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Successful monitoring of soil moisture dynamics at high spatio-temporal resolutions

globally is hampered by the heterogeneity of soil hydraulic properties in space and

complex interactions between water and the environmental variables that control it.

Current soil moisture monitoring schemes via in situ station networks are sparsely

distributed while remote sensing satellite soil moisture maps have a very coarse spatial

resolution. In this study, an empirical surface soil moisture (SSM) model was established

via fusion of in situ continental and regional scale soil moisture networks, remote sensing

data (SMAP and Sentinel-1) and high-resolution land surface parameters (e.g., soil

texture, terrain) using a quantile random forest (QRF) algorithm. The model had a spatial

resolution of 100m and performed well under cultivated, herbaceous, forest, and shrub

soils (overall R2
= 0.524, RMSE = 0.07 m3 m−3). It has a relatively good transferability

at the regional scale among different soil moisture networks (mean RMSE = 0.08–0.10

m3 m−3). The global model was applied to map SSM dynamics at 30–100m across a

field-scale soil moisture network (TERENO-Wüstebach) and an 80-ha cultivated cropland

in Wisconsin, USA. Without the use of local training data, the model was able to delineate

the variations in SSM at the field scale but contained large bias. With the addition of 10%

local training datasets (“spiking”), the bias of the model was significantly reduced. The

QRF model was relatively insensitive to the resolution of Sentinel-1 data but was affected

by the resolution and accuracy of soil maps. It was concluded that the empirical model

has the potential to be applied elsewhere across the globe to map SSM at the regional

to field scales for research and applications. Future research is required to improve

the performance of the model by incorporating more field-scale soil moisture sensor

networks and assimilation with process-based models.
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INTRODUCTION

Water plays a fundamental role in terrestrial ecosystems and
human society. Soil moisture is a critical factor for many
terrestrial biochemical, climate, and atmospheric processes and
is the source of water for most of the crops (Vereecken et al.,
2014). Monitoring and forecasting soil moisture and fluxes (e.g.,
evapotranspiration) are essential for maintaining global food
security (Hoekstra and Mekonnen, 2012) and understanding
hydrological, meteorological, and ecosystem processes under
climate change (Porporato et al., 2004; Seneviratne et al., 2010;
Escriva-Bou et al., 2018; Trugman et al., 2018; Stoy et al., 2019).

Successful monitoring and forecasting soil moisture dynamics
at high spatio-temporal resolutions globally are hampered by
many factors, including heterogeneity of soil hydraulic properties
in space (Robinson et al., 2008), complex interactions between
water, environment, and human activities (Vereecken et al.,
2014), and computational challenges (Chaney et al., 2018).
Current regional and continental soil water monitoring networks

are too sparsely distributed (e.g., ∼100 km) to be used for field-

scale research and application (e.g., irrigation) while remote
sensing soil moisture missions often have a coarse spatial
resolution (>1 km) (Ochsner et al., 2013).

Recent technological advances provide a potential solution
to mapping soil moisture variability at the field scale. First,
remote sensing satellite missions have been launched to monitor
coarse-resolution soil water dynamics and high-resolution land
surface parameters (e.g., vegetation, terrain, and soil properties)
have become available (Reuter et al., 2007; Friedl et al., 2010;
Hengl et al., 2017; Fisher et al., 2020), which characterize the
heterogeneity of land cover, soil, and terrain features at the field
scale. Second, machine learning and supercomputers have been
increasingly used to model complex interactions between water
content and fluxes with environmental variables (Lu et al., 2015,
2017; Adeyemi et al., 2018; Chaney et al., 2018; Prasad et al.,
2018). It may be feasible to combine these remote sensing and
land surface datasets for improved delineation of soil moisture
variability at the field scale across the globe.

Over the past decades, many methods have been proposed
to downscale coarse-resolution surface soil moisture (SSM)
maps. As reviewed by Peng et al. (2017), the methods can be
classified into three categories: satellite-based, model-based, and
geo-information based. Although these methods have shown
success in downscaling SSM from the field to global scales,
currently there are few operational high-resolution (<500m)
SSM products across the globe that can be directly used for
field-scale research and applications (Table 1, refer to Peng
et al., 2017 for details). In terms of the satellite-based methods,
the accuracy of the downscaled SSM maps is affected by the
accuracy of the coarse passive SSM data and the “speckle effect”
of the active microwave data prohibits further mapping of
SSM at a higher resolution (<500m) (e.g., Bauer-Marschallinger
et al., 2018). Although optical/thermal band fusion methods
can achieve a high resolution (∼30m), they are only applicable
under clear-sky conditions. For model-based methods (including
data assimilation), they either require in situ SSM measurements
(not applicable in regions with sparse measurements) or rely

on hydrological models that are computationally inefficient
across the globe at a high resolution (e.g., Chaney et al., 2016;
Reichle et al., 2019; Vergopolan et al., 2020). Existing geo-
information data based methods use land surface parameters
(e.g., terrain parameters, soil properties, land cover) and
meteorological forcing (e.g., precipitation) as covariates in
statistical or machine learning models for downscaling SSM,
which are either dependent on a coarse SSM product or in situ
SSM measurements. The former is globally applicable but is
largely affected by the accuracy of the coarse SSM product and
precipitation (the only dynamic variables) and it often has a
coarse resolution (∼1 km) (e.g., Abbaszadeh et al., 2019; Guevara
and Vargas, 2019). The latter needs in situ real-time SSM sensor
networks to operate and is not available in regions with sparse
SSMmeasurements (e.g., Ochsner et al., 2019; Zhang et al., 2019).

In this study, we explore a new global SSM downscaling
method that uses machine learning (quantile random forest)
to fuse in situ soil moisture network data across the globe,
remote sensing data from SMAP, and Sentinel-1, and high-
resolution land surface parameters (i.e., terrain parameters, soil
properties). Compared with other methods, this geo-information
data based approach relies on active and passive microwave data
to operate (similar to the change detection method) but it also
uses high-resolution land surface parameters (terrain parameters
and soil maps) and in situ SSM measurements to improve the
model performance by compensating the “speckle effect” of active
microwave data.

Our working hypotheses are: (1) a combination of active
and passive microwave remote sensing and high-resolution land
surface parameters can improve the delineation of SSM at the
regional scale (100m) compared to that established using any one
individual dataset with high-resolution land surface parameters
compensating the “speckle effect” of backscatter data, and (2)
the global model can be used to delineate SSM variations at the
field scale (i.e., 10–100m) with the addition of a small number of
field-scale in situ SSM measurements.

Our research questions are: (1) How well can an empirical
machine learning model map regional field-scale (100-m) SSM
at a 6–12 day interval? (2) How does model performance vary
by different continental/regional monitoring systems and land
cover types across the globe? (3) How well will a global empirical
model established using continental/regional datasets perform at
the field scale with and without in situ field-scale soil moisture
network measurements? (4) How will the spatial resolution of
Sentinel-1 data and the spatial-resolution and accuracy of input
soil property maps affect the predicted SSM at the field scale?

MATERIALS AND METHODS

Remote Sensing and Land Surface Data
Ground in situ SSM measurements from various soil moisture
networks were used as training and validation data for the remote
sensing and land surface data that were used as covariates to
retrieve SSM across the globe. Both remote sensing and land
surface datasets were spatially explicit with the remote sensing
data time-varying and the land surface datasets time-constant
(Figure 2 and Table 2).

Frontiers in Water | www.frontiersin.org 2 October 2020 | Volume 2 | Article 578367

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


H
u
a
n
g
e
t
a
l.

G
lo
b
a
lS

o
ilM

o
istu

re
M
a
p
p
in
g

TABLE 1 | A brief summary of spatial downscaling methods for surface soil moisture—SSM (modified from Peng et al., 2017).

