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Maintaining the quality and quantity of water resources in light of complex changes in

climate, human land use, and ecosystem composition requires detailed understanding

of ecohydrologic function within catchments, yet monitoring relevant upstream

characteristics can be challenging. In this study, we investigate how variability in riverine

microbial communities can be used to monitor the climate, geomorphology, land-cover,

and human development of watersheds. We collected streamwater DNA fragments and

used 16S rRNA sequencing to profile microbiomes from headwaters to outlets of the

Willamette and Deschutes basins, two large watersheds prototypical of the U.S. Pacific

Northwest region. In the temperate, north-south oriented Willamette basin, microbial

community composition correlated most strongly with geomorphic characteristics (mean

Mantel test statistic r = 0.19). Percentage of forest and shrublands (r = 0.34) and

latitude (r = 0.41) were among the strongest correlates with microbial community

composition. In the arid Deschutes basin, however, climatic characteristics were themost

strongly correlated to microbial community composition (e.g., r = 0.11). In headwater

sub-catchments of both watersheds, microbial community assemblages correlated with

catchment-scale climate, geomorphology, and land-cover (r = 0.46, 0.38, and 0.28,

respectively), but these relationships were weaker downstream. Development-related

characteristics were not correlated with microbial community composition in either

watershed or in small or large sub-catchments. Our results build on previous work

relating streamwater microbiomes to hydrologic regime and demonstrate that microbial

DNA in headwater streams additionally reflects the structural configuration of landscapes

as well as other natural and anthropogenic processes upstream. Our results offer

an encouraging indication that streamwater microbiomes not only carry information

about microbial ecology, but also can be useful tools for monitoring multiple upstream

watershed characteristics.

Keywords: catchment hydrology, ungauged basins, watershed monitoring, 16S rRNA, microbial diversity, Pacific
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INTRODUCTION

Water quality and availability depends on the integrity of
water resource systems, which are sensitive to changes in
climate (Jiménez Cisneros et al., 2014), human land use (Foley
et al., 2005), and ecosystem composition. Climate change is
projected to increase drought frequency and reduce surface
and groundwater availability in arid regions, and to negatively
impact freshwater ecosystems and reduce surface water quality
(Delpla et al., 2009; Jiménez Cisneros et al., 2014). It is well-
understood that human development and land-use change results
in increased surface runoff, eventually leading to larger flooding
events and reduced groundwater recharge (e.g., Carter, 1961;
Moscrip and Montgomery, 1997; Gregory et al., 2006; Wheater
and Evans, 2009). Interactions among these factors exacerbate
impacts to water resources (e.g., Feddema et al., 2005; IPCC,
2019), and better tools are needed to diagnose these effects on
catchment ecohydrology at local scales.

In watershed catchments lacking sufficient hydrologic data,
Seibert and McDonnell (2015) found that key pieces of data
collected on short field campaigns (i.e., “soft data”) can prove
useful for understanding catchment function. Leveraging a
source of information-rich soft data could thus prove especially
powerful in characterizing ungauged basins. DNA is gaining
traction as a valuable source of data across research disciplines.
One of the appeals of genetic data is the vast quantity of
information (thousands of features or more) that can be
extracted with relative ease from a single sample. In addition
to falling costs, improved methods of DNA extraction and
sequencing, resulting in higher-quality data (Li et al., 2015),
have increased the appeal of genetic data for a wider range
of applications, including hydrological studies. For instance,
Mächler et al. (2019) used environmental DNA (eDNA) released
from macro organisms to characterize hydrologic flow paths
in an Alpine catchment in Switzerland. Analysis of aquatic
DNA in boreal forests has been indicative of key gradients
in catchment condition similar to morphologically derived
stream macroinvertebrate metrics (Emilson et al., 2017), while
similar DNA information has also been used to map landscape-
level terrestrial biodiversity (Sales et al., 2020). Sugiyama
et al. (2018) found that microbial DNA analysis, coupled with
general information about optimal growth conditions of certain
microbial groups, revealed information about groundwater flow
paths that was not captured with chemical analyses. Microbial
communities, or “microbiomes,” with their high biodiversity, are
hypothesized to hold new clues that traditional hydrologic tracers
have not been able to elucidate.

Streamwater microbiomes respond to conditions that are also
likely related to biogeochemical cycling and streamflow including
nutrient concentrations, pH, and temperature (Fortunato et al.,
2013; Read et al., 2015; Savio et al., 2015; Doherty et al., 2017).
Given that streamwater microbiomes are composed primarily
of microbes that originate in upslope soil and groundwater
environments (Crump et al., 2007, 2012; Sorensen et al.,
2013; but see Hermans et al., 2019), it follows that these
microbiomes could be rich sources of data about hydrologic
function and upslope catchment conditions. Beyond potential

