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The Ganga river basin, being one of the largest river basins in South-East Asia, with

area over 1 million Km2 and population over 400 million, is highly vulnerable to water

scarcity due to climate change and rapid growth in agriculture, industrialization, and

urbanization. To understand the potential impact of climate and land use changes

on regional terrestrial water balance has become crucial for ensuring appropriate

water management strategies for adaptation and mitigation purposes. In this study we

employ an RCP-SSP (Representative Concentration Pathways—Shared Socioeconomic

Pathways) scenario framework (1.5 and 2◦C warming scenarios and SSP1–5) to explore

the relative impacts of projected twenty-first century climate and land use changes on the

surface hydrology of the Ganga river basin. By statistically comparing the hydrological

responses of each combination of socioeconomic and climate mitigation pathways

against a control scenario, we distinguish between the impacts of each scenario. We

also analyze our data in a conceptual framework to understand how climatic and land

use factors impact the basin characteristics and which one among them is projected to

be the dominant factor in our study region. Our results show that, in terms of hydrologic

impact assessment, climate change mitigation pathways are the dominant factor and

the land use changes associated with socio-economic pathways contribute little to the

projected future changes.

Keywords: climate change, shared socioeconomic pathways, low-warming scenarios, Budyko framework,

integrated assessment

INTRODUCTION

India has a population of more than 1.3 billion, which is around 17% of the world’s population,
but only 1,121 Km3 of estimated utilizable water resources, about 4% of global freshwater
resources [Central Water Commission (CWC), 2013; United Nations (UN), 2019]. In the last few
decades the country has experienced a continuous rise in population along with economic growth
and increased food, energy, and water consumption [Global Water Partnership (GWP), 2013].
Rapid growth in agriculture, industrialization, and urbanization has led to increasing demand
for freshwater throughout the country. In terms of water usage, agriculture is the dominating
sector, with about 80% share of the total water demand (Bhat, 2014). The water availability and
the agricultural and economic productivity of India are heavily dependent on the south-west
monsoon (Krishna Kumar et al., 2004; Gadgil and Gadgil, 2006). More than 80% of annual rainfall
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in India occurs during the monsoon months (June-September,
JJAS), which totals to 904mm on average, compared to 294mm
of rainfall during the rest of the year (Amarasinghe et al., 2005).
However, climate changes associated with increased atmospheric
carbon dioxide (CO2) level are impacting water availability by
changing the spatial and temporal distribution of monsoon
rainfall, both globally and at regional level (Wang and Ding,
2006; Kundzewicz et al., 2008; Turner and Annamalai, 2012;
Kim et al., 2016). The Ganga river basin, being one of the most
populated river basins in the world, is highly vulnerable to water
scarcity, due to the changing pattern of the Indian summer
monsoon rainfall in a warmer climate (Misra, 2013). The water
management practices in the Ganga basin are not sustainable
and over-reliance on groundwater withdrawal for irrigation is
leading to imminent water crisis (Briscoe and Malik, 2006).
Hence reliable hydro-meteorological projections for the twenty-
first century at a regional scale are important for water resources
planning and policy making.

As the future greenhouse gas emissions and land uses are
highly uncertain, typically they are represented by a group of
plausible scenarios. The current state-of-the-art Earth System
Models (ESM), from Coupled Model Intercomparison Project
phase 5 (CMIP5) (Taylor et al., 2012), use emission based
Representative Concentration Pathways (RCP) (Van Vuuren
et al., 2011) as future scenarios to project the changing climate
over the twenty-first century. However, in 2015, the Paris
Agreement was signed at the twenty-first Conference of parties
(COP21) of the United Nations Framework Convention on
Climate Change (UNFCCC), and two new temperature based
scenarios were introduced. The aim of this agreement was to limit
the global mean air temperature increase, below 2◦C above pre-
industrial condition, by the end of the twenty-first century, and
further attempt to limit it within 1.5◦C (UNFCCC, 2015). To
achieve the goal of 1.5◦C scenario, we need a global emission
rate reduction of 5%/year and a substantial effort to develop
negative carbon emission technologies (Sanderson et al., 2017).
Irrespective of the achievability of these goals, it is important
to quantify their impacts on regional climate and hydrology, for
future climate negotiations.