Type Sub-type Method Advantages Disadvantage Finest spatial

resolution

reported

Spatial

extent

Examples

Satellite-

based

Active and passive

microwave data

fusion

Change detection Without requirements of in situ SSM

measurements

Dependence on passive SSM product

accuracy; “speckle effect” prohibits

mapping soil moisture at high resolution

100m Watershed Narayan et al., 2006

Baseline algorithm for SMAP Without requirements of in situ SSM

measurements

Dependence on passive SSM product

accuracy; “speckle effect” prohibits

mapping soil moisture at high resolution

500m (relative

SSM fraction) to

1 km (absolute

SSM)

Global Das et al., 2010; Fang

et al., 2013, 2019;

Lievens et al., 2017;

Bauer-Marschallinger

et al., 2018; Das et al.,

2019

Optical/thermal

and microwave

data fusion

Polynomial fitting; UCLA and

Peng; DISPATCH

Without requirements of in situ SSM

measurements

Dependence on passive SSM product

accuracy; only applicable under

clear-sky condition and/or over partially

covered vegetation; temporally

discontinuous (requires interpolation)

30m Field to

watershed

Chauhan et al., 2003; Kim

and Hogue, 2011; Fang

et al., 2013; Srivastava

et al., 2013; Molero et al.,

2016; Lee et al., 2018;

Ojha et al., 2019

Model-based Statistical models Geostatistics Simple Requires in situ soil moisture data;

scale-dependent nonstationary of soil

moisture fields

50m Field Kaheil et al., 2008

Fractals; Wavelets Without requirements of in situ SSM

measurements

Complex 1 km Watershed Kim and Barros, 2002

Land surface

models

Deterministic downscaling Simple Fully relies on modeled soil moisture;

computationally inefficient to be applied

globally at high resolution

30m Watershed Merlin et al., 2008; Ines

et al., 2013; Chaney et al.,

2016

Statistical downscaling: linear

regression; copulas

Simple; without requirements of in situ

SSM measurements; accounts for bias

between model and remotely sensed

observation

Relationship used may not be stable in

time; computationally inefficient to be

applied globally at high resolution

30m Watershed Loew and Mauser, 2008

Data assimilation Model average; Kalman filter Accounts for the uncertainties in both

observation and model prediction

Computationally inefficient for 1-D−3-D

hydrological models to be applied

globally at high resolution

∼30m across the

watersheds; 9 km

across the globe

Watershed to

globe

Reichle et al., 2001, 2019;

Vergopolan et al., 2020

Geo-

information

data based

Coarse-scale soil

moisture products

based

Statistical and machine learning

models with land surface

parameters (e.g., terrain, soil

properties, land cover) and

meteorological forcing (e.g.,

precipitation)

Simple Dependence on coarse SSM product

accuracy

1 km Watershed to

continental

Kaheil et al., 2008;

Abbaszadeh et al., 2019;

Guevara and Vargas,

2019; Xu et al., 2019

In situ soil moisture

data based

Geostatistical or machine learning

models with static covariates

(e.g., terrain, soil properties, land

cover) and meteorological forcing

(e.g., precipitation)

Simple; Use of soil property maps

improves high-resolution SSM

mapping; able to map subsoil moisture

content

Requires in situ SSM measurements to

operate; high uncertainty in regions with

sparse SSM sensor networks

800m Field to

regional

Ochsner et al., 2019;

Zhang et al., 2019

Active and passive

microwave data

based

Machine learning model with

active and passive microwave

data and covariates (e.g., terrain,

soil properties)

Globally applicable; “speckle effect”

compensated by high-resolution digital

elevation model and soil maps; Use of

soil maps improves high-resolution

SSM mapping; no need for in situ

moisture network to operate

Dependence on accuracy of

high-resolution land surface maps; high

uncertainty in regions with sparse in situ

SSM measurements requires local

calibration “spiking”

100m Global This study.
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TABLE 2 | Remote sensing and land surface datasets used for modeling surface soil moisture (SSM).

Dataset Measuring/estimated variable Spatial resolution Measuring interval

NASA-SMAP (L3_SM_P) Brightness temperature retrieved to surface soil

moisture (0–0.05m)

36 km 2–3 days, interpolated

to daily

ESA-Sentinel-1 Time-varying backscatter, incident angle, and

time-constant temporal statistics (min, mean, max,

standard deviation)

5×20m, aggregated to

10, 30, and 100m

6–12 days/N.A.

Shuttle Radar Topography

Mission (SRTM) digital elevation

model

Elevation, slope, aspect, profile curvature (profc),

plan curvature (planc), tangential curvature (tangc),

mean curvature (meanc), and surface roughness

factor (roughness)

30m N.A.

SoilGrids & Openlandmap Clay and sand contents, soil organic carbon

content, bulk density at depth 0–0.05m

250m, resampled to

100m

N.A.

In situ soil moisture monitoring

networks

Soil water content at depth 0–0.05m N.A. 30-min, averaged to

daily

NASA SMAP Mission
The SMAP mission was launched by the NASA, which provides
land surface measurements across the globe with a revisit time
of 2–3 days. It relies on the simultaneous measurements of L-
band backscatter from an active synthetic-aperture radar (SAR)
and brightness temperature from a passive L-band radiometer
to retrieve SSM (Lievens et al., 2017). The sensors operate at a
constant incidence angle. The use of L-band microwave signals
enables detection of land surface moisture under moderate
vegetation cover, through cloud cover, and during day and night.
Since the failure of the radar in 2015, the SMAP mission can
only retrieve SSM based on the passive radiometer. In this study,
the SMAP_L3_SM_P product was used, which retrieves SSM
at 0–0.05m with a resampled spatial resolution of 36 km ×

36 km and a revisit time of 2-3 days across the globe based
on a physical model using brightness temperature and ancillary
datasets (O’Neill et al., 2015).

SMAP data were downloaded from Earth Data (https://
earthdata.nasa.gov/) using the R platform (Version 3.6.0) with
the package “smapr” (Version 0.2.1) from March 1st to October
1st between 2016 and 2019. The period was selected to avoid
frozen soils within the various soil moisture networks because
of the poor performance of SSM retrieval over frozen ground.
Afterward, the data were gap-filled pixel-wise using a simple
temporal moving average with a window size of 3 days using the
“imputeTS” package. The small window size was selected to avoid
the smoothing of SSM due to its strong variability over time. This
generated SSM estimates at a 36 km× 36 km resolution on a daily
basis during the study period, which were used as time-varying
covariates for modeling SSM.

ESA Sentinel-1 Mission
Sentinel-1 mission was launched by the European Space
Agency (ESA), which consists of C-band SARs situated at
a two-satellite constellation operating at dual polarizations:
single co-polarization with vertical transmit/vertical receive
(abbreviated as VV) and dual-band cross-polarization with
vertical transmit/horizontal receive (abbreviated as VH). It
measures the land surface backscatter intensity at VV and
VH polarizations with a varying incidence angle with a spatial

resolution of 5m × 20m and a revisit time of 6–12 days. The
use of a C-band microwave signal leads to a reduced penetration
depth of Sentinel-1’s sensors under moderate vegetation cover
compared to SMAP. The relationship between SAR backscatter
and the dielectric constant of the soil (a function of soil
moisture) enables retrieval of SSM from the Sentinel-1 data
(Paloscia et al., 2013; Fang et al., 2019). Because the existing
global empirical model of the Sentinel-1 mission only retrieves
relative SSM instead of absolute soil volumetric water content
(Bauer-Marschallinger et al., 2018), and because the physical
retrieval model is currently under development (Lievens et al.,
2017), the backscatter and incidence angle data were selected as
covariates. Here, classical physical models (e.g., Oh et al., 1992;
Fung, 1994; Dubois et al., 1995) were not used to retrieve SSM
from the Sentinel-1 data because researchers have reported poor
performance of the physical models when SSM is large and land
surface roughness is high (Merzouki et al., 2011; Lievens et al.,
2017).