source variation, the characteristics of how genetic material
is transported, retained, and resuspended has been examined
for environmental DNA fragments (Jerde et al., 2016; Shogren
et al., 2017) as well as for microorganisms themselves (Droppo
et al., 2009; Newby et al., 2009), wherein stream water microbial
composition is influenced by both abiotic factors (e.g., flow
rate, mixing with sediment waters) and biotic factors such
as predation, intrinsic cell mobility, and reproduction. Read
et al. (2015) found that stream microbiomes were related to
upstream hydrology, and Good et al. (2018) employed microbial
community composition to characterize flow regimes in a set
of large Arctic rivers. Savio et al. (2015) found that stream
microbiomes were more strongly correlated with macroscale
properties related to catchment hydrology, such as stream
length and catchment size, than with water temperature or
pH along the length of the Danube River. It is unclear,
however, whether and to what extent othermacroscale catchment
factors may shape the microbial community. Our overarching
objective is to employ stream microbiomes to gain insight about
watershed conditions and catchment function and how they
shape downstream water quality and availability. The first step
toward this goal is to understand how watersheds may influence
streamwatermicrobial community composition. In this study, we
explored how streamwater microbial community composition,
characterized with aquatic DNA fragments, correlates with
upstream catchment properties. 16S rRNA gene fragments have
been used in microbiology since the 1980s to classify bacterial
taxonomy (Kolbert and Persing, 1999), and the 16S rRNA
gene is the most widely used phylogenetic marker gene for
assessing prokaryotic microbiomes (Goodrich et al., 2014). We
isolated and sequenced 16S rRNA collected from streamwater
and examined how differences between microbial (bacteria
and archaea) communities among catchments were related to
differences in catchment characteristics across major watersheds
and across spatial scales.

MATERIALS AND METHODS

Watershed and Sub-catchment
Characteristics
The Willamette and Deschutes basins, two similarly sized large
(Willamette = 29,000 km2; Deschutes = 27,700 km2), adjacent
watersheds separated by the Cascade Mountains in Oregon,
USA were surveyed for variability in streamwater microbial
communities. Mean elevation is 560m in the Willamette Basin
and 1,230m in the Deschutes Basin. The Willamette Basin, on
the windward side of the Cascades, receives a mean annual
precipitation of 1,640mm, but the Deschutes Basin on the
leeward side receives a mean of just 530mm annually. Mean
annual discharge of the Willamette River (933 m3/s) is thus
much greater than theDeschutes River (165m3/s; U.S. Geological
Survey, 2016a) at their respective outlets draining into the
Columbia River at Oregon’s northern border. Temperatures are
comparable between the basins (mean annual minimum and
maximum temperatures are 4 and 15◦C in the Willamette Basin
and 0 and 14◦C in the Deschutes Basin, respectively). Both basins
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exhibit a range of land use, including minimally disturbed upper
elevation headwater streams, crop and livestock agriculture,
and highly developed urban areas; however the Willamette
Basin is more developed overall, with greater percentages
of impervious area and low-, medium-, and high-intensity
development (Supplementary Table 1).

Sub-catchment characteristics for areas upstream of DNA
sample collection points throughout the Willamette and
Deschutes watersheds were obtained using the StreamStats
tool developed by the United States Geological Survey (Ries
et al., 2008; U.S. Geological Survey, 2016b). StreamStats is
a national map-based web application that allows users to
obtain basin boundaries, basin characteristics, and streamflow
statistic estimates for gauged or ungauged user-specified sites.
StreamStats employs a wide array of digital geospatial raster
data layers which are processed through an online geographic
information system to define drainage basin characteristics for
any location (although available information varies by state). A
script was developed using the Python programming language
(www.python.org) to obtain all available StreamStats basin
characteristics for each of our 61 sampling sites distributed
throughout the two watersheds (URycki and Good, 2020a). The
program queries the StreamStats Service API for a list of available
basin characteristics for a specified state (OR) and the values
for those characteristics given the latitude and longitude for
each sample location retrieved from an input spreadsheet. The
StreamStats Service API outputs a JSON file with the requested
data, which our Python script decodes and writes to a csv
file containing the list of sites and associated drainage basin
characteristics. For this analysis, StreamStats quantities reported
in English units were converted to metric.

Our analysis considered 42 macroscale sub-catchment
characteristics for a relationship with streamwater microbial
communities (Table 1). In addition to the StreamStats
characteristics, we calculated topographic index and added
latitudinal and longitudinal coordinates. From an initial suite
of 46 available characteristics for each sample point, we then
eliminated all but one of any redundant variables and summed
three StreamStats characteristics “MINOR ROADS,” “STATE
HIGHWAY ROADS,” and “MAJOR ROADS” into a new variable
“ALL ROADS” (Supplementary Table 1). We then grouped
remaining variables into four categories: climatic, geomorphic,
land-cover, and development characteristics.

DNA Collection and Sequencing
We collected streamwater DNA from a set of 61 sites in
the summer of 2017. We sampled 40 sites in the Willamette
watershed (25 July−8 August) and 21 sites in the Deschutes
watershed (2–4 August; Figure 1). Sample sites spanned
headwaters and tributaries to the main stem outlet at the bottom
of the watershed. Sites were selected to capture the range of land
cover, land use, and level of disturbance in each sub-catchment.

Prior to sample collection each day, the plastic collection
bucket was washed with antimicrobial soap, soaked for several
minutes in a 10% hydrochloric acid bath, and triple rinsed
with ultrapure water. Other reusable field equipment, such as
collection tubing, was sterilized in an autoclave. Equipment was

sample-rinsed prior to each collection and then triple-rinsed with
deionized water following each collection.