Apart from the climate scenarios, the Shared Socioeconomic
Pathways (SSP), which represent a range of substantially
different plausible socioeconomic conditions, are also important
for impact assessment. Each SSP scenario describes the
characteristics of societal development, such as population
growth, economic development, energy and land use,
technological development, environmental protection etc.
At a fundamental level, each scenario depicts a narrative of
challenges on adaptation and mitigation to climate change
(O’Neill et al., 2017). In principle, SSPs can be combined with
climate mitigation pathways to generate a scenario matrix.
However, some SSP-RCP combinations can be unrealistic and
are ignored in impact assessment analysis.

In this study, using an ensemble of model outcomes, we
analyze the projected impacts for an SSP-RCP scenario matrix
on the hydrometeorology of the Ganga River basin. There are
several studies assessing the hydrologic responses of river basins
under climate change (Nijssen et al., 2001; Raje et al., 2014)

or land use changes (Cruise et al., 2010; Zheng et al., 2012).
Multiple studies have been performed in order to distinguish
between their impacts as well, using different approaches such
as regression analysis (Wang et al., 2012), hydrologic simulations
(Bao et al., 2012; Zhang et al., 2012), Budyko framework (Li et al.,
2007; Wang and Hejazi, 2011), or a combined approach (Jiang
et al., 2011; Ahn and Merwade, 2014). However, most of these
studies either focus on the historical changes, or estimate the
projected future changes using climate mitigation pathways only.
By incorporating the projected changes in land use associated
with SSPs, we explore the relative impacts of both climate and
land use on the hydrologic variables, in future scenarios.

We also explore the relative contributions of climate and land
use change on the basin characteristics parameter of Budyko
framework (Budyko, 1974; Choudhury, 1999), a conceptual
framework for modeling terrestrial water balance. In scientific
literature, it is a common practice to assume that basin
characteristics is independent of climate change and affected
by other factors, such as land use, vegetation dynamics, soil,
topography, and human water management (Donohue et al.,
2006; Wang and Hejazi, 2011; Xu et al., 2013). However, impacts
of climatic variables such as seasonality and intra-seasonal
variability of rainfall, number of precipitation events and their
intensity, phase shift between rainfall and evapotranspiration
etc. on the basin characteristics parameter have also been
documented (Milly, 1994; Potter et al., 2005; Padrón et al.,
2017). Even though vegetation is considered one of the most
important factors controlling the basin characteristics (Donohue
et al., 2006), Padrón et al. (2017) and Abatzoglou and Ficklin
(2017) didn’t find any significant relation between Normalized
Difference Vegetation Index (NDVI) and the variability of basin
characteristics parameter. As there is not enough consensus on
which factors dominate the basin characteristics, in this study
we compare the relative impact of two factors, climate and land
use change. Our analysis helps us gain a better understanding of
the factors influencing river basin scale terrestrial hydrology, to
better prepare us for adaptation and mitigation.

METHODS

In Figure 1 we represent the overall methodological framework
of our study. The hydrological projections are performed
using the model Variation Infiltration Capacity (VIC) (Liang
et al., 1994). Climate model simulations associated with
various warming scenarios have gone through a statistical
bias correction and downscaling methodology (Kannan and
Ghosh, 2013) to provide meteorological forcing for VIC. Land
use projections associated with various SSP-RCP combined
scenarios, from the land allocation model Asia-Pacific Integrated
Model/integration Platform for Land-Use and Environmental
Modeling (AIM/PLUM) (Hasegawa et al., 2017), are used as
vegetation input data in VIC.

Study Area
Our study is performed over the region of Ganga river basin,
within the political boundary of India. The Ganga river basin
is located within geographical coordinates of 73.5◦E−89◦E
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FIGURE 1 | Methodological framework of the study.

longitude and 22.5◦N−31.5◦N latitude. The basin consists of
mountainous region at the northwest side, and the remaining
area is plain encompassing northern and eastern India. The
majority of the land in the Ganga basin plain is used for
agriculture. The basin receives most of its rainfall over the
summer monsoon season (June–September). Based on the
Watershed Atlas of India, provided by the Central GroundWater
Board (Ministry of Water Resources, Government of India), the
basin is divided into 15 sub-basins, as shown in Figure 2.

