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Generative Adversarial Networks (GAN) are becoming an alternative to Multiple-point

Statistics (MPS) techniques to generate stochastic fields from training images. But a

difficulty for all the training image based techniques (including GAN and MPS) is to

generate 3D fields when only 2D training data sets are available. In this paper, we

introduce a novel approach called Dimension Augmenter GAN (DiAGAN) enabling GANs

to generate 3D fields from 2D examples. The method is simple to implement and is

based on the introduction of a random cut sampling step between the generator and

the discriminator of a standard GAN. Numerical experiments show that the proposed

approach provides an efficient solution to this long lasting problem.
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1. INTRODUCTION

For a wide range of problems in the hydrological sciences, there is a need to employ stochastic
models to generate spatial fields. These fields can represent for example climatic data, or physical
parameters of the atmosphere, ground or underground.

In that framework, multiple-points statistics and the concept of training image became very
popular in the last 10 years (Journel and Zhang, 2006; Hu and Chugunova, 2008; Mariethoz and
Caers, 2014; Linde et al., 2015). The key idea in these approaches is to use an exhaustively mapped
example (the training image) of the type of spatial patterns that are expected to occur for a given
variable and at a given scale. The training image is then used to train a spatial statistics non-
parametric model. The main advantage of that approach is that it allows to transfer information
about spatial patterns coming from external information such as an analog site or data set to
constrain the stochastic model. The range of applications is very broad and includes subsurface
hydrophysical parameters (Mariethoz et al., 2010; Barfod et al., 2018), rainfall simulation (Oriani
et al., 2014), bedrock topography below glaciers (Zuo et al., 2020), soil properties (Meerschman
et al., 2014), landforms attributes (Vannametee et al., 2014), etc.

More recently, Deep Learning algorithms and especially Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) have sparked a very strong interest thanks to their ability to
generate stochastic fields showing a high degree of similarity with the training data sets (Chan
and Elsheikh, 2017; Mosser et al., 2017a,b; Laloy et al., 2018). While this is very similar in principle
to Multiple Point Statistics (MPS), a key feature of GAN is that they can be trained to represent
a mapping from a low dimensional space to the manifold that supports the training data set. This
feature allows GAN to represent complex fields via a low dimension vector of continuous values.
Such a parametrization can then be used for example in the context of inverse modeling (Laloy
et al., 2018). Although they need a long training time, GAN also appear to be usually faster than
previous MPS methods at generating a set of realizations.
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When applied to underground hydrology, and especially for
uncertainty analysis or to solve inverse problems, a difficulty
with the MPS or GAN approaches is to obtain 3D training
images or examples. In practice, it is often very difficult, if
not impossible, to collect exhaustive and accurate data about
the three dimensional distribution of rock types (or physical
properties) at depth. To circumvent that problem, in many
applications, the 3D training images are derived from other
types of models such as object based or process based models
(de Marsily et al., 2005). But this is not always satisfying
because the object based models imply additional assumptions
and are not directly based on data when these are available
in 2D.

Indeed, many two-dimensional data sets are available. They
are much easier to collect than the 3D data sets using for
example: remote sensing techniques, direct observation on
outcrops, or microscopic data acquisition on thin sections of
rocks. Furthermore, geologists are used to draw conceptual cross
sections of typical structures. Therefore, simulating 3D stochastic
fields from 2D examples is of high practical importance, and
different techniques have been developed to solve that problem.
In the framework of MPS, the approaches are often based
on probability aggregation techniques or use some successive
2D simulation techniques (Okabe and Blunt, 2007; Comunian
et al., 2012; Kessler et al., 2013; Cordua et al., 2016; Chen
et al., 2018). In rock physics, the simulation of 3D porous
media from 2D sections has been addressed in numerous
articles (e.g., Adler et al., 1990; Yeong and Torquato, 1998;
Karsanina and Gerke, 2018). Simulated annealing is often used
in this context and allows to generate random fields which
reproduce specific morphological features such as correlation
functions or connectivity curves derived from the 2D data
sets (e.g., Gerke and Karsanina, 2015; Lemmens et al., 2019).
Deep Learning techniques have been used to accelerate MPS
simulations in this framework (Feng et al., 2018). The 3D
synthesis of textures from 2D examples has also been a main
research topic in the field of computer graphics as shown
in the review paper of Wei et al. (2009). These optimization
methods achieve good results in the unstructured or weakly
structured cases, but fail to capture long-range correlations.
Works around GANs aiming at inferring a fixed 3D structured
shape out of 2D projections has also been conducted (Gadelha
et al., 2017, 2019), demonstrating the ability of these algorithms
to infer an approximation of the three-dimensionnal shape
of a deterministic object (like a plane or chair) out of a set
of 2D views from a 3D scene. Here our problem is slightly
different since we aim at inferring the statistical distribution
of stochastic geological structures, which can have long range
correlations, from a limited set of cross-sections through
the domain.

