Numerical values represent threshold values for splitting nodes. Each
condition evaluates whether the sensor measurement is below (<) the specified threshold, with left branches representing true conditions and right
branches representing false conditions. Terminal nodes indicate the final classification: cm (competition), rjo (joint simon), syn (conformity). Variable
abbreviations: Hrightrot (Host right-hand rotation), Hleftrot (Host left-hand rotation), Hhead (Host head position), Cleftrot (Client left-hand rotation),
Chead (Client head position), Hright (Host right-hand position), Cleft (Client left-hand position).

Frontiers in Virtual Reality frontiersin.org09

Arima et al. 10.3389/frvir.2025.1623764

mailto:Image of FRVIR_frvir-2025-1623764_wc_f4|tif
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1623764


caused this difference, depending on whether the pair was aware
or unaware of the bot. However, the difference in the mean bot
awareness (0,1) was insignificant. Next, we performed mediation
analysis based on the bot condition to determine whether bot
awareness was a mediating variable.

6.1.3 Mediation analysis
Mediation analysis was conducted separately to investigate the

effects of activity on the joint Simon task performance under the
human and bot conditions. The variables considered were the three

FIGURE 5
Confusion matrix of predicted target and actual values from cross-validation. Note: Cross-validation was performed using 10% of the observed
values of Session 3, 4, and 5 as test data. True-positive and true-negative rates are shown on the right. The ROC value calculated from these values
was 0.98.

FIGURE 6
Effect of the human and bot condition on paired activity. Note:
The vertical axis represents the mean classification probability after
angular transformation, with values ranging from a minimum of
16.54 to a maximum of 78.69. The error bars indicate 95%
confidence intervals.

FIGURE 7
Correct response rates for each condition. Note: The vertical axis
represents the correct response rate, and the error bars indicate 95%
confidence intervals. The vertical axis represents the average
percentage of correct responses during the human and bot
sessions. Box plots and distributions are shown on the right. Green and
red indicate human and bot conditions, respectively.
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activities and synchrony indices as predictor variables, bot cognition
as a mediating variable, and the JSE and correct response rate as the
outcome variables. A 32-trial average was considered for the activity
and synchrony indices to align with the correct response rate and
sample size.

Owing to the high correlation between the three activity
indicators that served as predictor variables, we performed
principal component analysis as a standard procedure to avoid
multiple linearities. Two principal components were extracted
when eigenvalues greater than 1 were specified. The factor-

loading matrix without rotation is presented in the
Supplementary Appendix. Because the first principal
component separated cooperation from other activities, we
named the factor score of the first principal component the
collaboration factor, i.e., collabH (as shown in Figure 9) and
as collabB (as shown in Figure 10) for the bot condition. As the
second principal component distinguished between competition
and conformity, the score for the second principal component
factor was named the competition factor, as indicated by
competeH and competeB in Figures 9, 10, respectively. The
first principal component was converted from negative to
positive values, with higher values indicating greater
cooperation. The outcome variables, JSE, and correct response
rate were standardized and entered, and the regression
coefficients were reported as standardized coefficients.

The path coefficients from the independent variables (two activity
factors and synchrony) to the dependent variable (correct response rate)
under the human condition are shown in Figure 9. The significant paths
revealed that the collaboration factor increased the correct response
rate, whereas the competition factor decreased the correct response rate.
The statistics for each path are presented in Table 2 of the
Supplementary Appendix. No effect on the JSE was observed, and
bot cognition was not shown to be a mediating variable. The total R2

values for the paths to the JSE, correct response rate, and bot cognition
were 0.06, 0.28, and 0.11, respectively.

The path coefficients for the same variables under the bot
condition are shown in Figure 10. The total R2 values for the
paths to the JSE, correct response rate, and bot cognition were
0.37, 0.10, and 0.35, respectively. As a key pathway, collaboration
factors had a substantial total effect on enhancing bot cognition and
reducing the JSE (z = −3.17, p = 0.0015).

FIGURE 8
Raincloud plot of synchrony. Note: Green and red indicate
human and bot conditions, respectively. The vertical axis represents
the synchrony index for human and bot sessions. The maximum value
was set to 1. Box plots and distributions are shown on the right.
Green and red indicate human and bot conditions, respectively.

FIGURE 9
Path plot for the human condition. Note: The vertical axis represents standardized values of the dependent variables (JSE and correct response rate),
while the horizontal axis represents the predictor variables (collaboration and competition factors). The numbers presented for each path are
standardized path coefficients, where collabH and competeH denote the first and second principal components, respectively. Bot is a dummy variable
with yes = 1 and no = 0. JSE and correct response rates are standardized.
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To further examine the robustness of the mediation effect, we
replaced the binary “Bot-Notice” variable with the continuous Social
Presence index described in the methods section. However, when
using Social Presence as a mediator, we did not observe any
significant indirect effects on either the JSE or correct response
rate in either condition.

The path analysis results for both conditions are presented in
Figures 9, 10 (see Figures 9, 10). These figures illustrate the
standardized path coefficients and demonstrate the differential
effects of collaboration and competition factors on task
performance under human and bot conditions.

