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Streamflow is a dynamical process that integrates water movement in space and

time within basin boundaries. The authors characterize the dynamics associated

with streamflow time-series data from 64U.S. Geological Survey (USGS) unregulated

stream-gauge stations in the state of Iowa. They employ a novel approach called visibility

graph (VG) that uses the concept of mapping time series into complex networks to

investigate the time evolutionary behavior of dynamical systems. The authors focus on

a simple variant of the VG algorithm called horizontal visibility graph (HVG). The tracking

of dynamics, and consequently the predictability of streamflow processes is carried

out by extracting two key pieces of information called characteristic exponent, λ, of

degree distribution and global clustering coefficient, GC, pertaining to the HVG-derived

network. The authors use these two measures to identify whether streamflow has its

origin in random or chaotic processes. They show that the characterization of streamflow

dynamics is sensitive to data attributes. Through a systematic and comprehensive

analysis, the authors illustrate that streamflow dynamics characterization is sensitive to

the normalization and the time scale of streamflow time series. At a daily scale, streamflow

at all stations used in the analysis reveals randomness with strong spatial scale (basin

size) dependence. This has implications for predictability of streamflow and floods. The

authors demonstrate that dynamics transition through potentially chaotic to randomly

correlated processes as the averaging time scale increases. Finally, the temporal trends

of λ and GC are statistically significant at about 40% of the total number of stations

analyzed. Attributing these trends to factors such as changing climate or land use

requires further research.

Keywords: streamflow dynamics, complex networks, horizontal visibility graph, degree distribution, streamflow

predictability

INTRODUCTION

Transport of water in streams and rivers is a main component of the hydrologic cycle characterized
by streamflow fluctuation over time. Causes of streamflow fluctuations include intense rainfall
events leading to high flows and floods; longer inter-storm periods followed by low flows and
droughts; and snowmelt in higher latitudes after cessation of cold season. Improving our ability
to predict streamflow over short and long-time horizons requires a better understanding of
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streamflow variability and the underlying dynamics. In this study,
the authors treat streamflow time series as an output of a non-
linear dynamical system and map them into complex networks
using an algorithm based on a visibility graph (VG) concept (e.g.,
Lacasa et al., 2008, 2012; Lacasa and Toral, 2010; Stephen et al.,
2015; Braga et al., 2016).

Streamflow time series have been studied using many different
approaches, including Fourier transforms (e.g., Lundquist and
Cayan, 2002), wavelet transforms (e.g., Smith et al., 1998;
Coulibaly and Burn, 2004), chaos theory (e.g., Porporato
and Ridolfi, 1997; Bordignon and Lisi, 2000), and stochastic
modeling (e.g., Livina et al., 2003; Prairie et al., 2006; Wang,
2006). Most of these studies were motivated by the needs of
streamflow forecasting, however, addressing a broader concept
of predictability (e.g., Kumar, 2011) raises questions about the
origins of the underlying processes (e.g., Lacasa and Toral, 2010).

The problem of mathematical and numerical modeling
to understand the predictability of streamflow requires
distinguishing whether the underlying dynamics are
deterministic or stochastic. In this direction, limited efforts
have been documented in the hydrologic literature. Porporato
and Ridolfi (1997) and Bordignon and Lisi (2000) checked for
the evidence of chaotic behavior considering measures such as
phase-portrait of the attractor, largest Lyapunov exponent, and
correlation dimension. They demonstrated that the presence
of a low-dimensional chaotic (deterministic) component could
not be excluded. Bordignon and Lisi (2000) further verified
the presence of chaotic behavior using the deterministic vs.
stochastic (DVS) algorithm proposed by Casdagli and Weigend
(1993). Their study showed that non-linear river flow modeling
enhances predictability. Pasternack (1999) investigated the
presence of low-dimensional chaos in hydrological systems
using correlation integral analysis (CIA) (see Grassberger and
Procaccia, 1983) and demonstrated that daily streamflow time
series for relatively pristine rivers do not show chaotic behavior.
Overall, there has not been a clear consensus in the literature
regarding the identification of chaotic behavior in streamflow
time series (see e.g., Pasternack, 1999; Koutsoyiannis, 2006).

This study is focused on networks. A network is defined by a
set of nodes and their links, where any pair of nodes is connected
according to some rule. The nodes in a network can be anything.
For example, in a network of actors, the nodes are actors that
are connected to other actors if they have appeared together in
a movie. In a network of species, the nodes are species that are
connected to other species they interact with. In a network of
scientists, the nodes are scientists that are connected to other
scientists if they have collaborated. In the grand network of
humans each node is an individual who is connected to people
he or she knows. When networks were introduced to the climate
community (Tsonis and Roebber, 2004; Tsonis et al., 2006), nodes
were grid points in a field (e.g., 500 hPa field). Links in that
network were defined according to a threshold in the correlation
coefficient between the time series of any given pair of grid points.