Streamwater was collected from the approximate center of the
waterway. Most samples were collected using a clean 2-gallon
bucket lowered with a rope from a bridge. Although it was
difficult to standardize collection depth, samples were collected
near the surface and care was taken not to disturb the streambed.
At very small streams, such as those in HJ Andrews Experimental
Forest, samples were collected into a bucket as water exited
flumes. At the few sites where either a flume or bridge were not
available, a rope and bucket were tossed from the riverbank to the
approximate center of the stream and pulled back to shore, again
taking care not to disturb the streambed.

DNA samples were filtered and extracted from collected
streamwater as described in Crump et al. (2003). Briefly,
streamwater was pumped through a 0.2µm Sterivex-GP filter
(Millipore, Billerica, MA, USA) with a peristaltic pump (Geotech
Environmental Equipment, Denver, CO, USA) until the filter
clogged. DNA preservation/extraction buffer (100mM Tris,
100mM NaEDTA, 100mM phosphate buffer, 1.5M NaCl, 1%
CTAB) was added to the filter with a syringe, and then filters
were sealed and stored on dry ice until transferred to a
−80◦C freezer the same day, where samples were stored until
further processing. DNA was isolated using phenol-chloroform
extraction and isopropanol precipitation (Zhou et al., 1996;
Crump et al., 2003; Amaral-Zettler et al., 2009) and stored at
−20◦C until amplification.

16S rRNA genes were PCR-amplified with dual-barcoded
primers targeting the V4 region (515f GTGCCAGCMGCCGCG
GTAA, 806r GGACTACHVGGGTWTCTAAT; Caporaso et al.,
2011) that were linked to barcodes and Illumina adapters
following Kozich et al. (2013). PCRs of DNA samples and
no-template negative controls were run with HotStarTaq
DNA Polymerase Master Mix (Qiagen) and thermocycler
conditions: 3min at 94◦C followed by 30 cycles of 94◦C 45 s,
50◦C for 60 s, and 72◦C for 90 s, followed by 10min at 72◦C
(Caporaso et al., 2012). PCR products were purified and
normalized with SequalPrep Normalization Plates (Thermo-
Fisher), and sequenced with Illumina Miseq V.2 paired end
250 bp sequencing. Sequences were denoised using DADA2
(Callahan et al., 2016) implemented in QIIME2 (Bolyen et al.,
2019) using default settings to prepare an abundance table of
unique amplified sequences variants (ASVs). Sequences were
taxonomically classified with the SILVA 16S rRNA gene database
v.132 (Quast et al., 2013), and ASVs were removed if they were
classified as chloroplasts or mitochondria, or if they were not
classified to the domains Bacteria and Archaea. The dataset was
then rarefied to 1,164 sequences per sample prior to calculation
of biodiversity metrics. Rarefaction to 1,164 samples resulted
in undersampling of some communities, which is not unusual
in microbial studies, but allowed for retention of the most
samples for the analysis (Supplementary Figure 1). Sequences
from no-template PCR controls that passed DADA2 quality
control represented 6 ASVs that did not appear in the rarefied
ASV dataset. In total, DNA was sequenced from 38 samples
within the Willamette watershed and 17 from the Deschutes
watershed. DNA sequence data is archived under BioProject
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TABLE 1 | Mean, standard deviation (SD), and correlation with microbial community similarity (Mantel statistic [r]) for statistically significant StreamStats macroscale basin characteristics by watershed and in small (Sm)

and large (Lg) sub-catchments across the Willamette (Wil) and Deschutes (Des) watersheds, Oregon, USA.

Characteristic Wil mean (SD) Wil r Des mean (SD) Des r All mean (SD) All r Sm mean (SD) Sm r Lg mean (SD) Lg r Description

Geomorphic

ORREG2 (dimensionless) 10,001 (0) – 363 (0) – 7,020 (4,490) 0.31***a 7,590 (4,250) 0.62*** 6,430 (4,740) 0.04 Oregon Region Number

ELEV (mb) 693 (326) 0.19 1,480 (214) 0.02 935 (469) 0.26*** 925 (491) 0.44*** 946 (454) 0.07 Mean basin elevation

DISTANCE (km) 83.01 (50.27) 0.36*** 72.20 (55.63) 0.15 104.1 (57.64) 0.24*** 81.60 (55.63) 0.41*** 116.1 (61.58) 0.02 Great-circle distance between

sample sites

MINBELEV (m) 258 (275) −0.10 1,030 (415) 0.21 498 (483) 0.26*** 621 (486) 0.39** 370 (454) 0.11 Minimum basin elevation

BSLOPD (degrees) 16 (6.0) 0.15 6.5 (1.6) −0.03 13 (7) 0.14 16 (8) 0.38*** 11 (5) 0.03 Mean basin slope measured in

degrees

LATITUDE (decimal degrees) 44.58 (0.560) 0.41*** 44.15 (0.546) 0.12 44.45 (0.586) 0.21** 44.28 (0.516) 0.35*** 44.62 (0.614) 0.02 Latitudinal coordinate

ELEVMAX (m) 1,720 (930) 0 2,630 (523) 0.26 2,000 (923) −0.01 1,500 (704) 0.30* 2,520 (845) 0.10 Maximum basin elevation