In this paper, we introduce a novel approach based on GAN,
called Dimension Augmenter GAN (DiAGAN). It allows to
generate 3D fields from 2D training images, with sufficient
resemblance and variability for geostatistical applications. The
paper introduces first the general principle of GAN, then
it describes the DiAGAN approach and illustrates it with a
few examples.

2. METHODOLOGY

2.1. Generative Adversarial Networks
In the broadest sense, Machine Learning consists of designing
algorithms that automatically find complex mappings from a
given input data set X to a given target data set Y . In practice,
X is often infinite and intractable, and we only have access to
a finite set of training examples with their associated mapped
values D = {(x1, y1), ...(xN , yN)} ⊂ X × Y . Training algorithms
then aim at finding the parametrized function fω that minimizes
a loss function L defined over Y × Y :

fω = argmin
η

∑

x,y∈D

L(fη(x), y)

with the hope of also minimizing the loss over X , which would
lead to good performances on new unknown data.

In Deep Learning more specifically, the parameterized
function fω takes the form of a deep neural network: a
structure made of an alternation of parameterized linear
transformations called layers and non-linear component-wise
activation functions. Neural networks are designed to be
differentiable, so that their parameters can be optimized
(trained) through gradient descent algorithms. Deep neural
networks in their various forms had a deep impact in many
domains in computer science with state of the art performance,
including image recognition, natural language processing, data
classification or artificial intelligence.

Technically, as long as a correct loss function is defined, that
is to say a function that is differentiable and reaches an optimum
when the desired mapping is achieved, any transformation from
X to Y can be learned, provided enough training examples in
D are given. In the context of procedural image synthesis, one
difficulty is to define a loss function that assesses the quality of
the generated samples in relation to the training image. Classical
distances on the space of images, like the pixel-wise L2 norm
indeed fail to capture the notion of resemblance between two
images (note that in the following text we use the word image
both for standard 2D images and 3D grids made of voxels). One
has to define a loss function that takes into account multi-scale
features and must be robust for instance to the fact that certain
geological objects or patterns can be placed anywhere in the
image, as their shape and frequency needs to be similar with the
training image while their location is not fixed.

Generative Adversarial Networks (GAN) are a family of Deep
Learning algorithms designed to tackle this problem. One of
the key ideas here is that comparing two images can be done
using a neural network fω that takes an image x as an input, and
computes a numerical score fω(x) such that the higher the score,
the more confident the network is of being fed with an image
from the dataset it was trained with. Such a network fω, called
a critic, can be plugged on the output of an image generator gθ , in
order to give relevant numerical feedback.

More formally, the problem of image synthesis is the
following. Given the set of all possible images X of a certain size,
we have access to a finite subset of training images (TI) D. We
suppose that images from D were sampled from a probability
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distribution Pdata over X . From there, the goal is to be able to
sample any image following the same probability distribution
Pdata. Because neural networks are essentially mappings, this is
reduced in the case of GANs to finding a mapping from a latent
space with a known distribution Pz to the support space of Pdata,
under the constraint that Pθ = gθ (Pz) is as close as possible
from Pdata. Since Pdata and Pθ are intractable and can only be
sampled from, the generator gθ and the critic fω have to be trained
simultaneously in an adversarial fashion. Intuitively, one can see
this process as if on the one hand, the generator tries to fool the
critic by minimizing the distance between generated examples
and real training examples. On the other hand, the critic is trained
to separate training images from fake ones, thus maximizing the
distance between Pθ and Pdata.

In the original GAN algorithm, Goodfellow et al. (2014)
considered the Kullback-Leibler (KL) divergence as a distance
between probability distributions. We chose to follow more
recent works using the Wasserstein-1 distance, or Earth-mover
(EM) distance (Arjovsky et al., 2017; Gulrajani et al., 2017), in an
algorithm called the Wasserstein GAN (WGAN). This ultimately
lead us to a two player zero-sum game using the following
objective function (Gulrajani et al., 2017):

min
θ

max
ω

Ex∼Pdata
[fω(x)]− Ez∼Pz [fω(gθ (z))]

︸ ︷︷ ︸

EM distance

− λ Ex̂∼Px̂
[(||∇x̂fω(x̂)||2 − 1)2]

︸ ︷︷ ︸

gradient penalty term

(1)