Scenario Matrix
In our study, 1.5 and 2◦C warming scenarios are considered
as climate change mitigation pathways, and SSP1, SSP2, SSP3,
SSP4, and SSP5 are considered as socio-economic pathways.
SSP1 (sustainability) represents low challenges for adaptation
and mitigation, with low population growth, higher growth
in per capita income and high environmental awareness.
On the other hand SSP3 (regional rivalry) represents high
challenges for adaptation and mitigation, due to increasing
regional conflicts, less international trade, low income growth
among the general population and low effort for environmental
protection. SSP2 (middle of the road) represents medium
challenges for both adaptation and mitigation, with modest
population and economic growth with a slow pace of trade

liberalization. SSP4 (inequality) represents high challenges
in adaptation, due to increasing disparities in economic
development among population, coupled with low challenges in
mitigation due to technological advancement. Lastly SSP5 (fossil-
fueled development) pushes for overall economic and social
growth of general population by exploiting fossil fuel resources,
depicting high challenges in mitigation with low challenges
in adaptation. Apart from the aforementioned scenarios, a
climate scenario with historical emissions (HIST) and a control
socio-economic scenario with land use classes kept constant at
year 2005 level (CTL) are also considered with the purpose
of comparison. The overall scenario matrix for our study is
presented in theTable 1. Each combined scenario in thismatrix is
named after the socio-economic scenario and warming scenario
it belongs to. For example, the CTL_HIST scenario represents
the control (CTL) socio-economic scenario and historical (HIST)
emission scenario.

Climate Model Simulations
The climate model projections are obtained from CESM low-
warming runs, performed using Community Earth System
Model version 1 (CESM1) with Community Atmosphere Model
version 5.2 (CAM5.2) and the Greenhouse gas (GHG) emission
associated with 1.5 and 2◦C warming scenarios, obtained from
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FIGURE 2 | Study area: Ganga river basin divided into 15 sub-basins. Inlet is representing location of the basin within India. Location of streamflow measurement

stations, Bhimaghoda and Ankinghat are marked with dots.

Minimal Complexity Earth Simulator (MiCES) (Sanderson et al.,
2017). The historical climate scenario outcomes are obtained
from CESM Large Ensemble (LENS) simulation (Kay et al.,
2015), which are performed with the same CESM version and
model parameters as the low-warming runs. Five ensembles of
each simulation: Historical (HIST) (1951–2005), 1.5◦C (2006–
2100), and 2◦C (2006–2100) were chosen for our study and bias
correction and statistical downscaling methodologies are applied
on each of them independently.

Statistical Downscaling
The outputs of CESM LENS and low-warming simulations are
of coarse resolution (1◦ horizontal resolution) and not suitable
for regional hydrological modeling. To use the model outcomes
as meteorological forcing in hydrological model, they need to
go through a bias correction and downscaling procedure. In
this study, we have used a non-parametric regression-based
multisite statistical downscaling method (Kannan and Ghosh,
2013; Salvi et al., 2013), where a statistical relationship is
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TABLE 1 | Scenario matrix used in the study.

Climate

mitigation

pathways

Socio-economic pathways

CTL SSP1 SSP2 SSP3 SSP4 SSP5

HIST CTL_HIST X X X X X

1.5◦C CTL_1.5◦C SSP1_1.5◦C SSP2_1.5◦C X X X

2◦C CTL_2◦C SSP1_2◦C SSP2_2◦C SSP3_2◦C SSP4_2◦C SSP5_2◦C

FIGURE 3 | Performance of statistical downscaling model. (A) Difference between mean projected JJAS rainfall and observed JJAS rainfall for validation period

(1981–2005) (B) Difference between projected standard deviation of JJAS rainfall and observed standard deviation of JJAS rainfall for validation period (1981–2005).

established between observed coarse resolution predictors (1◦

horizontal resolution) and fine resolution observed rainfall
(0.25◦ horizontal resolution); and the derived relation is
applied on the bias-corrected model-simulated predictors to
obtain a better projection of future rainfall. In this study,
for the development of statistical relationship between the
predictors and rainfall, we have used daily reanalysis data
from National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) (Kalnay
et al., 1996), as proxy for observed predictors; and observed
daily rainfall data from APHRODITE, Monsoon Asia (Yatagai
et al., 2009), both for the period 1951–2005. The data from
1951 to 1980 is used for training the statistical model and
the rest of the data is used for validation. The following
climate variables have been used as predictors: air temperature,
zonal and meridional wind at surface level; mean sea level
pressure; air temperature, zonal and meridional wind, specific
humidity at 850 hPa pressure level; and air temperature and
geopotential height at 500 hPa pressure level. The downscaling
methodology is performed for the entire landmass of India,
by applying it separately for 7 meteorological homogeneous
zones, suggested by India Meteorological Department (IMD)
(Parthasarathy et al., 1996) and four seasons: June–September
(JJAS), October–November (ON), December–February (DJF),
and March–May (MAM). For each homogeneous zone, we have
used a separate zone of predictors, as suggested by Salvi et al.
(2013).