The total R2 values for the paths to the JSE, correct response rate,
and bot cognition were 0.06, 0.28, and 0.11, respectively, for the
human condition. For the bot condition, the total R2 values were
0.37, 0.10, and 0.35, respectively. As a significant path, the
collaboration factor substantially increased bot cognition and
weakened the JSE as a total effect (z = −3.17, p = 0.0015).

We confirmed that an avatar’s appearance did not affect the JSE or
bot cognition. Specifically, avatar differences under the avatar condition
(Sessions 6 and 7) were compared based on the classification probability
as repeated factors. The results of an ANOVA indicated that the main
effect of the avatar condition and the interaction effect between the
avatar condition and classification were insignificant. Moreover, no
significant interaction effects involving the bot avatar appearance
were indicated.

In the preliminary experiment, a two-category model
comprising competition and conformity was established initially.
However, because the participants showed higher synchrony in
competitive activities, the model was refined into a three-category
classification comprising cooperation, conformity, and competition
in the main experiment. The results of the main experiment revealed
the feasibility of classifying joint activities based on subtle

movements during Phase 3, i.e., when the participants were in
motion, and in Phase 1, i.e., when the participants remained still.
These results corroborate the predictions of the preliminary
experiment, which identified the potential for preparing joint
activities during the countdown phase. Furthermore, the results
above suggest that the classification model and synchrony index
used in this study were valid. A notable finding was the consistent
selection of similar features for the synchrony index, which emerged
as the most crucial feature for classification in both the preliminary
and main experiments. This feature, which is a rotation of the
unused hand, would not be readily observed by oneself or others,
which suggests that behavioral synchronization phenomena appear
as unconscious responses.

In the main experiment, we hypothesized that synchrony and
cooperative activity under the bot condition would decrease
compared with the human condition. A linear mixed model was
used to analyze the effects of human and bot conditions on joint
activities and synchrony indices. The results revealed a higher ratio of
cooperative activity in the human condition and a high ratio of
conformity in the bot condition. This finding is consistent with
previous research indicating that humans tend to conform more to
non-human agents when the agent’s behavior is predictable or lacks
social cues. The synchrony index was significantly lower in the bot
condition, indicating reduced interpersonal synchrony with bot avatars.
This suggests that while bots can elicit conformity, they may not
facilitate the same level of behavioral coordination as human partners.

The mediation analysis further revealed that cooperation factors
had a substantial total effect on enhancing bot cognition and
reducing the JSE. However, bot cognition was not shown to be a
mediating variable for the correct response rate or JSE. These
findings highlight the complexity of human interaction with a
non-responsive avatar and suggest that while participants may

FIGURE 10
Path plot for the bot condition. Note: The vertical axis represents standardized values of the dependent variables (JSE and correct response rate),
while the horizontal axis represents the predictor variables (collaboration and competition factors). collabX and competeX denote PCA components; bot
cognition is a binary dummy; all dependent variables are standardized. The numbers shown for each path are standardized path coefficients; collabB and
competeB indicate the first and second principal components, respectively.
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recognize non-responsive avatars as joint-action task partners, this
recognition does not necessarily translate into improved task
performance or increased synchrony.

These findings contribute to discussions on the mechanisms
underlying the Joint Simon Effect (JSE). Rather than supporting one
theoretical account over the other, our results indicate that bodily
synchrony engages both processes simultaneously: participants
appeared to use the partner as a spatial reference point while also
sharing aspects of task representation. This suggests that
interpersonal synchrony can serve as a behavioral signature of
these intertwined mechanisms, highlighting how spatial coding
and co-representation may co-occur rather than operate in isolation.

7 Limitations and future directions

This study has several limitations. First, the sample size was relatively
small, which may limit the generalizability of the findings. Future studies
should include larger and more diverse participant groups to validate the
classification model and synchrony index. Second, the non-responsive
avatars in this study were based on replayed humanmotion data and did
not exhibit adaptive or interactive behaviors. Incorporating more
sophisticated AI-driven avatars that can respond dynamically to
human actions may yield different results and provide deeper insights
into human interaction with responsive avatars. Third, the experimental
tasks were limited to a specific joint Simon paradigm in a controlled VR
environment. Expanding the range of tasks and exploring real-world
applications will be important for understanding the broader applicability
of these methods.

In terms of social presence, our findings replicated those of
Munnukka et al. (2022), in that the visual appearance of the avatar
did not significantly affect perceived anthropomorphism or social
presence. However, the social presence index derived from
questionnaire items did not significantly mediate any of the
observed effects. This may be due to the limited sample size,
which constrained both the statistical power and the number of
items included in the questionnaire. Specifically, we used only two
items to assess perceived realism and human-likeness of the avatar.
In ongoing studies, we are addressing this limitation by
incorporating a more comprehensive set of items to better
capture the multidimensional nature of social presence.

Future research should also investigate the neural and psychological
mechanisms underlying interpersonal synchrony and joint task
performance in VR, as well as the impact of different types of
avatars on social interaction. By addressing these limitations and
exploring new directions, future studies can further advance our
understanding of human-machine interaction in virtual environments.
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