Equation (1) is directly used as a loss function during the
training phase of aWGAN, during which theoretical expectations
of probability distributions are replaced by statistical means
over sampled examples. From the generator’s point of view, the
parameters are optimized to minimize −Ez∼Pz [fω(gθ (z))], while
the critic’s parameters are optimized with relation to the whole
expression. In other words, gθ is trained to obtain the greatest
possible score from the critic, whereas the critic optimizes both
terms of Equation (1). The first term boils down to maximizing
the EM distance between TIs, which are associated to high
values of score, and generated images, associated to low values.
However, this expression of the EM distance term only holds for
fω being a Lipschitz function. The second term, called gradient
penalty, proposed by Gulrajani et al. (2017), is a way to enforce
this constraint on fω. In Equation (1), Px̂ is a mix of Pθ and Pdata.
More specifically, x̂ ∼ Px̂ means that the variable x̂ was sampled
from the distribution εPdata + (1− ε)Pθ with ε being uniformly
chosen in [0;1].

For the noise distribution Pz , we consider vectors of R
d

where each coordinate is sampled independently from a standard
normal distribution. Given the parameters of the generator,
such a latent vector contains the whole information about
the generated image, thus offering a compact representation.
For generating images of size 64x64x64, we determined
experimentally that d=256 was sufficient to represent the
whole distribution.

2.2. From 2D to 3D
Going from 2D training examples to 3D realizations with a GAN
is not straightforward, as the dimensionality of generated and
training images should match in order for them to be fed to
the same critic network. Most GAN algorithms directly feed
the generated image inside the critic, but we propose to add
an intermediate step to transform generated images, in order
for them to match the TIs. Our training data consists of a
set of triplets (Cx,Cy,Cz), where Ci is a two-dimensional image
representing a typical cut perpendicular to axis i. The generator
aims at generating 3D images which cuts along axis i resembles
Ci. Note that the cuts are provided as independent images. They
are not crossing each other at specific locations and they may not
be completely compatible as will discuss in one of the examples.

To make the critic compare cuts, we incorporated a random
cut sampler between the generator and the critic (Figure 1).
This sampler extracts from a 3D generated example a triple
of cuts (C′

x,C
′
y,C

′
z), with C′

i being chosen uniformly among all
possible cuts along the corresponding axis. The discriminator
then proceeds in comparing the patterns in the two triplets of
cuts. The comparison is done for each direction but it does
not account for the compatibility of the patterns along the
intersection of the cuts since this information is not available in
the training data. Depending on the type of symmetry and on
available data, a similar technique can be used to account for one
single set of cuts when the 3D patterns display similar structures
along the x, y, and z directions, or instead a set of cuts along two
axis when examples are available only along these two directions.

The sampler select the positions of the cuts randomly in a
uniform distribution along each axis of the 3D domain, with
only one cut per dimension. This mean that most of a generated
image in the 3D domain will not be fed into the critic. However,
since this sampling is random and thanks to the continuity of
the GAN, this strategy proved to be rather efficient as we will
illustrate with a few examples. Other approaches that may involve
additional computations can be envisioned, this will be discussed
in section 4.

In summary, the whole approach is stochastic and assumes
that the 2D images that have been given in input can represent
a cut anywhere in the domain. DiAGAN aims at reproducing
these patterns in a stochastic manner, and assuming a spatial
stationarity of the statistical process. In particular, it will not
check precisely and in a deterministic manner the compatibility
of the cuts at their intersection.

2.3. Neural Network Architecture
Following architectures proposed by Radford et al. (2015),
we use convolutional neural networks for both our generator
and critic. Throughout our experiments, we determined that
precise architecture tuning was not necessary to get satisfactory
results, as the WGAN is quite robust to those kind of
hyperparameters. The main principles we used was to alternate
convolutionnal layers, eventually normalization and upscaling,
and non-linear activation.

Training images are normalized so that their values
lay in [0;1]. Latent vectors z are sampled from a normal
distribution of zero mean and standard deviation of 0.5. z
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FIGURE 1 | The overall organization of DiAGAN.

is then reshaped into a 3-dimensional tensor that is fed into
the convolutions. One can use regular convolution coupled
with an upscaling function (like a trilinear interpolation),
or a transposed convolution with a stride parameter
greater than 1. The number of convolutional feature maps
is decreasing with the depth, being divided by two at
each layer.

We use the ReLU activation function (x 7→ max(0, x)) for
every internal layers, and a sigmoid x 7→ 1/(1+ exp(−x)) for the
final activation, in order to project the values back in the interval
[0;1]. Alternatively, one could consider a normalization in [-1;1],
Leaky ReLU function of parameter α=0.2 (x 7→ ReLU(x) −
αReLU(−x)), and an hyberbolic tangent as the final activation.