The backscatter data were preprocessed using the Sentinel-
1 Toolbox (https://sentinel.esa.int/web/sentinel/toolboxes/
sentinel-1) within the Google Earth Engine platform (https://
developers.google.com/earth-engine/sentinel1), which involves
thermal noise removal, radiometric calibration, and terrain
correction using Shuttle Radar Topography Mission (SRTM)
30-m digital elevation model (Rabus et al., 2003). To minimize
the speckle effects of the resampled Sentinel-1 radar data (Gao
et al., 2017), additional preprocessing procedures were applied
using the Google Earth Engine platform (Gorelick et al., 2017).
This was suggested by Bauer-Marschallinger et al. (2018) and
involved dynamic masking the extreme backscatter values
outside the normal ranges for VV (−5 to −25 dB) and VH (−10
to −30 dB), spatial aggregating to 100m × 100m, and filtering
with a 3 × 3 Gaussian filter. The processed Sentinel-1 data
included backscatter data and incidence angle values at a 100m
× 100m resolution with a revisit time of 6–12 days, which were
used as time-varying covariates for modeling SSM.

To facilitate the retrieving of SSM from Sentinel-1 data, several
temporal indices were calculated from the processed Sentinel-1
backscatter images pixel-wise to account for the land surface
characteristics, such as temporal minimum, mean, maximum,
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and standard deviation (SD) of the backscatter data. These
temporal statistics of the sensor measurements over time contain
characteristics of the soil and vegetation in the field (Huang
et al., 2019) and were used as time-constant covariates for
modeling SSM.

Terrain Parameters
In addition to remote sensing datasets that can be directed used
to retrieve SSM, terrain parameters that characterize topography
have been used to indirectly model or downscale SSM (Entekhabi
et al., 2010;Malone et al., 2012; Guevara andVargas, 2019). In this
study, a 30-m Shuttle Radar TopographyMission (SRTM)Digital
Elevation Model (DEM) was used to calculate several primary
and secondary terrain parameters, including slope, aspect, profile
curvature (profc), plan curvature (planc), tangential curvature
(tangc), mean curvature (meanc), and surface roughness factor
(roughness) following (Olaya, 2009; Csillik and Drăguţ, 2018).

Soil Properties
Soil physical and chemical properties affect soil water retention
and redistribution in space and time (Mohanty and Skaggs,
2001). Although finer-resolution maps of soil properties are
available in many countries where the soil moisture networks
are installed (e.g., Grundy et al., 2015; Ramcharan et al., 2018;
Chaney et al., 2019), a global map of soil properties was used for
here given its consistency across the world. In this study, 250-m
resolution maps of soil properties were used, which include clay
and sand content, bulk density (BD), soil organic carbon content
from the SoilGrids (Hengl et al., 2017). To avoid artifacts in final
SSM maps caused by the 250-m input soil property maps, these
soil maps were resampled to 100-m using bilinear interpolation
using Google Earth Engine.

Land Cover
Land surface characteristics vary with different LC types and
had different impacts on the spatial and temporal variations
of SSM and the performance of SSM models (Entekhabi et al.,
2010). To facilitate the interpretation of the SSMmodels, a 100-m
global land cover (LC) data were downloaded during 2016 from
the Copernicus Global Land Service (epoch 2015). Five merged
LC types were selected, including cultivated, herbaceous, forest,
shrub, and bare land. The LC type was not used as covariates
for retrieving SSM because it was not selected as the important
variable by the empirical quantile random forest model (results
not shown here).

In situ Soil Moisture Monitoring Networks
In situ soil moisture networks have been established across the
world to provide long-term climate reference measurements
for meteorological monitoring, hydrological modeling, and
validating of remote sensing products (Dorigo et al., 2011;
Quiring et al., 2016; Bogena et al., 2018). Here, three types of
soil moisture networks were used in this study: continental-,
regional-, and field- scale networks (Figure 1). A summary of
the number of stations used in this study is provided in Table 3.
Details about the site characterization of these networks can be
found in the references mentioned above.

Continental-scale soil moisture networks consist of National
Oceanic and Atmospheric Administration sponsored US Climate
Reference Network (USCRN, Bell et al., 2013) and the
United States Department of Agriculture Natural Resources
Conservation Service soil climate analysis network (SCAN,
Schaefer et al., 2007). These networks are sparsely situated across
the USA with several stations within each state, but they cover
a variety of climate regimes, terrain parameters, land cover
types, and soil texture classes. It was expected that the use of
these widely spread networks can provide information on the
relationship between climate regimes, terrain parameters, land
cover types, and soil texture classes with SSM and improve the
robustness and transferability of the SSM model.

Regional-scale soil moisture networks consist of the Danish
hydrological observatory (HOBE) in Denmark (Jensen and
Illangasekare, 2011), Murrumbidgee soil moisture monitoring
networks of the OZNET in New South Wales, Australia (Smith
et al., 2012), Soil Moisture Measurement Stations Network of
the University of Salamanca, Spain (REMEDHUS) (Martínez-
Fernández and Ceballos, 2005), Romania Soil Moisture Network
(RSMN) (Haggard et al., 2010), SMOSMANIA network in
France (Calvet et al., 2007), and a subset of the TERrestrial
ENvironmental Observatories in Germany (TERENO-Rur)
(Bogena et al., 2018). These networks were selected because
they were located at the regional scale (<50,000 km2) and
can be used to characterize variations of surface soil moisture
within catchments, and span a variety of soil moisture and
climatic regimes each with significant spatial variability. It was
expected that soil moisture measurements from these regional-
scale networks can provide detailed information for retrieving
SSM within the coarse pixels of the SMAP SSM product (36 km).
Although there are other in situ soil moisture networks across
the globe, we did not use them because either there are too
few stations (<4) within the network/too few measurements
available during 2016–2019, or the soil moisture sensors had
a large measuring footprint (>100m) such as the cosmic-ray
neutron probes.

Establishing Empirical SSM Retrieval
Models
Unlike previous studies that downscaled coarse-resolution SSM
products (e.g., SMAP, SMOS) using change detection algorithms
with fine-resolutions remote sensing data (e.g., Fang et al., 2019;
Ojha et al., 2019) or a high-resolution digital elevation model
(Guevara and Vargas, 2019), we applied an empirical modeling
approach to retrieve SSM from in situ soil moisture network
measurements. Although this approach required a large number
of training datasets, it may help account for bias within the input
covariates (e.g., SMAP SSM) during the modeling process.

Here, a quantile random forest algorithmwas used to establish
the empirical model. Random Forest is a nonparametric model
based on similarities among observations to fit decision trees
(Breiman, 2001). To determine a split at a node in a tree, a
random subsample of predictor variables is taken to select the
predictor that minimizes the regression error. Nodes continue
to be split until no further improvement in error is achieved.
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FIGURE 1 | Locations of continental—(SCAN, USCRN), regional—(HOBE, OZNET, REMEDHUS, RSMN, SMOSMANIA, TERENO-Rur), and

field—(TERENO-Wüstebach) scale soil moisture networks. Training and validation stations from the continental- and regional- scale networks were highlighted in

different colors and the local training (“spiking”) and validation stations from the field-scale network were marked in large and small solid circles, respectively.

The prediction is achieved with an adaptive neighborhood
classification and regression. Omitted observations, termed the
“out-of-bag” sample, are used to compute the regression errors
for trees (Breiman, 2001; Hastie et al., 2009). To estimate the
quantiles of the predictions, the Quantile Random Forest (QRF)
algorithm was applied using the R “quantregForest” package
(Version 1.3-7, Meinshausen and Meinshausen, 2017), which
estimates the conditional distribution based on a weighted
distribution of observed model response values (Meinshausen,
2006). The “train” function from the “caret” function was used to
estimate the model parameters based on 5-fold cross-validation
with “root mean squared error” as the selection metrics. To avoid
overfitting, we compared the models established using 10, 20, 50,
and 100 trees with the minimum size of the terminal nodes of
5 and 10. Based on the root mean square error and R2 on the
training and validation data, the maximum number of trees and
minimum size of the terminal nodes were empirically set to 50
and 10, respectively, so that a further increase of the number of
“trees” did not significantly improve the model performance for
the training dataset and the difference between the root mean
square errors of the training and validation dataset was small.