There are several types of networks. On the two extremes are
regular and random networks. Regular networks have a fixed
number of nodes, each node having the same number of links
connecting it in a specific way to a number of neighboring nodes.

In random networks, the nodes are connected at random. Other
networks have been discovered, such as small-world networks
(a combination of regular and random networks) and scale-free
networks (characterized by a few nodes havingmany connections
and many nodes having few connections). The topology of the
network can reveal important and novel features of the system it
represents (Strogatz, 2001; Albert and Barabási, 2002; Costa et al.,
2007).

Since the discovery of small-world networks by Watts and
Strogatz (1998), the study of networks has developed with
new approaches to constructing networks and studying their
topology. One of the latest methods is the one we will employ
here. This particular method is attractive because it provides
a criterion that distinguishes between chaotic and stochastic
processes. In this method, any time series can be mapped into
a complex network (graph) (e.g., Lacasa et al., 2008, 2012; Luque
et al., 2009; Lacasa and Toral, 2010; Stephen et al., 2015; Braga
et al., 2016). Analysis of the properties of the network can reveal
the nature of the dynamics that created the time-series data.

Lacasa and Toral (2010) employed HVG to distinguish
between random and chaotic processes underlying a time series.
They showed that a time series maps to a network where
the number of connections with other nodes (called degree
distribution) has an exponential distribution. Lacasa and Toral
(2010) and Braga et al. (2016) have shown analytically that,
irrespective of the underlying distributions, the value of the
characteristic exponent parameter of degree distribution serves
as the exact frontier between chaotic and stochastic processes.
Another characteristic of the network is the clustering coefficient,
which measures the likelihood of nodes to form clusters of tightly
knit groups with a relatively high density of ties (see e.g., Watts
and Strogatz, 1998; Newman, 2003; Tsonis et al., 2006; Braga
et al., 2016). A specific form of clustering coefficient that deals
with the clustering nature of the entire network rather than its
local behavior is called the global clustering coefficient, GC. GC
is designed to give an overall indication of the clustering in the
network, which is directly related to how stable a network is.
As GC approaches the value of 1, the network becomes fully
connected (every node is connected to every other node); as it
approaches 0, the network becomes completely disconnected. In
the case of a network derived from a time series, a GC = 1 will
indicate that every point “sees” every other point, therefore the
process is perfectly linear.

Gonçalves et al. (2016) explored HVG in new ways
using information theory. They showed that alternatives to
degree distributions such as distance distribution and weight
distribution can help extract efficient information, especially for
shorter time series. Recently, Braga et al. (2016) used HVG
to analyze river flow fluctuations at a daily time scale using
141 stream gauges in Brazil. They demonstrated the presence
of correlated stochastic structure in the streamflow dynamics
through degree distribution and GC. Further, Lange et al.
(2018) investigated the sensitivity of the HVG methodology
to streamflow time series pre-processing properties such as
time series length, presence of ties in the data, and effects
of seasonality, using around 150 time series from managed
rivers in Brazil at a daily time scale. They showed that data
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pre-processing can result in contradictory results and thus
should be used with caution. Serinaldi and Kilsby (2016) used
a directed HVG, in which each node is connected to past
nodes or to future nodes (represented by arrows) to explore
time irreversibility (or temporal asymmetry, see Lacasa et al.,
2012), a signature of the non-linearity of streamflow through
analysis of degree distributions. In their comprehensive study,
they used 699 unregulated daily time scale streamflow time
series across the conterminous United States (CONUS) to
show that degree distributions have systematic sub-exponential
behaviors of different strengths and quantified the results through
the information theory measures. Their findings show that
streamflow dynamics are more complex than simple stochastic
linear dynamics, and irreversibility is a key feature.

In this work, we study unregulated streamflow time
series at United States Geological Survey (USGS) stream
gauge stations in the U.S. state of Iowa using networks
derived from simple undirected HVG, in which each node
is connected to past and future nodes (represented by lines).
Our objective is not only to explore the predictability of
streamflow dynamics in terms of processes generating them,
but also to gain insights regarding questions not addressed by
previous works. Specifically, we address the following questions:
(1) What processes underlie streamflow dynamics? (2) How
does time resolution of streamflow time-series data, as well
as a normalization procedure, impact inference from HVG-
based networks? (3) Does the complex network description
of the streamflow process demonstrate spatial (basin) scale
dependence? (4) Do the characteristics describing this process
show temporal evolution?

This paper is organized as follows. In the methods section,
we present the study area and streamflow time-series data
and provide HVG application strategy across time scales. In
the results and discussion section, we seek answers to the
above questions based on results from our analysis. Finally,
we draw conclusions from this work and outline avenues
for further research on visibility-based network analysis of
streamflow dynamics.