The discriminator is composed of convolutional layers
with 2D kernels. After the cut sampling step, we are left
with 3 images of size NxN stacked into a 1xNx3N tensor,
or a 3xNxN. 2D convolutions are applied to this tensor,
alternating with max pooling operations. This halves the
size of the tensor while the number of feature maps in
the convolution is doubled. Alternatively again, one could
replace the poolings by strides in the convolution. Activation
functions are also ReLU of Leaky ReLU. At the end, a
global max pooling operation is applied, to retrieve one
numerical value for each feature map. The obtained vector
of features is aggregated into a single numerical value by a
dense layer.

We use instance normalization layers (Ulyanov et al., 2016)
or batch normalization (Ioffe and Szegedy, 2015) after each
convolution to guarantee the stability of the computation. The
two methods performed equally well. Those normalization layers
are present in the generator before each activation layers,
but not in the critic, as they mess with the gradient penalty
term (Gulrajani et al., 2017).

Table 1 summarizes the architecture of the convolutional
networks that we use for DiAGAN. But note that the overall
method is pretty robust, we tested several other architectures
that worked also reasonably well. We expect that many other
architectures could give good results.

Both generator and discriminator were trained using the
Adam optimizer (Kingma and Ba, 2014) with a learning rate of
10−3, β1 = 0.5, and β2 = 0.9.

TABLE 1 | Basic architecture used for DiAGAN with images of size 64 × 64 × 64

and a normalization of the TIs in [0;1].

Generator Critic

input = Noise (256,) input = Cuts (3,64,64)

Linear (256 → 4096) Conv2D (3 → 8), kernel (3,3)

Reshape 4096 → (1, 16, 16, 16) ReLU

Conv3D (1 → 128), kernel (3,3,3) Conv2D (8 → 16), kernel (3,3)

InstanceNorm, ReLU ReLU, MaxPooling (2,2)

Upscale x2 Conv2D (16 → 32), kernel (3,3)

Conv3D (128 → 64), kernel (3,3,3) ReLU, MaxPooling (2,2)

InstanceNorm, ReLU Conv2D (32 → 64), kernel (3,3)

Upscale x2 ReLU, MaxPooling (2,2)

Conv3D (64 → 32), kernel (3,3,3) Conv2D (3 → 8), kernel (3,3)

InstanceNorm, ReLU ReLU, GlobalMaxPooling

Conv3D (32 → 1), kernel (3,3,3) Linear (64 → 1)

Sigmoid

Output = (64,64,64) Output = (1,)

2.4. Quantitative Analysis of the Results
To assess the quality of the results, and compare the simulation
with the reference when it is possible, we compute the indicator
variograms and connectivity functions, as well as the Frechet
Inception Distance (FID) between generated and real examples.

The indicator variogram γ (h) is defined as follows.

γ (h) =
1

2
E

[
(

I(x)− I(x+ h)
)2

]

, (2)

with I(x) being the indicator function of the facies 1. Since the
cases that we investigate in this paper are binary, the indicator
variogram is identical for facies 1 and 0.

The connectivity functions τi(h) describes the probability that
two pixels located at a distance h belong to the same connected
component, knowing that the first pixel is within the facies i.

τi(h) = P
[

x ⇐⇒ x+ h|I(x) = i
]

(3)
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τi(h) is computed for facies 0 and 1 separately. The connectivity
functions are known to be different when computed on 3D
or 2D fields. Indeed, the probability of having a connection
between two points is generally higher in 3D for the same type
of statistical configurations because the number of possible paths
between the two points is larger in 3D. In the following of the
paper, we compute the connectivity functions in 3D when we
have a 3D reference. When the reference contained only 2D
sections, we compare the connectivity functions computed only
on 2D sections.

For the indicator variogram and the connectivity functions,
we will compare the curves computed on individual realizations
belonging either to the training set and to the set of simulations.
The simulations are stochastic and therefore there will be some
variability between these curves. To ease the comparison, we plot
the mean values (as a function of distance) for the training sets
and simulated sets. Because the number of simulations is limited
(as well as the number of training examples), these mean curves
are subject to estimation errors (standard error on the mean).
Similarly to visualize the range of variations of the curves, we use
the standard deviation of the curves computed on the reference
set and superpose individual curves for the simulations. The
standard deviation estimated on the reference is subject to an
approximation error as well. These errors are not displayed on
the graphs for the sake of visibility, but they have been studied
for the first three cases.

The Frechet Inception Distance (FID), introduced by Heusel
et al. (2017), is a heuristic measure of the distance between the
distributions of generated sample and training images. Training
image samples x and generated samples x̂ are fed into an
InceptionV3 neural network (Salimans et al., 2016) trained for a
classification task on the ImageNet dataset. This network outputs
feature vectors y and ŷ. Denoting by (m, C) [resp. (m̂, Ĉ)] the
mean vector and covariance matrix over the samples y (resp. ŷ),
the FID score is then defined as:

FID = ||m− m̂||22 + Tr(C + Ĉ − 2(CĈ)1/2) (4)

In DiAGAN, the FID gives an insight on the convergence and the
relative quality of generated samples.