OR_HIPERMA (percent) 10.9 (13.3) 0.35** 6.89 (7.04) −0.02 9.64 (11.8) 0.13 5.44 (10.3) 0.17 14.0 (11.9) 0.07 Percent basin surface area

containing high permeability

aquifer units as defined in SIR

2008-5126

Climatic

JANMINTMP (degrees C) −1.40 (1.26) 0.08 −6.89 (0.758) 0.01 −3.09 (2.80) 0.27** −2.75 (2.77) 0.55*** −3.45 (2.83) 0.04 Mean minimum January

temperature

MINTEMP (degrees C) 3.65 (1.25) 0.09 −1.01 (0.975) 0.06 2.21 (2.47) 0.27*** 2.38 (2.56) 0.53*** 2.02 (2.39) 0.04 Mean annual minimum air

temperature over basin surface

area as defined in SIR 2008-5126

JANMAXTMP (degrees C) 6.15 (0.99) −0.10 2.45 (1.00) 0.00 5.01 (1.99) 0.25** 5.23 (2.25) 0.50*** 4.77 (1.68) 0.04 Mean maximum January

temperature

JANMINT2K (degrees C) −0.83 (1.18) −0.09 −6.46 (0.66) 0.11 −2.57 (2.83) 0.22** −2.12 (2.70) 0.49*** −3.04 (2.93) 0.02 Mean minimum January

temperature from 2K resolution

PRISM PRISM 1961–1990 data

MAXTEMP (degrees C) 15.2 (1.1) −0.08 12.6 (1.8) 0.09 14.4 (1.8) 0.23** 14.5 (2.3) 0.46** 14.3 (1.3) 0.10 Mean annual maximum air

temperature over basin area from

PRISM 1971–2000 800-m grid

JANAVPRE2K (mm) 264 (41) 0.21 141 (66) 0.13 226 (76) 0.17 250 (57) 0.45*** 201 (85) 0.05 Mean January precipitation

PRECIP (mm) 1,860 (339) 0.14 979 (440) 0.16 1,590 (552) 0.13 1800 (449) 0.39*** 1,370 (569) 0.03 Mean Annual precipitation

JANMAXT2K (degrees C) 6.34 (1.07) −0.13 4.08 (1.40) 0.33 5.64 (1.57) 0.24*** 5.55 (1.84) 0.33** 5.74 (1.26) 0.12 Mean maximum January

temperature from 2K resolution

PRISM 1961–1990 data

Land-cover

SOILPERM (mm per hour) 47.7 (28.0) −0.05 151 (79.3) −0.02 79.8 (68.8) 0.22* 77.1 (69.1) 0.38** 82.5 (69.8) 0.07 Average soil permeability

LC11FORSHB (percent) 83 (19) 0.34** 89 (6) 0.01 85 (16) 0.10 90 (14) 0.18 79 (17) 0.02 Percentage of forests and shrub

lands, classes 41 to 52, from

NLCD 2011

a*p < 0.1, **p < 0.05, ***p < 0.01 (Bonferroni-adjusted for multiple comparisons).
bStreamStats quantities obtained in English units were converted to metric.

Note that only basin characteristics that were significantly correlated with microbial community similarity (Bonferroni-adjusted p < 0.1) in at least one group of sub-catchments are presented here (see Supplementary Table 2 for results

of all characteristics).
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FIGURE 1 | Alpha diversity (Shannon’s index [H]) of streamwater microbiomes in the Willamette (squares) and Deschutes (triangles) watersheds in Oregon, USA.

Outlined symbols indicate small sub-catchments (i.e., those with less than median drainage area). Inset shows vicinity of H.J. Andrews Experimental Forest.

PRJNA642636 at the National Center for Biotechnology
Information (NCBI).

Microbial Metrics of Biodiversity
Biodiversity is a fundamental metric used to characterize a
microbial community. Alpha diversity describes diversity within
a site, whereas beta diversity describes diversity across sites
(Whittaker, 1972). Alpha diversity is often described with
Shannon’s index (H), which is the Shannon entropy (Shannon
and Weaver, 1949) of measured ASVs within a site. Shannon’s
index accounts for both the number of ASVs (richness) and the
relative abundance of each ASV (evenness). Shannon’s index was
calculated using the sci-kit bio package (v 0.5.1, http://scikit-bio.
org/) developed for the Python programming language. In this
implementation, Shannon’s index is calculated as

H = −
∑

s
i=1

(

pi
)

log2(pi),

where s is the number of ASVs detected and pi is the proportion
of s represented by ASV i. Note that changing the base of the
logarithm changes the units of H; when base 2 is used, as here,
the resulting quantity is described in units of bits. Larger values

of H indicate greater diversity within a site. Diversity data were
visually approximately normally distributed, and variance was
similar between groups, so two-sample t-tests were used to check
for differences in means between groups. Statistical tests were
conducted using SciPy in Python 3.7.4 (Virtanen et al., 2020).