TABLE 2 | Datasets used in hydrological modeling or validation.

Data Time

period

Resolution Source

Meteorological

forcing

1951–

2100

Downscaled

or

Upscaled

to 0.5◦

CESM LENS and

Low-warming simulations

(processed by bias

correction and statistical

downscaling method)

Elevation map N/A 0.5◦ U.S. Geological Survey

Vegetation data

(Land Use)

1951–

2100

0.5◦ AIM/PLUM Land allocation

model

Vegetation

parameters

N/A N/A Global Land Data

Assimilation Systems

(GLDAS)

Soil data N/A 0.5◦ Food and Agriculture

Organization, USA

Streamflow data at

Ganga river basin

1998–

2009

N/A Central Water Commission,

India

Soil moisture 2000–

2009

0.5◦ European Space Agency

Climate Change Initiative

Global Terrestrial

Evapotranspiration

2000–

2009

0.5◦ Moderate Resolution

Imaging Spectroradiometer

(MODIS)

The downscaling methodology essentially involves four
steps: bias correction, dimensionality reduction, rainfall state
estimation, and rainfall value estimation through regression.
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FIGURE 4 | Calibration and Validation of hydrologic model VIC. (A) Time series of monthly observed (blue) and model simulated (red) streamflow at Ankinghat station.

(B) Time series of monthly observed (blue) and model simulated (red) streamflow at Bhimaghoda station. (C) Correlation of observed and model simulated

evapotranspiration during JJAS season at 95% significance level. (D) Correlation of observed and model simulated soil moisture during JJAS season at 95%

significance level.

First, we have bilinearly interpolated the model-simulated
predictors to the same grids as reanalysis predictors and used
a quantile mapping method proposed by Li et al. (2010), for
correcting the bias in the model data. A distribution is fitted to
all the grids separately for both reanalysis and model data. We
have fitted Normal distribution for wind and specific humidity
and Gamma distribution for rest of the predictors. Then, for
the historical period (1951–2005), the Cumulative Distribution
Function (CDF) of the reanalysis and the model-simulated data
are compared and the biased model data at each grid and
time step is replaced by the reanalysis data with same CDF.
For future (2006–2100), additionally, the shift between model-
simulated historical and future data with same CDF is added
to the replacement value, to account for the climate change.
Apart from the predictors used in the statistical downscaling of
precipitation, we have also bias-corrected daily minimum and
maximum temperature, which are later used as meteorological
forcing in the hydrological model. Next, in order to get rid of
the multidimensionality and multicollinearity of the predictors,
we have used principal component analysis (PCA) on the
reanalysis predictors. We have sorted the principal components
in the descending order based on their explained variance and
taken the first few of them till the sum of explained variance
reached 80%. The same coefficients were used to transform the
model simulated predictors also. We have classified the observed
rainfall into 3 states using unsupervised K-means clustering and
apply Classification and Regression Tree (CART) to establish
a relationship between reanalysis predictor PCs and observed
rainfall states. We have then applied the derived relation on
Model predictor PCs to estimate the rainfall state. For each

rainfall state, we have applied Kernel Regression on the predictor
PCs to obtain the projected daily rainfall amounts. We have
used the Nadaraya-Watson estimator for kernel density estimates
(Nadaraya, 1964) and asymptotic mean integrated square error
(AMISE) criteria for bandwidth selection (Wand and Jones, 1995;
Scott, 2015). The final resolution of the downscaled rainfall is
same as that of the observed rainfall, which is 0.25◦ in our case.
After downscaling is performed, rainfall and other meteorlogical
variables for the grids belonging to Ganga basin region are
extracted to be used as an input to the hydrological model.