The variograms and connectivity functions, γ (h), τ (h) and the
FID are computed and plotted along the three main directions X,
Y , and Z.

3. RESULTS

DiAGAN is implemented in both Pytorch and Tensorflow, two
of the most popular Deep Learning librairies in Python. Both
implementation lead to similar results.

3.1. Data Sets
To illustrate the proposed methodology, we consider six
examples. The training images are shown in Figure 2. In all those
examples, we consider only binary cases even if the method can
be applied to discrete problems with more lithologies or even
continuous problems. Outputs of our GANs, that are intrinsically

continuous are thresholded to obtain binary data. Voxels with
positive values are set to facies 1, while voxels 0 stay the same.
Note that for most of the data sets the grid used for the simulation
domain is smaller than the size of the training data sets. Therefore
the size of the objects may look different when comparing a
simulation with the training data visually.

In general, a GAN requires a large training data set. However,
in most applications in geosciences only a few training images are
available or can be drawn manually by a geologist. Insufficient
variability in the training data set prevents a GAN to train
correctly. To tackle this problem, we use here large input
images that were sub-sampled to generate a large number of
smaller images. This fits our context well, since the challenge
we seek to resolve is to synthesize plausible volume data from
2D inputs.

The datasets used in this paper are of two types.
On the one hand, three-dimensionnal data sets are

represented in Figures 2A–D. They are used to test the
method and allow to make a visual and quantitative comparison
between the known 3D structure and the simulations obtained
by our procedure using only 2D cuts through these volumes as
training data.

• Figure 2A is a procedurally generated set of packed spheres.
The grid has a size of 300× 300× 300 voxels. The spheres have
diameters taken from a uniform distribution between 8 and 12
pixels and do not intersect each other. The global proportion
of voxels occupied by the spheres is around 20%. This synthetic
data set constitutes a benchmark even if it is far from a real-life
geological application.

• Figure 2B is taken from the literature (Mariethoz and Kelly,
2011), it shows a stack of folded geological layers that were
generated using an MPS method based on invariant distances
and a rotation field1. The grid has a size of 126 × 126 ×

120 voxels.
• Figure 2C is a rendering of a CT scan of the sandpack F42A

obtained from Imperial College, London2. The grid has a size
of 300× 300× 300 voxels.

• Finally, Figure 2D represents a geological reservoir at a
kilometer scale that contains a set of fluvial channels. The
image has been generated for this paper using the Tetris object
based algorithm implemented in Ar2GEMS (Boucher et al.,
2010). The grid has a size of 126× 126× 64 voxels.

On the other hand, training images depicted in Figures 2E,F are
purely two dimensional. Assessing the quality of the output for
these examples is more difficult because the 3D ground truth
is not available and may not even exist. However, these cases
are important to demonstrates the generalization capabilities
of DiAGAN.

• The training image displayed in Figure 2E1 was taken from
Laloy et al. (2018). It has a size of 1,000 × 1,000 pixels. This
image was inspired by the training image of 2D channels

1http://trainingimages.org/training-images-library.html
2https://www.imperial.ac.uk/earth-science/research/research-groups/perm/

research/pore-scale-modelling/micro-ct-images-and-networks/sand-pack-f42a/
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FIGURE 2 | The six training data sets used in this study. Training images (A–D) are 3D examples fed as cuts, while TI (E) and (F) are cuts with no 3D ground truth.

Details about the dimensions of the data sets and the data sources are given in the text. In all these data sets, the facies 0 is represented either in black or

transparent, the facies 1 is represented either in gray for the 3D blocks and in white for the 2D images.

created and used by Strebelle (2002) and extended by Laloy
et al. (2018) to improve the diversity of the data set during the
training phase. Since the original image has been heavily used
as a benchmark in the MPS literature, we will refer to it as the
Strebellian channels. It represents a map view of channel and
matrix oriented along the (X,Y) and (X,Z) planes. The image
displayed in Figure 2E2 was created manually for this paper
and used to represent a vertical cross section along the (Y ,Z)
plane displaying roughly circular objects sections through the
channels. It has a size of 600 × 746 pixels. With these two
training images as input data, the aim is to simulate 3D
channels or conduits propagating along the X direction. We
took great care to ensurematching scales along the two images.