DATA AND METHODS

To construct the network, consider two arbitrary data points of a
time series [ta, xa] and [tc, xc] with any other data point [tb, xb]
such that ta < tb < tc. The VG algorithm defines these time steps
ta, tb, and tc as nodes of the network such that xa and xc are visible
to each other and are connected (see Luque et al., 2009) if,

xb < xa + (xc − xa)
tb − ta

tc − ta
(1)

Such networks (graphs) have the ability to reveal many salient
characteristics of the time series. Regardless of the type of time
series used, the constructed network is, by definition, connected
and invariant to affine transformations of the time series.
Hence, the constructed network from a time series maintains its
inherent properties.

A simple variant to VG is the horizontal visibility graph
(HVG). Mathematically, let [xi, i = 1, 2,. . . , N] be a time series
of N data, where i represents nodes. Two nodes i and j are
connected if,

[xi, xj] > xk∀k|(i < k < j) (2)

Graphically, two nodes i and j are connected if one can draw
a horizontal line in the time series joining xi and xj, which
does not intersect any intermediate data. A key feature of
HVG graphs is that the nearest neighbors are visible to each
other. Note that rescaling of horizontal and vertical axes and
horizontal and vertical translations do not affect the resultant
network. In Figure 1, we illustrate the concept of transforming
time series to a network using HVG. We use this approach to
generate the network from a streamflow time series to explore its
underlying dynamics.

The midwestern state of Iowa contains many streams and
rivers draining to the Mississippi River in the east and the
Missouri River in the west. About 65% of the state drains
to the Mississippi River, while about 35% of the state drains
to the Missouri River (e.g., Larimer, 1957; Ghimire et al.,
2018). Most of the land use in the state is agricultural. The
northeastern part of the state is characterized by deeply carved
terrain, narrow valleys, and relatively higher stream slopes, while
low reliefs with relatively milder stream slope make up the
rest of the state (e.g., Ghimire et al., 2018). Most significant
streamflow events (e.g., floods) occur in the spring and early
summer. However, significant events occasionally occur at other
times of the year. Snowmelt has rather minor direct effect
but can influence flooding by keeping soils saturated into
late spring.

At present, around 140 USGS streamflow gauges monitor
these streams and rivers, providing data for this study. Figure 2
shows the spatial distribution of the USGS stations across Iowa.
We considered unregulated USGS daily streamflow records with
record length of at least 50 years. Sixty-four stations meet this
criterion, as depicted by dark green dots in Figure 2. The longest
record is 115 years. Since higher resolution data (i.e., sampled at
15-minute intervals) are available only since 2002, we used data
from 2002 through 2018 for analysis at instantaneous and hourly
scales. We used 15-min streamflow time series first and averaged
the data to generate subsequent hourly (using four nodes) and
daily (using 96 nodes) scale streamflow time series.

The USGS stream gauges measure discharge from drainage
areas that range from about 7 km2 to 37,000 km2. Figure 3A
illustrates the distribution of basin scales, and Figure 3B

illustrates the distribution of daily streamflow records length
of USGS stations, respectively. The wide range of monitored
basin sizes enables us to capture the spatial scale dependence of
HVG-derived information measures.

We constructed networks representing every year of the
historical streamflow records for the USGS stations described
above. For each year, there are 365 nodes represented by the
index I = 1,2,. . . ,365 such that N = 365 at a daily time scale.
To avoid major seasonal trends between years, we standardized
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FIGURE 1 | Schematic illustration of horizontal visibility graph (HVG) approach. (A) Indices of nodes with corresponding values. The solid red lines show whether

corresponding nodes are horizontally visible to each other. For example, in node 4 we can draw a horizontal straight line between node 4 and node 2 that does not

intersect the height of node 3. Thus, node 4 is connected to node 2. Similarly, node 4 is connected to nodes 3, 5, and 9, but not, for example, node 6, since there is

no way we can draw a horizontal line without crossing the height of node 5. (B) The complete network.

(normalized) the time series using the mean and standard
deviation of flows for each day of the year (e.g., Braga et al.,
2016; Serinaldi and Kilsby, 2016; Lange et al., 2018), a typical
procedure for such hydrologic analyses. We discuss later the
impact of this transformation on inferences derived from the
networks. Let Xt(i) represent the flow in the year “t” on the day

“i.” Likewise, let xt(i) be the normalized flow for the year “t”
on the day “i.” Then, we define the normalization of time series
through Equations (1)–(3).

xt (i) =
Xt (i) − µ(i)

σ (i)
(3)

Frontiers in Water | www.frontiersin.org 4 July 2020 | Volume 2 | Article 17

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Ghimire et al. Horizontal Visibility Graph Based Networks

FIGURE 2 | Spatial distribution of USGS stations (both light and dark green squares) across Iowa. The dark green squares represent USGS stations with at least 50

years of streamflow records.