To train the QRF model and evaluate the model performance
at the regional scale, two types of validation methods were

used. First, the evaluation was done for different LC types with
randomly selected 75% stations from all soil moisture networks
as the training dataset and the remaining 25% stations from all
soil moisture networks as the validation dataset (as shown in
Figure 1). Secondly, the evaluation was performed on individual
soil moisture networks. To achieve this, the model was trained
using coupled SSM measurements and covariates from the
continental networks (USCRN and SCAN) and then applied onto
the regional networks (HOBE, OZNET, REMEDHUS, RSMN,
SMOSMANIA, TERENO-Rur) for validation.

For both evaluation methods, the coefficient of determination
(R2), Pearsons’ correlation coefficient (r), mean error (ME,
bias), and root mean squared error (RMSE, accuracy) were
calculated for both calibration (5-fold cross-validation results)
and validation datasets using the measured SSM at the stations
and predicted SSM from the QRF models.

The SMAP SSM estimates on the training and validation SSM
network stations were also used for evaluating the performance
of the QRF model. For brevity, we called it the “SMAP
model.” It should be noted that we did not validate the
performance of SMAP data at the regional scale using individual
continental/regional soil moisture sensor networks because there
was only one station with the 36-km pixel of SMAP data. Instead,
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TABLE 3 | Summary statistics of land cover types and surface soil moisture (SSM) at continental—(SCAN, USCRN), regional—HOBE, OZNET, REMEDHUS, RSMN,

SMOSMANIA, TERENO-Rur), and field—(TERENO-Wüstebach) scale soil moisture monitoring networks for training/spiking and validation datasets.

Scale Network Country No.

Stations

Land cover SSM (Training/spiking) SSM (Validation)

No. stations Min. Mean Median Max SD No.

stations

Min. Mean Median Max SD

Continental SCAN USA 145 Cultivated (38%),

Herbaceous (26%),

Forest (21%),

Shrub (12%),

Bare (3%)

108 0.00 0.18 0.16 0.62 0.12 37 0.00 0.20 0.20 0.55 0.13

USCRN USA 75 Cultivated (20%),

Herbaceous (39%),

Forest (28%),

Shrub (9%),

Bare (4%)

55 0.00 0.18 0.17 0.58 0.12 20 0.00 0.21 0.20 0.61 0.12

Regional HOBE Denmark 24 Cultivated (71%),

Herbaceous (8%),

Forest (21%)

18 0.01 0.19 0.18 0.49 0.08 6 0.00 0.19 0.18 0.40 0.09

OZNET Australia 10 Cultivated (40%),

Herbaceous (60%)

7 0.00 0.15 0.13 0.40 0.10 3 0.01 0.14 0.12 0.41 0.10

REMEDHUS Spain 10 Cultivated (90%),

Shrub (10%)

7 0.00 0.10 0.09 0.33 0.07 3 0.04 0.18 0.17 0.46 0.08

RSMN Romania 13 Cultivated (92%),

Forest (8%)

9 0.00 0.13 0.13 0.44 0.05 4 0.03 0.15 0.14 0.41 0.06

SMOSMANIA France 21 Cultivated (48%),

Herbaceous (5%),

Forest (38%), Shrub

(10%)

15 0.04 0.21 0.19 0.51 0.11 6 0.03 0.16 0.14 0.39 0.09

TERENO-Rur Germany 5 Cultivated (80%),

Forest (20%)

4 0.00 0.22 0.20 0.49 0.10 1 0.18 0.27 0.26 0.38 0.06

Field TERENO-

Wüstebach

Germany 94 Herbaceous (38%),

Forest (62%)

8 0.18 0.35 0.32 0.61 0.10 86 0.00 0.35 0.32 0.66 0.10

the use of SMAP data was to provide a reference point for
assessing the variations of SSM at the regional scale. This is
reasonable given that similar benchmarking analyses have been
carried in other studies to assess the performance of SMAP and
other SSM products when dense soil moisture networks are not
available (Lievens et al., 2017; Bauer-Marschallinger et al., 2018;
Das et al., 2019; Guevara and Vargas, 2019; Reichle et al., 2019).

Evaluating the Effects of Different
Covariates
To evaluate the effects of different input covariates, two methods
were used. First, variable importance of the QRF model
was calculated based on the mean increase in node purity
(IncNodePurity), representing the decrease in the sum of squares
by including each covariate. A large IncNodePurity indicates the
covariate is more important in the model than others. Second,
different types of covariates were dropped in turn (e.g., SMAP,
Sentinel-1, terrain parameters, soil properties) to fit the QRF
models. The performance of these reduced QRF models was
compared against the full model to understand the relative
importance of each covariate.

Evaluating the Global SSM Model at the
Field Scale With and Without “Spiking”
Samples From a Dense Soil Moisture
Network
SSM was predicted using the global model onto one field-
scale soil moisture network (TERENO-Wüstebach, Germany).
The global model used was established with 75% training
soil moisture stations across different networks (countries) to
account for the hetereogeneity in land surface (Figure 2). The
field-scale network consists of ∼150 soil sensor stations across
a hillslope with elevation increasing from 595m in the north
to 628m in the south (Bogena et al., 2018). Soil moisture is
measured with EC5 and 5TE sensors (Decagon, Devices Inc.,
Pullman, WA, USA). The mean annual precipitation is about
1,100–1,200mm and the main vegetation is Norway Spruce
(Stockinger et al., 2014). During the late summer of 2013, Spruce
trees were clear-cut in an area of 9 ha to initiate the regeneration
of near-natural beech forest (Figure 1, Wiekenkamp et al., 2020).
In this study, daily averaged SSM data were used from 94
stations from 2016 to 2018. These SSM stations were split into
a local training dataset consisting of ∼10% randomly selected
stations from the total stations (5 under forest and 3 under
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FIGURE 2 | Flowchart of the global surface soil water model established using data fusion and machine learning and different evaluation approaches.

herbaceous soils) and an independent validation dataset with the
remaining stations.

First, we evaluated the performance of the global SSM on
the validation dataset without using any local training data.
Secondly, we incorporated the 10% local training dataset into
the continental and regional dataset and refitted the QRF models
before evaluation on the remaining validation dataset. The
use of local training dataset for calibrating empirical models
(sometimes termed as “spiking”) has been adopted in many
other fields such as the soil spectroscopy libraries established
using datasets collected from different countries or instruments
(Guerrero et al., 2010; Wetterlind and Stenberg, 2010; Viscarra
Rossel et al., 2016). This is particularly useful when the empirical
models have low transferability where the feature spaces (e.g.,
land surface parameters) of training and validation datasets
vary greatly.

Last, we also evaluated the effects of the resolution of Sentinel-

1 data on the model performance and predicted SSM at the field

scale. To achieve this, we calculated Sentinel-1 data and their
temporal statistics at 10, 30, and 100m resolutions and used them
to refit the QRF models with and without in situ soil sensor

measurements. The model performance and the spatial patterns
of predicted SSMmaps were compared. This analysis was done to
assess the sensitivity of Sentinel-1 data on themodel performance
at the field scale.