Microbial dissimilarity between sites was determined by
the Bray-Curtis metric (Bray and Curtis, 1957). Bray-Curtis
dissimilarity, dBC(u, v) [unitless], calculates dissimilarity in the
number (n) of ASVs between sites u and v as

dBC (u, v) =

∑

i

∣

∣nu,i − nv,i
∣

∣

∑

i

∣

∣nu,i + nv,i
∣

∣

for all ASV i (Bray and Curtis, 1957). Bray-Curtis dissimilarity
is more robust than other distance measures like Euclidean
distance, for example, where differences in abundance can
overwhelm differences in ASVs between sites, leading to
counterintuitive results, particularly with large, sparse matrices
(Ricotta and Podani, 2017). The denominator of the Bray-
Curtis dissimilarity index effectively weights the difference in
abundance between sites by the overall abundance of each ASVs,
such that rare ASVs contribute less to differences between sites.
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Bray-Curtis dissimilarity ranges [0, 1], with a value of one
indicating two sites have no ASVs in common and a value of
zero indicating identical ASVs composition. The package sci-
kit bio was again used to assemble a distance matrix of Bray-
Curtis dissimilarity between all possible pairs of sites. Site-pairs
were ranked by Bray-Curtis dissimilarity and the top 1% and top
5% most and least dissimilar site-pairs were analyzed to explore
whether patterns emerged.

Additionally, we were interested in how relationships between
microbial communities and macroscale characteristics might
differ between the Willamette and Deschutes watersheds and
between small and large sub-catchments. Therefore, distance
matrices of Bray-Curtis dissimilarity between all pair of sites
in: the Willamette Basin (n = 38 sites; 703 unique pairs), the
Deschutes Basin (n = 17 sites; 136 unique pairs), small sub-
catchments (n = 28 sites; 378 unique pairs), and large sub-
catchments (n = 27 sites; 351 unique pairs) were assembled.
Note for all 55 sites there were 1,485 unique pairs. Small
sub-catchments were simply the smaller half of sample sites
(drainage area ≤520 km2) and large sub-catchments were the
larger half. Dissimilarity values were skewed low, so to check
for differences between groups, a Mann-Whitney U-test, which
requires no distribution assumptions, was used. Mann-Whitney
U-test assumes independent samples and tests the null hypothesis
that the two distributions are equal.

Macroscale Characteristics and Microbial
Community Composition
To investigate the relationship between microbial community
and macroscale characteristics, differences in microbial
community composition were examined in relation to differences
in catchment characteristics between sites. Using the basin
characteristics from StreamStats, a distance matrix of pairwise
differences between sites for each characteristic was assembled.
Distances between points (u, v) for StreamStats characteristic c
were calculated as absolute value arithmetic differences,

dSS,c (u, v) = |cu − cv|

with the exception of the physical distance between points. The
physical distance was the great-circle distance (km), which is
the distance between the two points on the surface of a sphere
containing the diameter of Earth. As with beta diversity, distances
matrices were assembled for all characteristics for all pairs of
sites in: the Willamette Basin, the Deschutes Basin, small sub-
catchments, large sub-catchments, and all sub-catchments. We
used Mantel tests to evaluate the correlation between dissimilarly
matrices of community composition and each of the macroscale
properties (Mantel, 1967). Mantel correlations assume linear
correlations between dissimilarity matrices and have been
previously used to evaluate correspondence between microbial
communities and other environmental factors (Fagervold et al.,
2014; Repert et al., 2014; Read et al., 2015). When applied
to raw data tables this approach may introduce bias due to
spatial autocorrelation, though extensive testing has found this
method is appropriate for evaluation of dissimilarly matrices
constructed from autocorrelated data (Legendre et al., 2015).

The Mantel statistic is the standardized Pearson correlation
between the distance matrices and ranges [−1, 1], with
values close to 1 (−1) indicating strong positive (negative)
correlation and a value of zero indicating no correlation
between the distance matrices. To assess the relationship between
microbial community composition andmacroscale environment,
we examined Mantel statistics between microbial distances
dBC (u, v) and individual characteristic distances dSS,c (u, v), as
well as mean Mantel statistics for the four groups of related
properties: geomorphic, climate, land-cover, and development
characteristics. We again used the package sci-kit bio for Python
and calculated Mantel statistic (r) and Bonferroni-corrected p-
value for multiple comparisons over 10,000 permutations.

We might expect to detect stronger correlations between
the microbial community and watershed characteristics when
the microbial community samples represent a greater range of
conditions. For example, consider the case where catchment
characteristics are identical so their standard deviation is zero.
Because dissimilarity among catchment characteristics would
be zero in this case, correlation between microbial community
dissimilarity and catchment dissimilarity (Mantel r) would
also necessarily be zero. Thus, as variability in sub-catchment
characteristics decreases near to geospatial measurement noise
associated with the StreamStats outputs we potentially may
see lower Mantel statistics. To explore whether the strength
of correlations identified by Mantel tests could be related to
variability in those catchment characteristics, we analyzed the
relationship betweenMantel statistics and the standard deviation
of each characteristic. We calculated the relative sensitivity (εSS,c)
[unitless] of the Mantel statistic (r) to the standard deviation (σ )
of each StreamStats characteristic (c) as:

εSS,c(m, n) =
rm − rn

σm − σn
×

σm

rm

The relative sensitivity value quantifies the extent to which a
change in variability in a StreamStats characteristics translates
to a respective change in the correlation between microbial
community composition and that watershed characteristic,
where higher absolute values of ε indicate greater sensitivity
and a stronger relationship between microbial community
similarity and watershed characteristic variability. Values of ε

that significantly differ from zero may suggest variability as
a potential driver of the strength of correlations and offer
insight into the conditions in which microbiomes may be useful
monitoring tools. Sensitivity was calculated for each StreamStats
variable for both Willamette vs. Deschutes watersheds and small
vs. large sub-catchments, and then median sensitivity for each
group of characteristics for both sets of sub-catchments was
estimated. Sensitivity data contained several outliers and could
not be assumed normal. Therefore, the non-parametric one-
sample Wilcoxon signed-rank test was used to test the null
hypothesis that the median sensitivity value for each group was
equal to zero.