FIGURE 3 | Histogram of USGS basin characteristics. (A) Distribution of basin scales across Iowa; (B) distribution of streamflow record lengths in terms of number of

stations.
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where

µ(i) =
1

n

n
∑

t=1

Xt (i) (4)

and

σ (i) =

√

√

√

√

1

n− 1

n
∑

t=1

(Xt (i) − µ (i))2 (5)

represent the mean and standard deviation of the flow
respectively on the day “i” obtained from the distribution over the
years of historical records at the given station [n∈(50, 115)]. As
an illustration, we present in Figure 4 the envelope of the entire
record of daily streamflow together with its mean and median
(see Figures 4A,C) as well as the corresponding envelope of the
normalized flows (see Figures 4B,D) for a large basin (16,800

km2) of the Cedar River at Cedar Rapids and a small basin (70
km2) of Rapid Creek near Iowa City, respectively. It is apparent
that the seasonality of flows clearly visible in the original series is
much reduced in the normalized data.

Next, we mapped the time series for every year to a
complex network using HVG. An illustration of the network
associated with two streamflow time series is presented in
Figure 5. Figure 5A corresponds to the network associated with
normalized time series at the Cedar River at Cedar Rapids (16,800
km2), while Figure 5B shows the network of streamflow obtained
from the same daily data but shuffled randomly over time. The
color code represents the month of a year associated with each
node, with their size representing the number of connections
they make with their neighbors. Clearly, larger nodes of the
HVG-derived network are associated with the major events.
As Figure 5A shows, the nodes related to consecutive months
(neighbors in proximity) are connected to each other, implying
the information transfer during streamflow generation process in
the form of antecedent soil moisture, base flow, and other factors.

FIGURE 4 | Streamflow time series normalization for two basins. (A) Shaded envelope representing an ensemble of entire raw streamflow records, Xt (i), at a daily

scale for the Cedar River at Cedar Rapids (16,800 km2 ). This envelope shows the variability of streamflow, σ (i), while the red and green lines represent mean, µ(i), and

median of flows, respectively. (B) Shaded envelope representing an ensemble of normalized streamflows, xt (i), corresponding to (A). (C) Raw streamflow time series at

Rapid Creek near Iowa City (70 km2 ) with same description as (A). (D) Normalized streamflow time series corresponding to (C).
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FIGURE 5 | HVG-derived network for the Cedar River at Cedar Rapids for 2016. (A) Network associated with normalized flow (corresponds to Figure 4). Each color

represents the corresponding month of a year where the size of each node corresponds to the number of connections with its neighbors. (B) Network for randomly

shuffled streamflow from (A). In the normalized data λ > 0.41 indicates the presence of a stochastic process. Both λ and GC are lower in the shuffled time series as

expected.

We extracted two fundamental pieces of information from
these networks to explain the underlying streamflow dynamics
and, hence, the streamflow predictability. The first metric is
the degree distribution. The degree, k, corresponds to the
number of connections a node can have with other nodes.
An ensemble of nodes results in a distribution of k with
P(k) representing its cumulative probability function, i.e., P(K
≥ k). There are documented works (e.g., Luque et al., 2009;
Lacasa et al., 2012; Braga et al., 2016) illustrating that k

resulting from HVG follows the exponential distribution of
the form,

P
(

k
)

∼ e−λk (6)

where λ is the decay parameter, also referred to as the
characteristic exponent. For the purely random process, it has
been demonstrated analytically (e.g., Luque et al., 2009; Lacasa
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FIGURE 6 | Illustration of degree distributions for the Cedar River at Cedar

Rapids. Gray lines represent degree distributions for each year (daily values),

while the solid black line represents the mean exponential fit, over entire years

of record. The solid red line corresponds to the degree distribution associated

with a purely random process. Note that basically for all years λ is >0.41,

indicating a consistent stochastic process.

and Toral, 2010; Lacasa et al., 2012; Braga et al., 2016) that
λ = λrand = ln

( 3
2

)

. For a logistic map in its fully chaotic
regime xn+1 = 4xn(1−xn), an example of a deterministic chaotic
time series (Tsonis and Elsner, 1992), λ from HVG is equal 0.26
and GC=0.29 (see Lacasa and Toral, 2010). The decay parameter
for the purely random process serves as the limit for describing
underlying behavior of the streamflow process. If λ < λrand,
the streamflow process is chaotic, i.e., the dimensionality of the
system is small. If λ > λrand, the streamflow is a stochastic
process with some dependence structure, e.g., linear. In such a
case, the process will have higher predictability that can lead to
higher forecasting skill. For our analysis, we obtained the degree
distribution for every year at each station.