Evaluating the Global SSM Model at the
Field Scale Using Soil Property Maps With
Different Resolutions
The global model established using 75% training soil moisture
networks across all the networks was also evaluated ono an
80-ha cropland field in Wisconsin, USA (42.5742◦ N, 9.1151◦

W) during the early growing season (cropped with corn) in
2018. Here, the global model was not “spiked” with local
soil moisture measurements because field-scale soil moisture
networks were not available. Instead, the fitted global model
was directly applied to the cropland field. We compared the
SSM maps predicted using soil property maps at a 250-m
resolution (obtained from Hengl et al., 2017, resampled via
bilinear interpolation to 100m to avoid artifacts) and a 100-
m resolution (obtained from Ramcharan et al., 2018). SSM
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was predicted across the entire field on wet (2018/06/16)
and dry (2018/06/28) soil conditions for comparison. The
resolution of Sentinel-1 data was held as 100m (Figure 2).
This analysis was done to evaluate the effects of the resolution
and accuracy of soil property maps on mapping SSM at the
field scale.

RESULTS

Model Performance of the QRF and SMAP
Product and Variable Importance
The model performance of the fitted QRF model is presented
in Figure 3. The model has an ME of −0.00 m3 m−3, RMSE

of 0.05 m3 m−3, and R2 of 0.784 for the training dataset
based on 5-fold cross-validation and reduced performance with
an ME of 0.00 m3 m−3, RMSE of 0.07 m3 m−3, and R2 of
0.524 for the validation dataset. This indicates that the model
was slightly overfitting. The SSM estimates from SMAP had
an overall similar performance (no significant difference) for
the same validation dataset with an ME of −0.01 m3 m−3,
RMSE of 0.08 m3 m−3, and R2 of 0.508. It should be noted
that this comparison was only based on the continental to
regional soil moisture networks (see sections Delineating SSM
Variations at the Field-Scale via Data Fusion, The Effect of
“Spiking” on the Global SSM Model, The Effect of Resolutions
of Soil Property Maps on the SSM Model for comparison at the
field scale).

FIGURE 3 | Comparison of the performance and variable importance of quantile random forest (QRF) models on regional- and continental- scale training (70% of the

stations from all networks) and validation (remaining 30% stations from all networks) datasets. The models were established using different combinations of input

covariates. R2, coefficient of determination; ME, mean error; RMSE, root mean squared error.
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The importance of the variables is presented in Figure 3.
SMAP was ranked as the most important time-varying variable,
followed by Sentinel-1 backscatter data measured at VH and VV
polarizations, and incidence angle of the Sentinel-1. In terms of
the time-constant variables, sand content was most important,
followed by elevation, slope, the temporal SD of VH backscatter
data, bulk density, temporal mean of VH backscatter data, and
other variables.

The importance of different variables was also demonstrated
after dropping each of the covariates from the full model. As
shown in Figure 3, the reduced models had worse performance
compared to the full model. Particularly, dropping SMAP data
significantly reduced the model performance, followed by soil
properties and terrain parameters. It is noted that at the
continental to regional scales, the reduced model established
without Sentinel-1 data and their temporal statistics only had a
slightly worse performance than the full model (Reduced model:
ME= 0.00 m3 m−3, RMSE= 0.07 m3 m−3, R2

= 0.518).

Model Performance of the QRF and SMAP
Product Within Different Land Cover Types
Pearson’s r, ME, and RMSE calculated between measured
SSM from the in situ soil moisture networks and predicted
SSM from the QRF model or SMAP were used to evaluate
the model performance within different land cover types at
each of the validation soil moisture stations (see Table 4 for
summary statistics of the training and validation datasets). As
shown in Figure 4, the empirical QRF full model established
via a combination of SMAP, Sentinel-1 (aggregated at 100m)
and land surface parameters have similar performance (non-
significant difference) compared to the SMAP SSM estimates at
the continental to regional scales.

However, the performance of both SSM models varied greatly
across the LC types. It was evident that the full QRF and SMAP
models weremore accurate under herbaceous (mean r= 0.682 vs.
0.696, RMSE = 0.08 vs. 0.07 m3 m−3) and cultivated (mean r =
0.624 vs. 0.621, RMSE= 0.07 vs. 0.08m3 m−3), than shrub (mean
r = 0.583 vs. 0.626, RMSE= 0.07 vs. 0.06 m3 m−3), forest (mean

r= 0.611 vs. 0.654, RMSE= 0.08 vs. 0.09 m3 m−3), and bare soils
(mean r = 0.433 vs. 0.510, RMSE= 0.06 vs. 0.05 m3 m−3).

It should also be noted that large variations of model
performance (i.e., Pearson’s r, ME, RMSE) were observed for all
land cover types among different ground SSM stations, indicating
strong heterogeneity of land surface parameters at the field scale
that cannot be captured by the resolution of the input remote
sensing or land surface parameters. In summary, we note that
both the full QRF model and SMAP were able to retrieve SSM
dynamics under herbaceous, cultivated, shrub, and forest soils
at the continental to regional scales with a moderate level of
uncertainty (a global performance of ME of 0.00 m3 m−3, RMSE
of 0.07 m3 m−3, and R2 of 0.524 for the QRF model and ME of
−0.01 m3 m−3, RMSE of 0.08 m3 m−3, and R2 of 0.508 for the
SMAP model).

Model Performance of the QRF and SMAP
Product Within Different Networks
The model performance was also evaluated for different soil
moisture networks with the continental-scale USCRN and SCAN
networks as the training datasets and the remaining regional-
scale networks as the validation dataset. As shown in Figure 4,
the model performance varies with the network. Both the full
QRF and SMAP models performed well in REMEDHUS (mean
r = 0.754 vs. 0.747, RMSE = 0.07 vs. 0.07 m3 m−3), followed by
SMOSMANIA (mean r = 0.707 vs. 0.754, RMSE = 0.08 vs. 0.08
m3 m−3), HOBE (mean r= 0.616 vs. 0.645, RMSE= 0.06 vs. 0.07
m3 m−3), TERENO (mean r = 0.632 vs. 0.669, RMSE = 0.08 vs.
0.07 m3 m−3), and moderately well in RSMN (mean r = 0.538
vs. 0.538, RMSE = 0.10 vs. 0.10 m3 m−3). Interestingly, the QRF
model outperformed SMAP model in OZNET (mean r = 0.827
vs. 0.859, RMSE= 0.08 vs. 0.11 m3 m−3). These results indicated
that the empirical QRFmodel has a relatively good transferability
across the different networks and can be used to estimate SSM at
the regional scales outside the USA. However, the performance of
the models would vary in different regions, most likely due to the
variability of land surface parameters such as LC types (Table 3).

TABLE 4 | Summary statistics of land cover and surface soil moisture (SSM) at the training and validation datasets evaluated by land cover types.

Scale Network Land cover No. stations Min. Mean Median Max SD

Training SCAN, USCRN,

HOBE, OZNET,

REMEDHUS,

RSMN,

SMOSMANIA,

TERENO-Rur

Cultivated (41%),

Herbaceous (23%),

Forest (24%),

Shrub (9%),

Bare (2%)

223 0.00 0.18 0.16 0.62 0.12

Validation SCAN, USCRN,

HOBE, OZNET,

REMEDHUS,

RSMN,

SMOSMANIA,

TERENO-Rur

Cultivated (44%),

Herbaceous (29%),

Forest (16%),

Shrub (8%),

Bare (4%)

80 0.00 0.20 0.18 0.61 0.12

Both training and validaiton datasets consist of continental- (SCAN, USCRN) and regional- (HOBE, OZNET, REMEDHUS, RSMN, SMOSMANIA, TERENO-Rur) scale soil moisture

monitoring networks.
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FIGURE 4 | Boxplots of the performance of SMAP L3 product (SMAP) and quantile random forest (QRF) models on individual regional- and continental- scale

validation station evaluated by land cover (trained and validated using 70 and 30% of stations from all networks) and by network (trained using continental

networks—USCRN and SCAN and validated using other regional networks). The QRF models were established using all input covariates with Sentinel-1 data

aggregated at 100m (Full w/100m S1). R2, coefficient of determination; ME, mean error; RMSE, root mean squared error.
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Delineating SSM Variations at the
Field-Scale via Data Fusion
Although the performance of the coarse-resolution SMAPmodel
was similar to that of the QRF model at the regional to
continental scales, the SMAP maps cannot reveal spatial SSM
variations at the field scale. As shown in Figure 5, dropping any
covariate from the full model (e.g., SMAP, Sentinel-1, terrain
parameters, soil properties) would reduce themodel performance
evaluated at the field-scale soil moisture networks. The SMAP
model was able to pick up the temporal variations of SSM
across the field from 2016 to 2018 (Figure 6) and at relatively

wet (2018/04/05) and dry (2018/04/23) soil moisture conditions
(Figure 7) but it failed to delineate within-field variations in SSM
across the TERENO-Wüstebach site. By comparison, the data
fusion based full QRF model delineated both temporal dynamics
in SSM and spatial variations across the field between forest and
herbaceous soils and along the slope gradient (Figures 6, 7).