Finally, to assess whether and how different ways of
grouping sequence data or applying different diversity metrics
to characterize the microbial communities impacts the results of
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the analysis, the data were reanalyzed several ways. First, rather
than using ASVs (100% similar), stream microbial communities
were instead characterized by grouping raw sequences into
95%, 97%, or 99% similar operational taxonomic units (OTUs).
Sequence data were then rarefied to standardize sampling
effort while retaining the greatest number of samples (95%
similarity: 1,025 sequences per sample; 97% similarity: 1,023
sequences; 99% similarity: 1,014 sequences). Communities were
also alternatively characterized using one of five major groups
of ASVs: Actinobacteria (rarefied to 100 sequences per sample),
Bacteroidetes (500 sequences), Cyanobacteria (50 sequences),
Gammaproteobacteria (500 sequences), or Verrucomicrobia (100
sequences). Two alternative measures of alpha diversity, Chao-
1 index of taxonomic diversity and abundance-based coverage
estimators (ACE) index, were calculated (also using sci-kit bio).
Finally, Weighted UniFrac distances (Lozupone and Knight,
2005) were calculated with QIIME2 as an alternate measure of
beta diversity. Unlike the taxon-based Bray-Curtis dissimilarity,
divergence-based UniFrac distances (Lozupone and Knight,
2008) consider the similarity of different taxa by incorporating
information from a phylogenetic tree relating the genetic
sequences from each sample.

All code developed for this analysis is available at www.
zenodo.org (URycki and Good, 2020b).

RESULTS

Spatial Patterns in Microbial Community
Similarity
We evaluated how 16S rRNA sequence data for 55 DNA samples
varied across the Willamette and Deschutes watersheds. Among
those samples, 3,530 unique ASVs were detected, including
typical freshwater members of the classes Bacteroidetes,
Actinobacteria, Verrucomicrobia, and Gammaproteobacteria
(which includes Betaproteobacteria; Figure 2). Some samples
also featured high abundances of Cyanobacteria (up to 28%
of community).

Alpha diversity was similar in the Willamette and Deschutes
watersheds (Wil: mean H = 5.81, SD = 1.08; Des: mean H =

6.58, SD = 0.93; two-sample t = 2.50, p = 0.016; Figure 1)
and was not related to the sample volume filtered (R2 = 0.04,
p = 0.76, Supplementary Figure 2). Tributaries exhibited both
the highest and lowest biodiversity values in both watersheds.
Alpha diversity generally increased from south to north in the
Willamette Basin (latitude R2 = 0.55, p < 0.001), but this pattern
was not observed in the Deschutes Basin (latitude R2 = −0.41, p
> 0.1; Figure 3). Across both watersheds, small and large sub-
catchments exhibited similar levels of biodiversity (small sub-
catchments: mean H = 6.09, SD = 1.22, large sub-catchments:
mean H = 6.00, SD= 0.95; two-sample t = 0.30, p= 0.762), and
alpha diversity was not related to sub-catchment drainage area
(Willamette: R2 = 0.04, p = 0.80; Deschutes: R2 = −0.38, p =

0.13; Supplementary Figure 3).
The greatest beta diversity in microbial stream communities

was observed between watersheds. Bray-Curtis dissimilarity (BC)
was higher on average for site-pairs spanning watersheds (mean

BC = 0.912) than for pairs within watersheds (mean BC =

0.832, Mann-Whitney U = 164584.5, p < 0.001), and the vast
majority of the top 5% BC scores were for inter-watershed sample
pairs (Figure 4). In fact, the most dissimilar pairs (top 1% BC
scores) were between points extending from the headwaters of
the Deschutes River to the mouth of the Willamette River. A
few of the top 5% most dissimilar pairs were points in the same
watershed that were geographically distant. Visual inspection
reveals no clear patterns between small and large watersheds
among the top 5% least similar pairs of samples, and beta
diversity was similar within small and large sub-catchments
(small: mean BC = 0.856, large: 0.875; Mann-Whitney U =

65169.5, p= 0.340).
Beta diversity was higher within the Willamette Basin (mean

BC = 0.897) than within the Deschutes Basin (mean BC =

0.820; Mann-Whitney U = 31305.5, p < 0.001). The lowest beta
diversity in microbial stream communities (5% lowest BC scores)
was observed between samples within in the upper Willamette
Basin (Figure 4). Points in the HJ Andrews Forest exhibited
some of the lowest dissimilarity to other points within the HJ
Andrews Forest and to several other points within theWillamette
Basin. Also, a few of the lowest dissimilarity scores were
between inter-watershed sample pairs, including pairs spanning
headwaters of one watershed to themouth of the other watershed.
Almost all of the most similar inter-watershed pairs are samples
from large sub-catchments (i.e., points along the mainstem
of the rivers).