The second piece of information we extracted from the HVG-
derived network is the GC. We computed it as the ratio of the
number of closed triplets (a combination of three nodes forming
a closed path, or three times the number of triangles) to the
total number of triplets (i.e., both open and closed paths) in a
network (e.g., Prokhorenkova and Samosvat, 2014). For example,
the GC for the network in Figure 1 is equal to 15/33 = 0.45. The
five triangles in the center show the clustering of these nodes
dominating the entire network. The range of values of GC is [0–
1] with 1 corresponding to a full network of triangles. As GC
approaches the value of 1, the network becomes more and more
fully connected, which means that every node is connected to all
other nodes, which in turn means that every node “sees” every
other node, hence the process is perfectly linear. It would then
appear that λ and GC vary in the same direction as we transition
from chaotic to random to correlated stochastic processes, with
GC increasing as λ increases, a feature useful for consistency in
the results. See the results section for more discussion.

To summarize: (a) if λ > 0.41, then the process is a red noise
(stochastic) process and thus linear; (b) if λ < 0.41, then the
process is a chaotic (non-linear) process. TheGC is expected to be

higher in the former cases than in the latter cases. It follows that
the estimation of λ andGC provides insights on the predictability
of the process in question, since a chaotic process is inherently
more unpredictable than a linear stochastic process.

In the context of normalized flow of the Cedar River at
Cedar Rapids (see Figure 5A), themajor events are less dominant
in the entire network, resulting in relatively simpler internal
network structures. Consequently, the values of λ and GC are
higher, and, hence, there is higher streamflow predictability.
The corresponding randomly shuffled time series in Figure 5B,
however, shows event-like signals (not true streamflow signals)
dominating the entire network and resulting in a random internal
network structure. The resultant values of λ and GC are, as
expected, smaller. In this study we computedGC for every year at
each station in the same way as we did for the degree distribution.

RESULTS AND DISCUSSION

Analysis of Normalized Streamflow Time
Series
In Figure 6, we present degree distributions for the Cedar River
at Cedar Rapids along with procedure for the computation of
λ as a demonstration of the process using daily values. The
results shown here follow from Figures 4, 5. We fit a linear
regression model to degree distribution for each year in log-
linear space (see Equation 4) such that the slope parameter of
the model fit corresponds to λ. We exclude the non-exponential
part of the degree distribution (present due to limited sample
size) and considered degree, k > 2, for the fit. Virtually all
gray lines in Figure 6, which represent degree distribution for
each year, show λ greater than λrand. It is apparent from the
figure that the uncertainty increases with the increase in k. The
larger the values of k, the larger the number of connections in
the network corresponding to the ability of streamflow peaks
to see through horizontally to a greater number of neighbors.
As illustrated by the dark solid line, average λ, 〈λ〉 > λrand
suggests that the process underlying streamflow dynamics is a
correlated stochastic process. In other words, larger likelihood of
smaller degrees signify that nodes of the time series have longer
correlations. The presence of correlated structure in streamflow
dynamics indicates strong predictability of streamflow.

To elucidate this further, consider the two-dimensional
histogram plot in Figure 7. We show here values of λ and GC
computed across all stations for all years pooled together. Each
pixel represents the number of pairs (counts) of λ and GC. This
plot clearly illustrates a strong relationship between λ and GC.
We note that an increase of λ is (on average) followed by an
increase of GC, which confirms a coupling (on average) between
the values of λ and GC, as speculated above (see also Braga et al.,
2016).All stations exhibit λ > λrand and virtually all values ofGC
> 0.345 (see Braga et al., 2016), suggesting that the streamflow
process for the entire Iowa region at a daily time scale has its
origin in the long-range correlated stochastic process. In other
words, both measures can aptly reveal the stochastic nature of
the underlying streamflow process and the associated potential
predictability at a daily time scale. Because this plot shows overall
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FIGURE 7 | Two-dimensional histogram plot showing a strong relationship

between characteristic exponent, λ, and global clustering coefficient, GC, for

all stations and all years pooled together. The color code represents the

number of pairs of λ and GC values in any pixel. It is apparent that all stations

exhibit λ > λrand = 0.41. Virtually all values of GC > 0.345 (Braga et al., 2016),

suggesting that the streamflow process for the entire Iowa region at a daily

time scale has its origin in the long-range correlated (persistence) stochastic

process. Note that as λ increases, GC also increases, as expected when the

process becomes more and more linear.

dynamics of the process, it might not sufficiently illustrate the
temporal evolution of each of these measures. Therefore, we
discuss this aspect of λ and GC in more detail in the next section.