The effects of the spatial resolutions of the Sentinel-1 data
(and their temporal statistics) were also presented. Although

SSM maps generated with Sentinel-1 data aggregated at different

resolutions showed differences in SSM at 10, 30, and 100m
resolutions (Figures 6, 7), the overall mean model performance

FIGURE 5 | Boxplots of the performance of SMAP L3 product (SMAP) and quantile random forest (QRF) models on individual field-scale validation station

(TERENO-Wüstebach) evaluated by land cover (forest vs. herbaceous). The QRF models were first established without local training datasets using different input

covariates including full model with Sentinel-1 aggregated at 100m (Full w/100m S1, non-spiking) and the corresponding reduced models by dropping SMAP

(Reduced w/o SMAP, non-spiking), Sentinel-1 (Reduced w/o S1, non-spiking), terrain parameters (Reduced w/o Terrain, non-spiking), or soil properties (Reduced w/o

Soil), and full models with Sentinel-1 aggregated at 10m (Full w/10m S1, non-spiking) and 30m (Full w/10m S1, non-spiking). QRF models were also established by

including 10% local training stations at TERENO-Wüstebach (5 forest stations and 3 herbaceous stations, see Figure 1) with different resolutions of Sentinel-1 data

(e.g., Full w/10m S1, spiking). R2, coefficient of determination; ME, mean error; RMSE, root mean squared error.
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FIGURE 6 | Measured (A) vs. predicted surface soil moisture (SSM, m3 m−3 ) from SMAP L3 product (SMAP, B) and the quantile random forest (QRF) models at

selected stations of the field-scale soil moisture network (TERENO-Wüstebach). The QRF models were first established without local training datasets using different

input covariates including full model with Sentinel-1 aggregated at 100m (C) and the corresponding reduced models by dropping SMAP (D), Sentinel-1 (E), terrain

parameters (F), or soil properties (G), and full models with Sentinel-1 aggregated at 10m (H) and 30m (I). QRF models were also established by including 10% local

training stations with different resolutions of Sentinel-1 data at 10m (J), 30m (K), and 100m (L). R2, coefficient of determination; ME, mean error; RMSE, root mean

squared error. Validation stations under forest: 23 (upslope), 1 (mid-slope) and 125 (downslope); validation stations under herbaceous: 44 (upslope), 94 (mid-slope),

and 65 (downslope).

evaluated at the independent field-scale soil moisture stations
were not significantly different (Figure 5).

The Effect of “Spiking” on the Global SSM
Model
The effect of incorporating local training dataset to the global
SSM model (“spiking”) was presented. When the global SSM
model was applied to the field without using any local training
dataset, it can delineate the variations of SSM over time and
across the field under forest and herbaceous soils and along the
slope (e.g., Figures 6C, 7B–D,J–L). However, the global SSM
models were largely biased with mean ME values of 0.07, 0.08,
and 0.06 m3 m−3 under forest (0.00 m3 m−3 for SMAP) and
meanME values of 0.16, 0.16, and 0.15m3 m−3 under herbaceous
soils (0.10 m3 m−3 for SMAP) for full models established
using 10, 30, and 100m Sentinel-1, respectively. In addition,
the spatial variations (spread) of SSM were smoothed without
the use of any “spiking” datasets compared to measured SSM

(Supplementary Figures 1–3). This suggested the transferability
of the empirical model was poor from the regional scale to field
scale without local calibration data.

After 10% of the local training data were added, the bias
values of the global SSM models significantly reduced with mean
ME values of −0.00, −0.01, and −0.01 m3 m−3 under forest
(significantly different from non-spiking models with P < 0.001)
and mean ME values of 0.07, 0.08, and 0.08 m3 m−3 under
herbaceous soils (significantly different from non-spiking models
with P< 0.05) (Figure 5). As shown in Figures 6J–L, 7F−H,N–P

and Supplementary Figures 1–3, the predicted SSM from these
“spiked” QRF models showed similar spatial patterns of SSM as
measured by the in situ soil moisture sensors while SMAP SSM
was uniform across the field on individual days. In addition, the
spread of QRF models estimated SSM (as shown in histograms
in Supplementary Figures 1–3) were also greatly improved after
the “spiking” as compared to non-spiking models and the SMAP
SSM. This suggests the transferability of the empirical model
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FIGURE 7 | Measured (interpolated soil moisture network measurements using inverse distance weighing, A,I) vs. predicted surface soil moisture (SSM, m3 m−3)

from the SMAP L3 product (SMAP, E,M) and quantile random forest (QRF) models on wet (2018/04/05, top) and dry (2018/04/23, bottom) soil moisture conditions

across the field-scale TERENO-Wüstebach soil moisture network. The QRF models were established using different input covariates without (non-spiking, B–D,J–L)

and with (spiking, F–H,N–P) local training datasets and using Sentinel-1 aggregated at 10, 30, and 100m.

can be improved by including a small number of local training
datasets into the model.

Here, we did not estimate the spatial structure of themeasured
SSM vs. predicted SSM across the field due to the small number
of SSM stations used to generate the maps of measured SSM.
This is because previous studies have suggested a minimum
number of 100 sample points is required to accurately estimate
the variogram parameters (Webster and Oliver, 1992). Instead,
we plotted the measured SSM interpolated via inverse distance
weighing using in situ soil moisture sensors vs. predicted
SSM by the QRF model with 10-m Sentinel-1 and with the
“spiking” dataset. As shown in Figure 8, from 2018/04/05 to
2018/04/23, both measured SSM and predicted SSM displayed
a drying pattern across the field. The “spiked” QRF model
was accurate for most parts of the field with an error of
less than 0.05 m3 m−3, where “spiking” stations were located
(Figure 8). However, the QRF model underestimated SSM in
herbaceous soils in the center of the field and overestimated
SSM in forest soils mostly in the western and eastern central
regions of the field. The former may be caused by the
distribution of sensors in the center of the field (e.g., a local
valley), which led to small variations of SSM observed in the

central region. The latter may be because no “spiking” samples
were selected from these regions (Figure 8). To improve the
performance of the empirical model in these regions, more
training datasets are required to capture the feature spaces that
have different soil moisture patterns due to different LC types,
topography, soil properties, and climate patterns compared to
the patterns observed in the existing regional and continental
scale datasets.

The Effect of Resolutions of Soil Property
Maps on the SSM Model
The effects of the resolution and accuracy of soil property
maps on predicting SSM at the field scale are presented in
Figure 9. It was noted that the resampled 250-m sand content
map (Figure 9A) presented a similar trend to the 100-m map
(Figure 9B) but large differences were observed in the northwest
and southeast corners of the field (larger than 9%, Figure 9C).
Similar results were also identified for other properties and not
shown here.