Relation of Macroscale Catchment
Properties to Microbial Community
Similarity
Among StreamStats characteristics determined to be statistically
significant in at least one group of sub-catchments (Table 1),
geomorphic-related characteristics were on average the most
strongly correlated with microbial community composition
in the Willamette Basin (mean r = 0.19; Figure 5). Land-
cover (mean r = 0.15) characteristics were more strongly
correlated with microbial community composition than climatic
(mean r = 0.01) characteristics. Among the top five strongest
correlates in the Willamette Basin were latitude (r = 0.41),
percentage of area containing high permeability aquifer units
(r = 0.35), and percentage of forest and shrublands (r =

0.34; Table 1). In the Deschutes Basin, climatic (mean r
= 0.11) characteristics were more strongly correlated with
microbial community composition than were geomorphic
(mean r = 0.10) characteristics. Land-cover characteristics
were very weakly anticorrelated (mean r = −0.01; Figure 5).
Among the top five strongest correlates with the microbial
community in the Deschutes Basin weremeanmaximum January
temperature (r = 0.33), percentage of low-intensity development
(r = 0.30), topographic index (r = 0.33), and topographic
relief (r = 0.29), although none of these were statistically
significant (all p > 0.1; Table 1, Supplementary Table 2). No
development-related characteristics were found to be correlated
with microbial community similarity in the Willamette or
Deschutes watersheds.
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FIGURE 2 | Phylogenetic biodiversity (relative abundance of unique amplified sequences variants [ASVs]) of tributary and main-stem streamwater microbial DNA

samples throughout the (A) Deschutes and (B) Willamette watersheds in Oregon, USA. Samples for each watershed are presented in order of increasing

sub-catchment drainage area (Supplementary Table 1).

Small sub-catchments exhibited the strongest correlations
between macroscale catchment characteristics and microbial
community composition. Among StreamStats characteristics
determined to be statistically significant in at least one group
of sub-catchments (Table 1), microbial community composition
in small sub-catchments correlated most strongly with climatic
characteristics (mean r = 0.46), followed by geomorphic
(mean r = 0.38), and land-cover (mean r = 0.28; Figure 5)
characteristics. The most strongly correlated characteristics
were watershed identifier (Willamette or Deschutes; r =

0.62), January minimum temperature (r = 0.55), and annual
minimum temperature (r= 0.53;Table 1). Microbial community
composition in large sub-catchments exhibited much weaker
correlations. Mean maximum January temperature (r = 0.12),
minimum basin elevation (r= 0.10), andmean annual maximum
temperature (r = 0.10) were among the top five strongest
correlates with microbial community similarity, although none
of these were statistically significant (all p > 0.1). No
development-related characteristics were found to be statistically
correlated with microbial community similarity in small or
large watersheds.

For the macroscale characteristics we analyzed, the strength of
the correlation with the microbial community was not sensitive
to the variability of those characteristics across catchments.
Across all sub-catchment characteristics, an increase in the
standard deviation of a characteristic did not translate to a
statistically significant increase in Mantel statistic for either

FIGURE 3 | Alpha diversity (Shannon index) vs. latitudinal coordinate of

streamwater microbial DNA samples collected from small (unfilled symbols)

and large (filled symbols) sub-catchments throughout the Willamette (squares)

and Deschutes (triangles) watersheds in Oregon, USA.

the Willamette versus Deschutes watersheds (median ε =

0.14; Wilcoxon signed-rank W = 76.0, p = 0.981) or for
small versus large sub-catchments (median ε = −3.40;
Wilcoxon signed-rank W = 58.0, p = 0.381). Similarly, median
sensitivity was not statistically different from zero for any of
the characteristic groups for either the Willamette vs. Deschutes

Frontiers in Water | www.frontiersin.org 8 November 2020 | Volume 2 | Article 574728

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


URycki et al. River Microbiome and Sub-catchment Characteristics

FIGURE 4 | Map of the 1% (dark lines) and 5% (light lines) most (left) and least (right) dissimilar microbial communities throughout the Willamette and Deschutes

watersheds in Oregon, USA. Large (filled symbols) and small (unfilled symbols) sub-catchments are those with more than or less than median drainage area,

respectively. Inset shows vicinity of HJ Andrews Experimental Forest.

watersheds or for small vs. large sub-catchments (all Wilcoxon
signed-rank p > 0.1).

Patterns were consistent when sequence data were
grouped into OTUs or when different diversity metrics
were applied. The strongest relationships between microbial
communities and watershed characteristics were observed in
small watersheds at all OTU sequence similarity levels (95%,
97%, 99%, or 100%) and for three major taxonomic groups:
Bacteroidetes, Gammaproteobacteria, and Verrucomicrobia
(Supplementary Figure 4). The microbial groups Actinobacteria
and Cyanobacteria exhibited no significant correlations with
watershed characteristics. The strongest relationships were
observed between microbial communities and geomorphic and
climatic related characteristics, although some microbial
groups were also related to land cover characteristics
(Supplementary Figure 4). The Chao-1 and ACE alpha
diversity metrics were strongly correlated with Shannon
index (Chao-1: Spearman r = 0.91, p << 0.001; ACE:
Spearman r = 0.90, p << 0.001). Characterizing community
similarity using Weighted UniFrac instead of Bray-Curtis
dissimilarity also resulted in strong correlations with watershed
characteristics in small watersheds. Also, some microbial
groups exhibited comparably strong relationships to watershed
characteristics in the Willamette and Deschutes watersheds
(Supplementary Figure 5).