• Finally, Figures 2F1,F2 correspond to two perpendicular
vertical sections (of about 30 × 30m) that have been mapped
by Huysmans and Dassargues (2011) through the Brussels
sand deposit. Both images have a size of 600 × 600 pixels.
These data were used previously in Comunian et al. (2012).
Image (f1) is a cut perpendicular to the X axis and (f2) is
perpendicular to the Y axis. The horizontal cut is not available
in that case. Notice how the two images differ: while layers
perpendicular to the X axis are roughly horizontal and loosely
connected, the one perpendicular to the Y axis presents some
cross-bedding.

3.2. Realizations From 3D Datasets
DiAGAN has been first applied to generate 3D volumes of
64 × 64 × 64 voxels from sections taken inside the 3D
examples. In real practical cases, these full 3D data sets would

not be available. The aim here is to test the methodology
in a situation where the 3D structure is known and can
be used as a reference. While only 2D data taken from
the 3D structure are used for training, the analysis of the
resulting 3D simulation is compared to the original 3D data
sets allowing to check if the simulation was correct. In
particular, variograms and connectivity functions are computed
in 3D.

The training times for these cases take from a few hours to a
whole day on a rather old Tesla K40C GPU with 12 Gb of RAM.
Once done, the generator is able to produce a simulation in less
than a second.

Figure 3 a shows the evolution of the FID score during the
training phase for the simulation of the 3D random packing of
spheres. The FID score is dropping rapidly in the initial phase
of training. This evolution is demonstrating the convergence of
the method.

Figures 4, 5 show that the simulations of the spheres and sand
grains display the correct order of magnitudes for the size of
the objects as compared to the 3D references. The variograms
and connectivity functions are reasonably well-reproduced. The
trends are correct even if some minor differences are visible
for example between the mean curves for the variograms. The
computation of the standard error on the mean values for
these curves show that the difference is not due to statistical
variations but to slight differences between the set of simulations
generated with DiAGAN and the set of training data resulting
from some model errors. The same remark holds for the
connectivity curves.
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FIGURE 3 | Evolution of the Frechet Inception Distance during training for two datasets. The FID score in approximated using 100 samples for both the TI and the

generated images. A random cut along axes X, Y, and Z was taken from each samples to be fed inside the InceptionV3 model.

FIGURE 4 | Results of DiAGAN on the ball dataset (a). Note for the visual comparison that the simulated domain has a size of 64x64x64 voxels while the training data

set covers a larger area. The three upper curves present the variogram of 100 DiAGAN realizations (green) and their mean (red) along the three axis. The black curve is

the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or minus the observed standard deviation. Middle and bottom

curves present the connectivity curve of the two facies of the image along the three axes, with the same color conventions.

Figure 5 and the statistical analysis of the standard error for
the mean and for the standard deviation shows that the f42a
case is well-simulated with DiAGAN. The mean curves for the

variograms and the connectivity functions and the variability
around the mean are well-reproduced for that case (differences
within standard errors).
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FIGURE 5 | Results of DiAGAN on the sand grain dataset (c). Note for the visual comparison that the simulated domain has a size of 64 × 64 × 64 voxels while the

training data set covers a larger area of 300 × 300 × 300 voxels. The three upper curves present the variogram of 100 DiAGAN realizations (green) and their mean (red)

along the three axis. The black curve is the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or minus the observed

standard deviation. Middle and bottom curves present the connectivity curve of the two facies of the image along the three axes, with the same color conventions.

The visual inspection of an ensemble of cross sections
(Figure 6) through the simulations allows to compare the
training image and the simulations with DiAGAN. We observe
that the size of the balls or sand grains are similar. The variability
of the shapes and the position of the objects appear to be well-
reproduced as well. A further comparison with results from
a standard 3D to 3D GAN showed that for these cases that
are relatively simple and isotropic, there were no significant
differences in the quality of the results.

The two other 3D examples that are considered here are more
difficult because they consider large objects traversing the whole
domain. The data sets contain less repetitions and identifying the
underlying statistical distribution from these images is therefore
more difficult than for the two previous cases. In addition, for
the folded layers dataset (Figure 2B) the orientation of the layers
varies inside the training image and therefore there is a non-
stationarity in the training data. The results from DiAGAN for
this example (Figure 7) show less variability in the orientations
or in the variograms, but a correct visual reconstruction of
the layers. Continuous fold layers that were solid in the TI
present holes or imperfections in the generated examples. We
therefore observe a reduction of the sill of the variogram and a
connectivity that remains high instead of fluctuating for facies
0, while often dropping faster than in the TI for facies 1. The

differences between the statistical estimates of the mean and
standard deviations are obviously important indicating that the
DiAGAN model in this case does not capture all the structure of
the examples.