Analysis of Raw Streamflow Time Series
A rationale behind using normalized streamflow time series
is to avoid potential seasonal trends in streamflow (see Braga
et al., 2016; Serinaldi and Kilsby, 2016; Lange et al., 2018).
Here, we performed a similar analysis for λ and GC using raw
streamflow time series. In Figure 8, we present two-dimensional
histograms with a 1:1 relationship between metrics for raw and
normalized streamflow for the pooled data for the state. The
distribution of λ around the 1:1 line is almost symmetric as
depicted by the percentage of pooled data. It illustrates that λ

derived from an HVG-based network (see Figure 8A) is not
overly sensitive to the normalization of streamflow, at least at the
daily time scale (47 vs. 53% of the total number of data points
toward normalized and raw data, respectively). In Figure 8B,
we show the histogram for GC between normalized and raw
streamflow data. Unlike λ, GC shows a strong bias toward the
normalized data (99% of the total number of data points). As
can be seen from the figure, the dynamic range of GC is much
smaller compared to λ. The disparity in our inference from GC
arises mainly from the disparity in complex internal structures
of the network for the two forms of streamflow time series

FIGURE 8 | Two-dimensional histogram depicting the comparison between

metrics for normalized and raw streamflow time series. The metrics are pooled

from all stations for all historical records. (A) Comparison of λ and (B)

comparison of GC. As explained in the text, GC is more affected by

normalization than λ, with higher values for the normalized data (99% of the

data points favoring normalized data), indicating that normalization tends to

result in more connected networks, hence, more linear processes.

(see Figure 9). Figure 9 shows an example of the difference in
network structure for the Cedar River at Cedar Rapids for 1904
and 2016. The natural streamflow data for 1904 (see Figure 9B)
shows significant departure in the network internal structure
from 2016 (see Figure 9A), mainly due to dominant base flow
conditions in the network. Consequently, λ is enhanced while
GC shows decline because the internal structure of the network
is simplified. This is reflected in a large majority of GC obtained
from raw streamflow depicting a chaotic regime. At the least, this
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FIGURE 9 | Illustration of networks corresponding to natural streamflow time series for the Cedar River at Cedar Rapids station. The color code corresponds to the

month of the time series while the size of nodes corresponds to the number of connections they have with other nodes. (A) Network for 2016. (B) Network for 1904.

is illustrative of the fact that GC is more sensitive to the form of
streamflow data in assessing the streamflow predictability based
on HVG-derived networks.

Analysis of the Effect of Time Scale of
Streamflow Time Series
We want to exploit the utility of instantaneous (sampled every
15min) streamflow data, especially in the context of streamflow
forecasting. Therefore, we devised an experiment to explore
the variability of the predictability measure λ and GC across
three time scales (15min, 1 h, and 1 day) using the same setup
as described earlier for the daily time scale streamflow time

series with the entire historical record. Note that we used the
normalized streamflow for all three scales.

In Figure 10A, we use violin plots to present the variability
of λ across the three time scales. An attractive feature of violin
plots is their ability to show the estimated kernel density of
points in addition to typical measures of variability depicted in
box plots (e.g., Hintze et al., 1998; Jadidoleslam et al., 2019).
The plots show that the variability of λ in terms of interquartile
range (thicker dark solid line inside each violin) does not differ
much across time scales. However, the major difference is in
terms of the median values of λ. Clearly, the mean and median
values of λ show the increase as we transition to a longer time
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FIGURE 10 | Violin plots of λ and GC across time scales of streamflow time

series in (A,B), respectively. The solid white dot inside each violin represents

median while the thicker solid line inside represents interquartile range (75th

percentile−25th percentile). Clearly, the daily time scales have higher λ and

higher GC, indicating that averaging affects the dynamics (from chaotic at

short time scales to stochastic at longer time scales).

scale. The mean and median λ fall marginally below λrand limit,
showing that there is a tendency to transition to chaotic dynamics
from stochastic dynamics as we move to finer resolution. In
other words, the predictability of streamflow process is sensitive
to the time scale of streamflow time series. Figure 10B shows
similar behavior across time scales forGC. The mean andmedian
GC increase as we increase the time scale. The GC, however,
shows the reduction in the variability as the averaging time scale
increases, which was not as apparent with λ.

To elucidate it further, we performed similar analysis using a
resampling approach across time scales. In addition to the three
time scales discussed above, we added 3-, 6-, and 12-h resampling
intervals to our analysis. Both λ and GC show systematic
transition toward stochastic dynamics as the resampling interval
approaches 1 day from 1 h, which is consistent with the result
from averaging of 15-min streamflow data (see Supplementary
Material, Figure A1). Note that the clear transition to a stochastic
process occurs at the 6-h scale irrespective of whether a
resampling or averaging method is used.

FIGURE 11 | Spatial dependence of λ. (A) Expected value of λ over the years

across stations. The solid dark line corresponds to the power-law model fit to

the data. The relationship between expected value of λ and drainage area is

statistically significant. (B) Distribution of λ over the years considering pooled

data from consecutive windows of basin scales. Clearly, the size of drainage

area affects the resulting processes. The larger the basin scales, the longer the

persistent behavior of streamflow.