The performance of the downscaling model is presented in
Figure 3. The difference between mean observed and projected
JJAS rainfall for validation period (1981–2005) doesn’t exceed
3mm for majority (98%) of the grids. Standard deviation is
underestimated in the projected rainfall. For more than 96% of
the grids, difference between standard deviation of projected and
observed JJAS rainfall is within 6 mm/day. Overall, we find the
performance of the model satisfactory. More discussion on the
performance of the model can be found on Salvi et al. (2013).

Land Allocation Model
The gridded land use projections are obtained from the impact
model Asia-pacific Integrated Model (AIM). The computable
general equilibrium (AIM/CGE) component is a recursive-
dynamic general equilibrium model, which takes population,
gross domestic product (GDP), consumption, technological
progress, pollution level etc. associated with socio-economic
pathways into account and provides regionally aggregated
emission, energy, and land use information for each scenario in
SSP-RCP scenario matrix (Fujimori et al., 2017). This aggregated
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FIGURE 5 | Changes in downscaled precipitation from HIST to 1.5◦C (A) and from HIST to 2◦C (B) for CTL scenario over Ganga river basin for JJAS season.

Hatched regions denote areas with statistically significant changes.

FIGURE 6 | Time evolution of percentage area of (A) cropland, (B) forest, and (C) pasture land at Ganga river basin, for each combination of RCP-SSP scenario over

twenty-first century, as projected by AIM/PLUM model.

land use projections are then regionally disaggregated into 0.5◦

× 0.5◦ gridded land use data by the land allocation model
AIM/PLUM. Land allocations are performed to maximize the
economic efficiency for a given biophysical land productivity
(Hasegawa et al., 2017). The outcomes of AIM/PLUM are
available globally for the year 2005 and then every 10 years from
2010 onwards, which we have extracted for our study region. It
should be noted that the outcomes of this model are available for
emission based RCPs, not temperature based climate scenarios
we are using in our study. However, RCP1.9 and RCP3.4 have
been used among climate mitigation pathways for AIM; even
though they are not part of the originally proposed pathways
(VanVuuren et al., 2011), today they are widely used as analogous
to 1.5 and 2◦C warming scenarios (Fujimori et al., 2018).

Hydrologic Simulation
The projected meteorological data and land use data are forced
grid-wise into a semi-distributed mesoscale hydrological model
(VIC), which balances water and surface energy budgets. The
key characters of the VIC model includes representation of
multiple land cover types on a single grid, spatial variability
of soil moisture capacity, multiple soil layers, and interactions
between them, non-linear base flow and clumped vegetation
formulation with time-varying spacing between plants (Bohn

and Vivoni, 2016). A list of datasets used as an input to
the hydrological model is presented in Table 2. The elevation
map for VIC is acquired from U.S. Geological Survey (USGS)
HYDRO1K dataset (Raje et al., 2014). Vegetation parameters,
such as leaf area index, are collected from Global Land Data
Assimilation Systems (GLDAS) dataset (Rodell et al., 2004).
Soil data is extracted from a global database from Food and
Agriculture Organization (FAO) at 0.5◦ resolution. Certain soil
parameters, such as soil depth, are obtained by calibrating the
model at two stations, Ankinghat and Bhimaghoda. The observed
streamflow for these two stations are collected from Central
Water Commission (CWC), India at monthly scale (Chawla
and Mujumdar, 2015; Joseph et al., 2018). After calibration,
the comparison of observed and VIC simulated streamflow
is presented in Figures 4A,B. We have also calculated Nash-
Sutcliffe efficiency (NSE) of the model in each station. The model
simulated streamflow matches the observed flow reasonably well
at Bhimaghoda station (NSE = 0.75), but overestimated at the
Ankinghat station (NSE= 0.09). It should be noted that the flow
is highly regulated at downstream, which may have contributed
to the relatively poor performance of the model at Ankinghat
station. We have tried to minimize the impact of human water
management in the streamflow data, by incorporating data from
water diversion structures and canals. We have validated our
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FIGURE 7 | Changes in VIC simulated evapotranspiration associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for (B)

SSP1_1.5◦C scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I) SSP5_2◦C

scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.

model against an observed evapotranspiration data collected
fromModerate Resolution Imaging Spectroradiometer (MODIS)
MOD16 Global Terrestrial Evapotranspiration Data Set and a
satellite based soil moisture data from European Space Agency
Climate Change Initiative, for the time period 2000–2009,
results of which are presented in Figures 4C,D, respectively.
Overall the simulated evapotranspiration and soil moisture
show high positive correlation for majority of the grids in our
study area.