SSM predicted from 250- and 100-m soil property maps (clay,
sand, BD, and SOC) showed similar spatial patterns across the
field. Under wet conditions, predicted SSM varied from 0.15 to
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FIGURE 8 | Measured (interpolated soil moisture network measurements using inverse distance weighing, A–D) vs. predicted surface soil moisture (SSM, m3 m−3)

from the quantile random forest (QRF) model during a drying event from 2018/04/05 to 2018/04/23 across the field-scale TERENO-Wüstebach soil moisture network

(E–H). The QRF model was established with local training datasets (spiking) and Sentinel-1 aggregated at 10m. The differences were calculated by subtracting QRD

model estimates pixel-wise with measured SSM values (I–L).

larger than 0.30 m3 m−3 with the use of the 250-m soil maps
(Figure 9D) and from 0.15 to 0.30 m3 m−3 with the 100-m soil
maps (Figure 9E). Under dry conditions, predicted SSM varied
from less than 0.15–0.30 m3 m−3 with the 250-m soil maps
(Figure 9G) and less than 0.15–0.27 m3 m−3 with the 100-m soil
maps (Figure 9E). For most parts of the field, the differences of
SSMmaps due to the use of different resolutions of soil maps were
small (absolute difference <0.03 m3 m−3). However, compared
to the maps established using 100-m soil data, use of 250-m soil
property maps led to a slight under-estimation of SSM in the
northwest corner (∼0.06 m3 m−3) but a large over-estimation
of SSM in the southeast corner (∼0.09 m3 m−3). The regions of
largest differences were consistent with the differences in input
sand content maps.

DISCUSSION

Model Performance in Different Land
Cover and Networks
In terms of the model performance between different LC types,
the empirical QRF model is similar to the 36-km SMAP_L3
SSM product under cultivated, herbaceous and bare soils. This
indicates that the data fusion based model can retrieve SSM
temporal dynamics well when the SMAP model performs well.
A slightly better performance was observed in SMAP data
under forest and shrub (Figure 4), which is most likely due
to the use of a C-band microwave signal from Sentinel-1
that has a reduced penetration depth compared to the L-band

SMAP passive microwave radiometer under moderate to dense
vegetation cover conditions (Lievens et al., 2017). In terms of the
overall mean r values for both SMAP and QRF models (0.433
vs. 0.510, Figure 4), this may be caused by the small number of
training soil moisture stations (7 from USCRN and SCAN) and
the overall dry land surface conditions at these sites.

The independent network-based validation results shown in
Figure 4 suggest that the empirical SSM model can predict SSM
outside the training stations across the globe. However, it should
also be noted that the performance of the empirical model varies
with locations. It can be concluded that the empirical SSM
model performs well in OZNET, REMEDHUS, SMOSMANIA,
HOBE, TERENO, and under similar land surface conditions
to these networks. In terms of the moderate performance of
the empirical model and the SMAP model in RSMN, this
may be attributed to the complex land surface characteristics
(terrain and soil types) within the mountainous regions of the
Romania Soil Moisture Network (Haggard et al., 2010) that affect
the relationships between SSM with backscatter and brightness
temperature collected from Sentinel-1 and SMAP satellites.

Particularly, it should be noted that the empirical model
outperforms the SMAP model in OZNET, which is consistent
with the distribution of cultivated and herbaceous land in
this region (no shrub or forest) (Table 3). This indicates
that the empirical model approach can be potentially applied
to agricultural regions for irrigation management where
information about the field-scale variations of soil moisture is
needed but cannot be obtained from coarse-resolution remote
sensing platforms like SMAP. This needs to be further tested in
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FIGURE 9 | Maps of soil sand content (%) at 250m (obtained from Hengl et al., 2017, resampled to 100 m with bilinear interpolation, A) and 100m (obtained from

Ramcharan et al., 2018, B) with the predicted surface soil moisture (SSM, m3 m−3 ) from the quantile random forest (QRF) model (without local calibration— “spiking”)

using the 250m (D,G) and 100m (E,H) soil property maps on wet (2018/06/16) and dry (2018/06/28) soil conditions across a cropland in Wisconsin, USA. The

differences in soil sand content (C) and differences in estimated SSM between 100 and 250 m soil property maps (F,I) are also presented.

the future with intensive ground soil moisture surveys or dense
soil moisture networks installed during the crop growing seasons
(Huang et al., 2019; Ojha et al., 2019).

A Tradeoff Between Spatial and Temporal
Resolutions of Remote Sensing Soil
Moisture Products
Current remote sensing soil moisture missions operating at
the global scale are based on passive microwave (e.g., SMOS,
SMAP, SMAR2, ASCAT), active microwave (e.g., Sentinel-1,
RADARSAT-2) and gravity (GRACE). As shown in Figure 10

and summarized by others (Robinson et al., 2008; Wang and
Qu, 2009; Ochsner et al., 2013; Vereecken et al., 2014), there
is a tradeoff between the spatial and temporal resolutions of
these satellites. In general, active microwave satellites have a fine
spatial resolution less than 1 km but the temporal resolution
(revisit time) is more than one week. By contrast, passive
microwave satellites have a coarse spatial resolution larger
than 10 km but the temporal resolution is higher (1–3 days).

The gravity-based mission (GRACE) measures soil water in
the deep profile and has a large spatial resolution (>100 km)
with a temporal resolution of ∼1 month (Scanlon et al.,
2019).

The empirical SSM model established here has a spatial
resolution of ∼100m and revisit time of 6–12 days (depending
on the location of the study sites) across the globe. Many

researchers have attempted to retrieve SSM at a similar (100m)
or higher (30m) spatial resolution using Sentinel-1 data at

the field scale using a larger number of ground-based SSM
measurements (e.g., Alexakis et al., 2017; Gao et al., 2017;
Attarzadeh et al., 2018). However, the model performance

may deteriorate with increasing spatial resolution. Based on
the work of Bauer-Marschallinger et al. (2018), the radar
signal has a large noise (speckle effect) at the field scale
due to the interference with heterogeneous vegetation, terrain
surface, and soil properties. These authors suggested upscaling
Sentinel-1 data to a larger spatial resolution (e.g., 500m) to
reduce the sensor’s noise. Similarly, Ojha et al. (2019) explored
the potential to use a stepwise disaggregation method with
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FIGURE 10 | Spatial and temporal resolutions of current remote sensing soil

moisture monitoring satellites. Satellites used in this study are highlighted in

black and other satellites designed to monitor soil moisture are marked in gray.

the disaggregation based on physical and theoretical scale
change (DISPATCH) algorithm to map SSM using SMAP,
MODIS, and Landsat data and found that an intermediate
spatial resolution of aggregation is required to maximize the
model performance.

In this study, we evaluated the effects of spatial resolutions
of Sentinel-1 data on the performance of the global SSM model
on the field-scale soil moisture network. It was found that the
model performance did not vary significantly with each other
when the resolutions of Sentinel-1 data changed from 10 to 30m
and 100m. This was consistent with the finding of Fang et al.
(2019) and was most likely attributed to the intrinsic variability
and spatial dependence of SSM at the field scale across the field-
scale network. In addition, the use of high-resolution terrain
parameters and soil property maps may compensate for the loss
of spatial information of land surface parameters (e.g., 30-m
DEM) when the resolution of Sentinel-1 data changes.

The limitation of in situ soil moisture sensor networks used
in this study should also be noted. In this study, all the soil
moisture measurements used provide data at a local scale (<1
m2) while the Sentinel-1 data have an approximate resolution of
10m. There are two potential solutions for future improvement.
One approach is to use in situ soil moisture networks that
can collect soil moisture information across a large radius [e.g.,
cosmic-ray neutron probes, refer to Franz et al., 2015; Montzka
et al., 2017, for examples]. In addition, it is possible to generate
“soil moisture observation data” that has a similar scale to the
remote sensing data for building the SSM models using different
upscaling approaches or land surface models (e.g., Crow et al.,
2005, 2012; Qin et al., 2013; Wang et al., 2015).