Spatial and Temporal Dependence of λ

From a hydrologic standpoint, it is important to understand
the predictability of streamflow process across spatial scales. In
Figure 11, we illustrate the relationship between λ and basin
scale. Figure 11A depicts a clear spatial dependence of 〈λ〉

emerging from the daily scale streamflow time series. The solid
black line represents a regressionmodel fit using power lawwhich
shows that the variability in streamflow predictability in terms
of λ is explained by the basin scales. For detailed visualization
of uncertainty in λ conditional on basin scales, we present
violin plots in Figure 11B. The uncertainty arises from variability
over the historical periods of records conditional on windows
of basin scales. Most of the point density of λ is around the
median, depicting a similar relationship as Figure 11A. Clearly,
the larger the basin scales, the longer the persistent behavior of
streamflow (also see Ghimire and Krajewski, 2020) and hence the
predictability of streamflow. This is supported by the fact that
larger basin scales have been shown to display long memory.

In the SupplementaryMaterial (Figure A2), we present spatial
dependence of λ across five time scales using a resampling
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FIGURE 12 | Illustration of USGS sites with statistically significant temporal trends of streamflow predictability. The solid blue circles represent stations with evolutive

trend in terms of λ only; solid red circles represent stations with evolutive trend in terms of GC only; circles that are both red and blue represent stations with evolutive

trend in terms of both λ and GC; light green circles do not show any trend. Insets (A,B) are examples of scatterplots with and without significant temporal trends,

respectively.

approach. It is interesting to see the consistent transition
between λ and basin size as the resampling time interval
increases. For the sake of brevity, we do not show here
results from averaging time scales, but they are very similar.
In the Supplementary Material (Figure A3), we show similar
plots for the raw streamflow data. The apparent difference
between these two results is at 1- and 3-h time intervals. The
values of λ at small basins show further decline while they
increase for larger basins. If interpreted in conjunction with
the Supplementary Material (Figure A4), the normalization at
larger basin sizes shows the effect of measurement noise among
other sources of uncertainty in λ, while small basins show the
strong imprint of non-linearity from rainfall. This result has
important implications for water resources management and
skillful streamflow (flood) forecasting.

In addition, it is of interest to the forecasting community to
assess whether the streamflow predictability measures λ and GC
change over time. Due to their longer records, we use daily data in

this analysis. Hypothesizing that such changes would be gradual,
we fit a simple linear regression model for each measure against
time t [years]. For λ, the model we fit is of the form:

λ = aλ + bλt (7)

where aλ and bλ are intercept and slope of the model fit line,
respectively. Subsequently, we fit a similar model as Equation 5
to GC of the form:

GC = aGC + bGCt (8)

where aGC and bGC are intercept and slope parameters of linear
model fit, respectively, employing ordinary least squares method.
Figure 12 shows spatial distribution of stations with temporal
trend of predictability measures λ and GC. The circles that are
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both blue and red correspond to the stations with statistically
significant values of bλ and bGC at 95% confidence level. In
other words, 17 stations show a significant temporal trend of
both λ and GC. The solid blue and solid red circles represent
stations with a significant temporal trend of either λ or GC
alone, respectively. Figure 12 shows that both measures depict
a temporal trend at a similar number of collocated stations
across the state. Therefore, data from 28 out of 64 stations
show statistically significant trends. Insets (A) and (B) show
examples of stations with and without a significant temporal
trend of λ, respectively. Though the assumption of residuals
distribution being normal is not valid in this case, studies have
shown that using the bootstrap regression also yields similar
results (Braga et al., 2016). Moreover, a large majority of these
stations are of scales larger than 1,000 km2, which suggests that a
temporal trend of streamflow predictability is more prominent at
larger basin scales. Further, it is apparent in the central-eastern
parts of the state, which could be attributed to factors such
as anthropogenic (tiling) and/or climatic changes. The explicit
attribution of temporal trends is beyond the scope of this study.

SUMMARY AND CONCLUSIONS

We explored streamflow predictability across scales using 64
stations in the state of Iowa and gained insights by distinguishing
between underlying stochastic and chaotic processes. The main
tools of our analysis were characteristics of complex networks
constructed from HVG. We estimated the characteristic
exponent, λ, from degree distributions of network nodes
and the global clustering coefficient, GC, across spatial basin
scales and in time. Our study answers some key questions
set forth at the beginning of this paper pertaining to
fundamentals of predictability of streamflow process from the
hydrologic standpoint.

• We showed that determining the predictability of streamflow
process lies in the distinction between chaotic and stochastic
processes. Our results based on HVG application to
streamflow at a daily time scale demonstrate that streamflow
dynamics is a correlated stochastic process. The presence of
correlated structure in streamflow dynamics indicates the
potential for strong predictability of streamflow.