Budyko Framework
Budyko (1974) proposed a deterministic non-parametric
framework to model the long-term water budget constrained
by atmospheric water supply and water demand limit.
According to this framework, the evaporative fraction (ratio
of evapotranspiration to precipitation) can be expressed as a
function of aridity index (ratio of potential evapotranspiration
to precipitation). However, the relationship between evaporative
fraction and aridity changes among catchments and to account
for that various functional forms of Budyko equation has been
proposed in scientific literature (Fu, 1981; Choudhury, 1999).
In these Budyko equations, basin characteristics parameter is
introduced, which, by definition, explains the combined effect of
all factors other than aridity on the terrestrial water balance. In
this study we use the following functional form of the Budyko

equation, known as the Mezentsev equation.

E

P
=

(

1+

(

E0

P

)−n
)

−1
n

(1)

Where P is the precipitation, E is the evapotranspiration,
E0 is potential evpotranspiration and n is the basin
characteristics parameter.

One assumption of Budyko framework is that the long term
change in mean water storage is negligible and the whole
incoming precipitation either evaporates or contributes to runoff.
However, our study focuses on the long term mean of seasonal
(JJAS) rainfall, this assumption does not hold true. In order to
apply the Budyko framework to long-term mean of seasonal
rainfall, we have introduced the change in storage (1S) in
the equation.

E

P − 1S
=

(

1+

(

E0

P − 1S

)−n
)

−1
n

(2)

In this study, we apply the Equation 2 on the hydrological
outcomes obtained from VIC for each of the 15 sub-basins and
each scenario to estimate the basin characteristics parameter, in
order to understand the relative impacts of climate and land use
changes on the basin characteristics.
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FIGURE 8 | Changes in VIC simulated total runoff associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for (B) SSP1_1.5◦C

scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I) SSP5_2◦C scenario over

Ganga river basin. Hatched regions denote areas with statistically significant changes.

RESULTS

In Figure 5 we have presented the projected climate change at
the Ganga river basin in terms of mean precipitation during
monsoon (JJAS). The changes are calculated between last 25 years
of each century (1976–2000 for HIST and 2076–2100 for future
scenarios), which remains true throughout this study, unless
otherwise mentioned. We have found an east–west asymmetry
in the projected rainfall changes. The eastern part of the basin
shows an increase in rainfall in the twenty-first century, where
the western part, which is part of the core monsoon zone, is
projected to have a declining trend in the warming scenario. The
extent of this asymmetry is higher in the 2◦C warming scenario
comparatively. As a similar spatial pattern has been found in
the present day observed rainfall trend (Das et al., 2014), this
asymmetry can be considered a characteristic climatic response
of the Ganga basin region to global warming.

In Figure 6 we have shown the time evolution of various land
use classes throughout the twenty-first century, as projected by
AIM/PLUM model for the Ganga basin region. The outputs of
the land allocation model are provided at 0.5◦ × 0.5◦ grids,
which are aggregated to prepare the projection for the whole
basin. Figure 6A shows the changes in cropland, which covers
the majority of the lands in our study area. In every scenario
the cropland area increases during the first few decades and
then starts declining throughout the century. The SSP3_2◦C
scenario, which is the least sustainable among all, doesn’t feature

this decline in cropland area and roughly maintain its peak
throughout the century. Figure 6B depicts the projected area
of unmanaged forests, which shows a decline at the beginning,
but gets reversed into an increasing trend for some scenarios.
For the scenarios associated with low challenges for mitigation
(i.e., SSP1 and SSP4) we find this increasing trend in forest land
in the latter part of the century; however the others scenarios
continue to show decline throughout the century. In Figure 6C

we have shown the projected changes associated with pasture
lands, which are comparatively smaller than the previous two
land classes. Overall, pasture land area is projected to increase
after an initial decrease. In most cases the direction of changes
are closely tied with and opposite to the changes in cropland for
that specific scenario.