DISCUSSION

We explored the potential influence of the upstream macroscale
environment in shaping streamwater microbiomes. Previous
studies found that streamwater microbial community

composition is more strongly correlated with catchment-scale
hydrologic parameters such as stream distance and catchment
area than with water sample physio-chemical water properties
(Read et al., 2015; Savio et al., 2015). Our study builds on this
previous work by expanding the suite of macroscale variables
analyzed for relationships with the microbial community
assemblage to more than 40 basin characteristics reflecting
the geomorphology, climate, land cover, and level of human
development in stream catchments.

Our results suggest that, in headwater catchments, microbial
community assemblages are shaped by catchment-scale
geomorphology and climate, but these influences weaken
downstream. The streamwater microbial metacommunity is
“seeded” from a diverse amalgamation of microbes dispersed
into headwater streams from surrounding soil and groundwater
(Crump et al., 2007, 2012), which develops and continually
combines with local inputs as the community moves downstream
with the flow of water (Ruiz-González et al., 2015). In headwater
streams in particular, where the contributing area is large relative
to the stream volume (Read et al., 2015; Savio et al., 2015), it
follows that this immigrant microbial community would reflect
the dispersal area and upslope environment and thus exhibit a
stronger correlation with macroscale catchment characteristics.
Downstream, however, biotic and abiotic factors increasingly
drive ecological succession (i.e., species-sorting; Leibold et al.,
2004), and the microbial assemblage shifts to a core riverine
community, dampening signals from the upstream catchment
(Savio et al., 2015).

The shift from diverse communities of upslope emigrants that
are tightly coupled to the catchment to a core riverine community
shaped by the local environment may explain the decreasing

Frontiers in Water | www.frontiersin.org 9 November 2020 | Volume 2 | Article 574728

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


URycki et al. River Microbiome and Sub-catchment Characteristics

FIGURE 5 | Mean correlation between microbial community composition

(Mantel test statistic [r]) and land-cover, geomorphic, and climatic related

StreamStats basin characteristics by watershed and in small and large

sub-catchments across the Willamette and Deschutes watersheds, Oregon,

USA.

strength of the relationship between microbial community
composition and macroscale watershed characteristics. This is
supported by the low overall sensitivity of the correlations
to variability in sub-catchment characteristics moving from
upstream to downstream, in that moving to more (or less)
variable sub-catchment characteristics did not result in higher
(or lower) correlations uniformly. Since sensitivity values were
distributed between both positive and negative values and
not statistically different than zero, we conclude that changes
in the homogeneity of the landscape across which samples
are collected, as measured by the standard deviation of
landscape characteristics, is not uniformly the driving processes
determining differences in microbial composition.

Watershed location in either the Willamette or Deschutes
basins was the strongest correlate with the microbial community
across all basins and within small basins, indicating that there
are additional factors shaping distinctive microbial communities
in each basin. In the temperate, more developed Willamette
Basin, latitude and the percentage of forest and shrub land and
were most important characteristics. Due to the north-south
orientation of these basins, latitude is likely a proxy for multiple
other interacting factors (e.g., elevation and up-stream drainage
area), and the Willamette Basin in particular has a strong
human-driven gradient due to Portland at the outlet. On the
other hand, in the Deschutes Basin, geomorphic characteristics
such as topographic index and relief were more important.
It is possible that the differences in important influences on
streamwater microbial communities between basins is related to
basin hydrology and the nature of the inputs to the stream. In the

wetter, more crop-dominated landscape of the Willamette Basin,
more constant, stable inputs of water—and thus microbes—
may contribute to the development of a certain, less diverse
community than in the arid, less populated Deschutes Basin,
where flashier water inputs result in more variable contributing
areas and a different, more diverse streamwater microbial
community (Nippgen et al., 2015).

We note that, as with many scientific analyses, our results
are a product of the decisions made throughout the analysis.
Decisions about DNA extraction methods and sequencing depth
may have impacted our results. Some catchment characteristics
obtained from StreamStats that were considered redundant
were eliminated from analysis (see Supplementary Table 1),
but correlation among variables was not explored. Eliminating
correlated variables may have yielded different results, as could
have applying different significance criteria. On the other hand,
results were robust to the similarity of ASV groups. When ASVs
were grouped into operational taxonomic units (OTUs) based on
95%, 97%, or 99% DNA sequence similarity, the relative strength
and importance of characteristic categories and of spatial
scale were generally stable (Supplementary Figure 4). Although
some major microbial groups (e.g., classes Bacteroidetes,
Gammaproteobacteria, Verrucomicrobia) exhibited stronger
relationships with watershed characteristics than other groups,
we are not aware of any method that would allow for reliable
targeted sampling or analysis effort in such a way as to
appreciably conserve resources. Our results build upon those of
Good et al. (2018), in which streamwater microbiomes were used
in a machine learning algorithm to predict hydrologic regime of
a set of large rivers in adjacent and detached watersheds in the
Arctic. Here, we found that the summer microbial community
within small headwater streams reflects both the structural
configuration of the landscape as well as upstream processes.
Coupled with the results of Good et al. (2018), our results offer
an encouraging indication that streamwater microbial DNA may
thus carry information about upstream macroscale conditions
as well as hydrology and may therefore hold potential as a
useful tool in watershed monitoring. More research is needed to
determine whether these relationships hold in other seasons and
how to optimally extract this information from microbiomes.
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