• The normalization of streamflow shows strong effect on the
overall inference on predictability. We show that GC is more
sensitive than λ to the form of streamflow data. The values of
GC show a transition of dynamics regime in a large majority
of networks (stations and years). These findings show that
normalized streamflow time series is better suited for such
analyses considering the existence of seasonal effects inherent
in streamflow process.

• Our results in terms of λ and GC for normalized streamflow
across three time scales (e.g., 15min, 1 h, and 1 day) show
the increase in λ and GC as we transition to longer time
scales. The mean and median λ fall marginally below λrand,
showing that there is a tendency to transition to chaotic
dynamics from stochastic dynamics at the short time scale
and instantaneous sampling without temporal averaging. We

attribute this change in streamflow predictability across time
scales to changes in the dynamics of the process itself as we
average it over time.

• For the hydrologic community, it is of interest to understand
the predictability of streamflow process across spatial scales.
We show a clear spatial scale dependence of λ for streamflow
at the daily time scale. The larger the basin scales, the
longer the persistent behavior of streamflow and, hence, the
predictability of streamflow. Small basins show a chaotic
behavior when analyzed using instantaneous data, i.e., the raw
dynamics. These results have important implications for real-
time streamflow forecasting and water resources management.
They confirm the commonly known fact that flash floods
are more difficult to forecast than riverine flooding that
evolves slower in time. The chaotic signature in the streamflow
dynamics at small scales is likely a consequence of chaos in
the rainfall (see Rodriguez-Iturbe et al., 1989; Tsonis et al.,
1993). At large scales, the effect of rainfall is moderated by
the water transport in the river network that represents mostly
aggregations, i.e., a nearly linear process.

• Finally, the forecasting community is always interested in
assessing the temporal trend of streamflow predictability.
A simple linear regression-based evolution model fit
shows that 31 stations show a statistically significant
trend in terms of λ while 26 stations show statistically
a significant trend in terms of GC. The changes could
have arisen from factors such as climate change-induced
activities, changing rainfall patterns, and land-use patterns.
The explicit attribution of the trends requires further
research focusing solely on their impact to predictability of
streamflow process.

As rainfall is the key agent of flooding in Iowa, it should be
interesting to explore the effect of rainfall on predictability
of streamflow. At small scales, rainfall and streamflow are
connected more strongly than at large scales, where water
transport separates the two. Water transport is in the river
network where streamflow aggregation process plays an
important role in shaping streamflow fluctuations (e.g.,
Ayalew et al., 2014a,b, 2015). The connection of streamflow
predictability to other hydrologic processes is known to exist
(Wood et al., 2016; Arnal et al., 2017; Harrigan et al., 2018).
Streamflow predictability has been shown to rely upon the land
surface (e.g., catchment) memory, and the persistence in the
land surface initial hydrologic conditions (e.g., soil moisture,
groundwater, existing streamflow, and snowpack). Initial
hydrologic conditions are the major sources of predictability
of streamflow and are typically considered the starting point
for any long-range streamflow forecasting system (Wood
et al., 2016; Arnal et al., 2017). The achievable predictability
of streamflow has shown dependency with the season (the
transition between dry and wet seasons), the individual
catchment location and size (e.g., the streamflow in a large
basin with a slow response time and negligible precipitation
are easier to forecast, which our study also indicated), and
storage properties (e.g., Arnal et al., 2017; Harrigan et al.,
2018).
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We did not analyze the effects of streamflow measurement
errors as the USGS data are considered to be accurate within
5% (e.g., Ghimire and Krajewski, 2020). For our analysis, we
expect the measurement uncertainty to have minimal impact
on the overall inference. We performed a fundamental study
on the predictability of the streamflow process through HVG-
based complex networks. We believe our findings provide a
hydrologic context of interpreting the underlying dynamics of
the streamflow process. Our analysis captures a wide range of
spatial scales; hence, results are deemed adequate in representing
hydrologic processes across scales. We need to stress here that,
insofar as λ is a discriminant between a chaotic process and
a stochastic (correlated) process, and insofar as GC is found
to relate toλ, this study indirectly explores non-linearity in
streamflow, regardless of not finding evidence for it. Exploiting
this aspect of streamflow process and its impact on predictability,
and incorporating that in our hydrologic modeling strategy, is
open to further and future research.

Though we implemented our analysis to Iowa, we
think that the streamflow process will demonstrate similar
predictability across scales in regions with similar landscapes
and climatology, such as the Upper Mississippi and Ohio
River basins (e.g., Schilling et al., 2015) when derived
from HVG-based complex networks. Given that the hydro-
climatologic conditions, landscapes, and base flow conditions
are quite similar, the inference on streamflow dynamics
across spatio-temporal scales is expected to be similar.
Though we did not report it in this paper, one could
separately perform the effect of time resolution (time scale)
on standard chaotic maps, which could validate our results in a
standalone approach.
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