Finally, for the channelized reservoir case (Figure 2D),
DiAGAN simulated the channels from the 2D sections pretty
well (Figure 8), although the output is noisier than the
reference. The structure and form of the TI is reproduced with
satisfactory accuracy as well as the directional variograms and
connectivity functions.

To conclude that part, these 4 examples show that DiAGAN
can generate 3D realizations that are close to the 3D references
from 2D examples. There are some differences but one has
to remember that the simulation of 3D structures from only
2D cross-sections is a problem that is more difficult than the
generation of 3D simulations from 3D examples because only
a part of the information is provided to the algorithm. It is
therefore not surprising that there is a quality loss. If 3D training
data is available, a more traditional 3D to 3DGAN should be used
to obtain the best quality.

3.3. Realizations From 2D Datasets
We are now considering some examples corresponding to the
real potential application of DiAGAN. Only 2D sections are
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FIGURE 6 | Visual comparison of cuts taken from the TI and DiAGAN

generated samples, for the balls dataset (a) and the sand grains dataset (c).

Cuts are tiled together for visualization.

available and the 3D ground truth is absent. The evaluation of
DiAGAN’s output in these cases is more challenging. As written
above, this situation is more difficult than the case in which a set
of 3D examples are provided. The algorithm has to compensate
the lack of information about the 3D geometries by assuming
(implicitly in the case of GAN) some type of regularities or
symmetries. This problemwas discussed previously in Comunian
et al. (2012) for example. It is therefore expected that 3D
simulations based only on 2D examples should be of lower quality
than 3D simulations based on 3D examples when the geometries
of the geological objects are complex. For a rather simple case
presenting a high degree of symmetry (like the balls presented
in the previous section), the loss of information is moderate and
therefore it is easier to reconstruct the 3D objects.

If we consider first the case based on the 2D Strebellian
channels taken as a training image in the (X,Y) and (X,Z) planes
(Figure 2E1), DiAGAN correctly simulates a three dimensional
network of conduits having a circular section in the (Y ,Z) plane.
The vertical and horizontal connections between the conduits
that are visible in Figure 9 are due to the fact that we use the same
training image along the (X,Y) and (X,Z) planes. The sinuosity
of the channels in the horizontal plane must also be reproduced
in the vertical plane and DiAGAN finds a reasonable solution by
creating the network of conduits.

In Figure 10, we present a set of cuts taken from generated
samples. The cuts along the (X,Y) and (X,Z) planes resembles
the channels from the TI, but they may be broken when a channel
moves out of the cut to ensure the 3D continuity that we see
in Figure 9. The perpendicular cuts along the (Y ,Z) plane are

much more isotropic but they depart from the target training
imagemade of disks (Figure 2E2).We think that this discrepancy
is due to the fact that the cuts in different directions are not
perfectly compatible. Those images have been drawn separately,
and despite the effort that we made to respect similar sizes for
the object in the common direction, nothing ensures that a
3D geometry with these sections can really exist. DiAGAN is
however capable of obtaining a compromise and a reasonable
solution in this situation. Finally, we note that the convergence
of the FID criteria for this problem is slower and more difficult to
reach (see Figure 3) because of the issue described above, i.e., the
incompatibility between the cuts along the X and Y axis.

For the Brussels sands deposit, the situation is easier since
the training images have been acquired from an existing
3D structure. In this case, DiAGAN generates some roughly
horizontal layers with cross beddings but only oriented along the
Y direction as it was indicated in the training data set (Figure 11).
The simulations are slightly noisy but the cuts sampled in the
3D simulations (Figure 12) show very well that the cross bedding
occurs only in the Y axis plane. The quality of the results is pretty
similar to what was obtained earlier with MPS techniques (see
Figure 18 in Comunian et al., 2012).

4. DISCUSSION AND CONCLUSION

Generative adversarial networks represent a new and really
different method to generate random fields having a predefined
spatial structure (prior distribution). This has already been
shown and experimented by several authors (Laloy et al., 2017,
2018; Mosser et al., 2017a).

The main novel idea presented in this paper is to introduce a
cut sampler in the GAN process between the generator and the
discriminator. Our numerical experiments show that this very
simple idea makes it possible to reconstruct 3D parameter fields
from a series of 2D examples. This is the main contribution of
the paper since this was impossible with the methods cited above.
We have tested the idea on a series of simple situations and
the results are of comparable quality with those obtained with
an MPS method previously published (Comunian et al., 2012).
Our experiments demonstrate the feasibility of the approach.
It is also to notice that although all experiments generated
64x64x64 images, which is a good trade-off between complexity
andmemory usage, an algorithm like DiAGAN is able to produce
images of any size without retraining, by simply providing a
latent noise vector of greater or smaller dimension. This is the
main interest of fully convolutional architectures for both the
generator and the discriminator (see Table 1). Note that if 3D
examples are available, the traditional GANs are expected to
generate better simulations because they will account for the
complete 3D information. The idea is not to replace existingGAN
implementations with DiAGAN. The quality of the simulations
obtained for example by Laloy et al. (2018) or Zhang et al. (2019)
are excellent. The idea here is to show how these techniques may
be slightly modified to generate 3D realizations when only 2D
examples are available as it often occurs in practice.
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FIGURE 7 | Results of DiAGAN on the categorical fold dataset (b). The three upper curves present the variogram of 100 DiAGAN realizations (green) and their mean