In Figures 7–10, we have compared the relative
impacts of projected climate and land use changes on the
hydrometeorological variables at Ganga river basin, as captured
by the VIC simulations. Even though the impacts of these changes
are not perfectly linearly additive, we can roughly estimate them
by subtracting the outcomes of various VIC experiments from
each other. For example, subtracting the outcomes of CTL_HIST
experiment from CTL_1.5◦C experiment will give us an estimate
of the impact of 1.5◦C warming scenario. On the other hand, the
impacts of land use change associated with SSP1_1.5◦C scenario
can be estimated by subtracting the outcomes of CTL_1.5◦C
experiment from that of SSP1_1.5◦C experiment. The statistical
significance of these differences are estimated using t-test with
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FIGURE 9 | Changes in VIC simulated potential evapotranspiration associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for

(B) SSP1_1.5◦C scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I)

SSP5_2◦C scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.

a 95% significance level and the sub-basins showing significant
differences are highlighted in the figures. We have found a few
notable patterns consistent across the hydrologic variables. In
Figures 7A,D, 8A,D, 9A,D, 10A,D we have shown the impacts
of 1.5 and 2◦C warming on evapotranspiration, total runoff
(surface runoff and baseflow), potential evapotranspiration,
and aridity index at the Ganga river basin, respectively. As
evapotranspiration and runoff are correlated with precipitation,
the spatial patterns of their changes closely resemble the
projected precipitation trend. The east-west asymmetries are still
present here. On the other hand potential evapotranspiration
is correlated with temperature and projected to increase almost
uniformly throughout the basin. In case of aridity of the basin,
even though the asymmetry in changes can still be noticed,
majority of the sub-basins show an increase in the warming
scenario, implying increased water stress as a result of global
warming. Figures 7B,C, 8B,C, 9B,C, 10B,C show the impact
of land use changes associated with SSP1-2 and 1.5◦C warming
and Figures 7E–I, 8E–I, 9E–I, 10E–I represent the same for
SSP1-5 and 2◦C warming for evapotranspiration, total runoff,
potential evapotranspiration, and aridity index, respectively. We
have found that hardly any changes associated with land use are
visible in the figures, which suggests that the impacts of projected
land use changes are negligible compared to its climate change
counterpart. Neither of these hydrologic variable changes shows
any significant contribution from the projected land use changes
for most of the basins. However, there are a few exceptions in

some of the sub-basins. For example, the Bhagirathi sub-basin
gets more arid in few SSP scenarios, but doesn’t show any
significant change when only climate change is considered.
These exceptions are a result of potential evapotranspiration
increasing proportionately with precipitation due to climate
change, but not being impacted significantly because of land
use change.

From the VIC simulated hydrologic variables, we have
calculated the value of basin characteristics parameter (n) for
each sub-basin using Budyko framework (Equation 2). The result
is presented in Table 3. We have found two notable patterns in
this data. Firstly, the basin characteristics is influenced by climate
change. As the warming goes higher fromHIST to 1.5–2◦C,many
sub-basins show a consistent increase or decrease in the projected
basin characteristics parameter. Secondly, the impact of projected
land use changes is not as prominent. For the majority of the sub-
basins there is hardly any difference between SSP scenarios and
their CTL counterpart for the same level of warming. However,
there are a few exceptions to this pattern. In certain scenarios,
the land use changes have been found to have some impact
in Bhagirathi, Tons, Sone, Damodar, and Gandak and others
sub-basins, although not as high as the climate impact in most
cases. The reasons behind these exceptional cases are unclear, and
require further examinations to be uncovered. Given that all of
these sub-basins are located at the east side of the basin, it can
be speculated to be related to the east-west asymmetry of climate
change response.
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FIGURE 10 | Changes in VIC simulated aridity index associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for (B) SSP1_1.5◦C

scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I) SSP5_2◦C scenario over

Ganga river basin. Hatched regions denote areas with statistically significant changes.