Potential for Field-Scale Research and
Applications
The relatively good transferability of the empirical QRF model
at the continental to regional scales across different soil moisture
networks (from USCRN and SCAN to others) shows its potential
to predict SSM in regions where no in situ soil moisture
measurements are available. However, care should be taken when
applying this model to map SSM at the field scale because the
performance can vary with the location. The retrieved SSM
maps from the QRF at the field-scale soil moisture network
delineate distinct patterns in SSM controlled by land cover
and topography, which cannot be obtained from the coarse-
resolution SMAP product. Without local calibration, the model
may have a large bias compared to the SMAP product but
can still delineate the distribution of SSM across the field and
over time. When additional information about the study field
is available, such as the a small number of local in situ soil
moisture sensors, the global QRF model can be improved greatly
using the “spiking” method illustrated in this study. Particularly,
“spiking” improves the variability in mapped SSM, which better
approximates the variability of the measured SSM (Figures 7, 8,
and Supplementary Figures 1–3). In this regard, the empirical
data fusion-based QRF model established here is an adaptable
model and can be improved with the addition of localized SSM
measurements from in situ soil moisture networks in the future
(Liu et al., 2018). This is equivalent to the development of a global
soil visible near-infrared spectroscopy library that can be adapted
to field-scale studies with the addition of localized “spiking”
dataset (Guerrero et al., 2010; Wetterlind and Stenberg, 2010;
Viscarra Rossel et al., 2016).

Many researchers have proposed methods to downscale soil
moisture products using empirical or statistical methods (e.g.,
Fang et al., 2013; Srivastava et al., 2013; Ojha et al., 2019; Xu
et al., 2019), process models (e.g., Merlin et al., 2008), data
assimilation methods (e.g., Reichle et al., 2019; Vergopolan et al.,
2020) and more (Table 1 and Peng et al., 2017). As shown in this
study, a combination of Sentinel-1 data and high-resolution land
surface parameter maps outperformed the models established
using a subset of these ancillary data. This demonstrates the
importance of including high-resolution land surface parameters
in the SSM models and using them to constrain the estimation
of SSM when the accuracy of passive SSM products is low in
certain regions across the globe. As demonstrated in previous
studies, other high-resolution satellite data (e.g., optical bands
from Landsat) have also been used to downscale soil moisture
maps (e.g., Lee et al., 2018; Ojha et al., 2019). This indicates the
potential to further downscale coarse-scale satellite soil moisture
maps across the globe to a finer spatial resolution (e.g., 30–100m)
using a combination of high-resolution land surface parameters
(e.g., digital elevation model, soil properties, leaf area index,
land cover), high-resolution remote sensing data (e.g., Sentinel-1,
Landsat), as well as in situ field-scale soil moisture networks.

Limitations and Future Work
In this study, a random selection of local training soil moisture
sensor measurements was used to improve the empirical model
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at the field scale. Future research is needed to explore the best
spatial sampling design for selecting “spiking” stations so that the
variations in land surface parameters can be better accounted for
in the ML model. It is also possible to assign different weights
to the original and spiking datasets due to the limited number of
field-scale in situ soil moisture stations across the world. Potential
solutions to include applying bootstrapping sampling for the
training datasets or other simulation-based approaches.

Our study demonstrates the importance of soil property map
for mapping soil moisture variations. Here, the soil property
maps were established from machine learning algorithms that
may contain large uncertainty in regions where soil core/profile
samples were not available, such as central Asia and central
Australia (Hengl et al., 2017). The uncertainty of soil property
maps may affect the accuracy of soil moisture maps in these
regions. Furthermore, Hengl et al. (2017) reported that the
R2 values for predicted sand, clay, SOC, and BD at the 250-
m resolution from SoilGrids were 0.79, 0.73, 0.64, and 0.76,
respectively. Given that sand content has a strong contribution
in our QRF model (∼20% of increase in node purity of the
full QRF model), it may cause a decrease of ∼4% R2 [20% ×

(1–0.79)] of the full QRF model for estimating SSM (without
considering co-variance between other covariates). In our study,
at the southeastern corner of the cropland field, soil sand
content (Figure 9C) and bulk density (data not shown here)
show large uncertainty between the 100-m and 250-m maps,
which leads to large uncertainty in SSM maps (Figure 9).
This suggests that an accurate soil property map is required
when in situ SSM measurements are not available. In addition,
previous studies have reported that the use of high-resolution
soil maps can improve mapping soil moisture variations at
the field scale via mechanistic models (e.g., Chaney et al.,
2016; Vergopolan et al., 2020). Therefore, it is worth further
investigating the effects and sensitivity of the resolution and
uncertainty of soil property maps on mapping soil moisture
at the field scale via empirical and mechanistic models. To
achieve this, both high-resolution soil property maps and
dense soil moisture sensor network measurements need to
be collected.

Another disadvantage of the current empirical model is its
temporal resolution, which is 6–12 days globally (more frequently
in Europe) as controlled by Sentinel-1 data. Future research is
required to gap-fill the SSMmaps to obtain close to real-time SSM
maps. This could be realized using space-time statistical method
(Jost et al., 2005), assimilating other remote sensing data such as
MODIS land surface temperature (e.g., Gao et al., 2006; Poggio
and Gimona, 2017; Ojha et al., 2019) or geostationary satellite
hourly surface reflectance (e.g., Yang et al., 2017; Lei et al., 2020),
or via mechanistic modeling schemes (e.g., Or and Lehmann,
2019; Vergopolan et al., 2020).

In addition, future research is also required to map soil water
content below the surface, particularly within the root zone,
as soil water content often varies greatly with depth within
the soil profile (Li et al., 2019). To achieve this, empirical and
analytical models can be established based on the retrieved SSM
maps over a long-term period (Arya et al., 1983; Jackson et al.,
1987; Wagner et al., 1999; Gouweleeuw, 2000; Jackson, 2002;

Ceballos et al., 2005; Albergel et al., 2008; Sadeghi et al., 2019a,b).
Alternatively, ground-based proximal soil sensors can be used
to provide estimates of soil texture and hydraulic properties at
the field scale at depths (e.g., Robinson et al., 2008; Striegl and
Loheide, 2012; Gibson and Franz, 2018). This high-resolution
soil information can be included into the established QRF model
in this study (similar to the cropland example) to provide
estimates of SSM at the field scale and be further combined
with mechanistic water balance models via data assimilation to
model the movement of soil water within the vadose zone (e.g.,
Das and Mohanty, 2006; Vereecken et al., 2016; Huang et al.,
2017).

CONCLUSIONS

An empirical surface soil moisture (SSM) model was established
via data fusion of a number of in situ soil moisture networks
at the continental and regional scales, active and passive
microwave remote sensing data (Sentinel-1 and SMAP) and
land surface parameters (e.g., terrain parameters, soil properties)
using quantile random forest (QRF) algorithm. The model had
a spatial resolution of 100m and performed moderately well
(R2

= 0.52, RMSE = 0.07 m3 m−3) across the globe under
cultivated, herbaceous, forest, and shrub soils. The model has
a good transferability at the regional scale across different
soil moisture networks. SSM was mapped using the empirical
SSM model across a field-scale soil moisture network at the
TERENO-Wüstebach site, Germany, and an 80-ha cropland field
in Wisconsin, USA.

The QRF model was relatively insensitive to the resolution of
Sentinel-1 data due to the use of land surface parameters but was
affected by the resolution and accuracy of soil property maps. It
is concluded that the empirical model can delineate variations
of SSM at the field scale under forest, herbaceous, and cultivated
soils under various soil moisture conditions with the bias greatly
reduced after including local training datasets via “spiking”.

The SSM model is an adaptable model, which can be further
improved by including a small number of in situ soil moisture
measurements at the field scale for research and applications.
Further research is required to improve the temporal resolution
of the SSM model and map soil water content within the
root zone.
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