(red) along the three axis. The black curve is the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or minus the

observed standard deviation. Middle and bottom curves present the connectivity curve of the two facies of the image along the three axes, with the same color

conventions.

The DiAGAN method could be further improved or
extended. One question that was not explored in this
work is the effect of using one single random cut per
direction or more cuts. The argument to use one cut only
per direction was to keep the algorithm as efficient as
possible. We have seen in the numerical experiments that
the random cut allowed to obtain results of rather good
quality. More cuts may improve the quality but would imply
more computations and would slow down the method.
Further research could investigate if this is worth doing
or not.

Another point that could be improved is the fact that the
input of the critic is stacked. It forces the cuts to have the
same size, and thus to have cubic realizations. In order to have
realizations of any shape, it would be pretty straightforward
to have different critics for the different orientations. This
could also be relevant from a quality point of view, since
these parts will be independently trained to identify different
patterns. It is therefore possible that this approach would
improve the quality of non-symmetrical examples (for example
the channels).

On top of this, while DiAGAN demonstrated satisfactory
results on various architectures, it is very likely that the algorithm
could benefit from recent and future state of the art techniques in

Deep Learning, like more efficient neural network architectures.
This could improve both the quality of the outputs and the
training time.

Finally, at the moment DiAGAN is not conditional.
For geoscience applications, this is a requirement. Some
methods have already been developed to condition the GANs
to hard data (Zhang et al., 2019). In the future similar
techniques should also be implemented in DiAGAN to make
it applicable for real applications. What is less clear at
the moment is how non-stationarities in patterns may be
controlled. In traditional MPS, we can force some trends
and describe rather precisely how the probabilities of finding
different facies may vary in space as a function of some
geological knowledge. This has still to be investigated for
the GANs.

As compared to the MPS approach, the main advantage of
DiAGAN is the possibility to use the latent input space of
Gaussian vectors. Indeed, generating a sample using DiAGAN
consists in feeding the generator with a latent vector and
applying all the layers. This is very efficiently done on modern
computers and GPUs. One can expect a speed-up of several
order of magnitude compared to more traditional multiple-
point statistics. The fact that the latent space is continuous,
differentiable, and that it is fast to generate realizationsmakes this
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FIGURE 8 | Results of DiAGAN on the procedurally generated channel dataset (d). The three upper curves present the variogram of 100 DiAGAN realizations (green)

and their mean (red) along the three axis. The black curve is the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or

minus the observed standard deviation. Middle and bottom curves present the connectivity curve of the two facies of the image along the three axes, with the same

color conventions.

FIGURE 9 | Results of DiAGAN for the 2D channel dataset (Training Images E1 and E2 in Figure 2). Images were obtained by applying a density filter on the original

voxel data.

FIGURE 10 | Sample of cuts taken from DiAGAN for the 2D channel dataset (Training Images E1 and E2 in Figure 2).

approach potentially very efficient for inverse problem solving.
This path has been explored recently for example by Mosser
et al. (2019), Laloy et al. (2019) or Liu et al. (2019). However,

one remaining issue is that the inverse problem will involve the
computation of a forward model using the fields generated with
the GANs, and if these fields are discrete (like those studied
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FIGURE 11 | Results of DiAGAN on the Brussel’s sand deposit dataset (Training Images F1 and F2 in Figure 2).

FIGURE 12 | Sample of cuts taken from DiAGAN for Brussel’s sand deposit TI (Training Images F1 and F2 in Figure 2).

in this paper), it is possible that the response of the forward
model may become discontinuous and not differentiable, posing
an issue in the inverse problem formulation. This has still to
be explored to better identify the domains of application of
these techniques.

Back to the computing time aspects, one has also to
remember that training time is still long and can last up
to several days of computation. This means that for the
moment, if a reasonable number of simulations are needed
(several hundreds for example), MPS is still faster. Of course,
it depends on the dimension of the problem, the complexity
of the patterns to simulate, and the size of the training
data set.

As of today, Generative Adversarial Networks represent
a very interesting alternative to classical geostatistics clearly
worth exploring. Their strength are different from the
current state of the art methods, which make them a good
complementary method.
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