DISCUSSIONS

There are multiple sources of uncertainty present in our
modeling framework. Our choices of climate change mitigation
pathways as well as parameterizations in climate model
simulations and their internal climate variability (Knutti and
Sedláček, 2013) are major sources of uncertainties, although it is
partly mitigated by considering multi-ensemble mean of climate
model outcomes. Our choices of socioeconomic pathways,
the impact model (AIM) and the statistical downscaling
methodology, all contribute substantially to the uncertainty of
the climate and land use projections. The assumption of linear
responses of land use and climate change to the hydrologic
variables imposes some uncertainties as well. The parameter
uncertainty in the hydrologic model is also responsible for a
significant portion of the overall uncertainties (Chawla and
Mujumdar, 2018), although they are relatively lower than the
uncertainties resulting from climate models and downscaling
methods (Joseph et al., 2018). However, we believe that the
presence of these uncertainties in the projections do not affect
the key findings of our study. The hydrologic changes associated
with climate change are significantly higher than that of land
use change, close to one magnitude of order in many cases.
This pattern is also consistent across hydrologic variables,
scenarios and sub-basins. Our finding is consistent with Chawla
and Mujumdar (2015)’s analysis on Upper Ganga basin for
historical climate and land use changes. Analyzing our data in

the Budyko framework also shows that the climatic variables
have a significant impact on the basin characteristics, while
vegetation has lesser impact, which is contrary to the traditional
assumption. This finding is consistent with Padrón et al.
(2017) and Abatzoglou and Ficklin (2017)’s global analyses with
observed datasets in historical time period. The methodology
used in our study is generic and can be applied to other river
basins as well. However, the conclusion of this analysis may vary
depending on the climate and land use of the basin. Worldwide,
there have been multiple attempts to distinguish between climate
and land use change impacts on basin-scale hydrology, even
though majority of the studies are for historical period and
very few studies consider projections for future scenarios. The
conclusions drawn in these studies are mixed; while some studies
have found significant contributions from land use changes
(Schilling et al., 2008; Wang and Hejazi, 2011), others have found
it to be negligible (Gupta et al., 2015).

CONCLUDING REMARKS

In this study we have explored the impacts of projected climate
change as well as land use changes on the terrestrial water balance
at river basin scale. We have found that a major part of the Ganga
river basin is projected to become significantly more arid in
the warming scenarios. However, the projected land use changes
hardly contributes to or counteracts climate change impacts. In
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TABLE 3 | Calculated basin characteristics parameter for all sub-basins and scenarios.

HIST 1.5◦C 2◦C

CTL CTL SSP1 SSP2 CTL SSP1 SSP2 SSP3 SSP4 SSP5

Ganga (Above Ramganga Confluence) 1.42 1.46 1.46 1.46 1.53 1.52 1.53 1.53 1.53 1.52

Middle Yamuna 1.18 1.13 1.13 1.13 1.11 1.11 1.11 1.11 1.11 1.11

Gomti 1.43 1.48 1.47 1.48 1.45 1.45 1.45 1.44 1.46 1.43

Ganga (Upstream of Gomti Confluence) 1.51 1.48 1.47 1.47 1.43 1.43 1.42 1.43 1.44 1.42

Gandak and others 1.38 1.36 1.44 1.36 1.33 1.36 1.36 1.37 1.33 1.33

Damodar 1.36 1.40 1.37 1.37 1.44 1.43 1.43 1.44 1.43 1.43

Upper Yamuna 1.09 1.11 1.11 1.11 1.16 1.18 1.18 1.16 1.18 1.18

Ghaghara 1.32 1.37 1.36 1.36 1.37 1.37 1.36 1.36 1.37 1.36

Ramganga 1.48 1.60 1.59 1.60 1.68 1.67 1.67 1.67 1.67 1.65

Chambal 1.11 1.08 1.07 1.06 1.10 1.10 1.09 1.09 1.10 1.09

Lower Yamuna 1.16 1.13 1.12 1.12 1.09 1.09 1.09 1.08 1.10 1.08

Ganga (Gomti Confluence to Ghaghara Confluence) 1.48 1.47 1.48 1.48 1.44 1.46 1.44 1.44 1.46 1.46

Bhagirathi 1.11 1.06 1.11 1.07 1.02 1.05 1.05 1.06 1.02 1.01

Tons 1.30 1.25 1.22 1.22 1.18 1.19 1.16 1.15 1.19 1.14

Sone 1.43 1.43 1.42 1.39 1.41 1.42 1.37 1.36 1.41 1.36

contrast with the traditional assumption, climatic variables are
found to have significantly more impacts on basin characteristics
compared to land use and vegetation. Overall, our results show
that, in terms of hydrologic impact assessment, climate change
mitigation pathways are the dominant factor and the land use
changes associated with socio-economic pathways contribute
little to alleviate the impacts of climate change.
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