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Automated flow cytometry (FCM) adapted to real-time quality surveillance provides

high-temporal-resolution data about the microbial communities in a water system. The

cell concentration calculated from FCM measurements indicates sudden increases

in the number of bacteria, but can fluctuate significantly due to man-made and

natural dynamics; it can thus obscure the presence of microbial anomalies. Cytometric

fingerprinting tools enable a detailed analysis of the aquatic microbial communities, and

could distinguish between normal and abnormal community changes. However, the

vast majority of current cytometric fingerprinting tools use offline statistical computations

which cannot detect anomalies immediately. Here, we present a computational model,

entitled Microbial Community Change Detection (MCCD), which transforms microbial

community characteristics into an online process control signal (herein called outlier

score) that remains close to zero if the microbial community remains stable and

increases with fluctuations in the community. The model is based on fingerprints and

distance-based outlier calculations. We tested it in silico and in vitro by simulating acute

contaminations to real-world water systems with large inherent microbial fluctuations. We

showed that the outlier score was robust against these dynamic variations, while reliably

detecting intentional contaminations. This model can be used with automated FCM to

quickly detect potential microbiological contamination, and this especially when the time

between treatment and distribution is very short.

Keywords: flow cytometry, microbial community, fingerprinting, unsupervised anomaly detection, distance-based

outliers, data stream, drinking water quality

1. INTRODUCTION

Microbial contaminations in the drinking water supply keep occurring even in developed countries
(Hrudey and Hrudey, 2019). Waterborne outbreaks can cause inconvenient disruptions in water
service, impact human health and cause public concern about drinking water quality. Reviews
summarizing contaminations reported in literature have identified recurring themes at the root
of these events (Hrudey and Hrudey, 2007; Moreira and Bondelind, 2016). The identified causes
include wastewater contaminations, inadequate knowledge of source water hazards, extreme
weather (e.g., heavy precipitation and runoff), and filtration failures as well as plant maintenance or
treatment process changes. Rapid detection of causal pathogens remains challenging, and current
online methods to monitor the microbiological water quality usually involves the measurement
of surrogate indicators such as the turbidity, conductivity, pH, UV absorbance, dissolved oxygen,
and residual chlorine (Banna et al., 2014). Heterotrophic plate counts (HPC) are routinely used to
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analyze the general microbial content of water supply, with time-
to-results ranging between 2 and 7 days (Allen et al., 2004;
Gensberger et al., 2015).

Considerable efforts are presently undertaken to develop
and validate novel rapid microbiology methods. Online and
automated monitoring is an upcoming approach used by the
water industry for assessing microbiological quality during water
treatment and distribution (Katko and Højris, 2019). In that
context, flow cytometry (FCM) has emerged as a powerful
and robust tool which allows for high-temporal-resolution
monitoring (Egli and Stefan, 2015; Van Nevel et al., 2017b;
Safford and Bischel, 2018). Several studies have been conducted
on drinking water plants, as well as groundwater used for
drinking water supply, to show the additional insights that
are gained on the dynamics of the microbial communities
compared to traditional cultivation methods (Cheswick et al.,
2019; Kantor et al., 2019; Favere et al., 2020). The basic principle
of flow cytometry measurements is the detection and counting
of suspended particles present in a water samples by passing
them one by one through a laser beam. To discriminate bacteria
from other particles, the cells are, prior to the analysis, stained
with fluorescent dyes such as nucleic acid stains (e.g., SYBR
Green I). Optical detectors record the light scattering and emitted
fluorescence. Signal processing reveals the total number of cells
and the distribution of light scattering and fluorescence of the
cell communities (Adan et al., 2017).

Online FCM monitoring studies have demonstrated how the
bacteria concentration correlates with the process dynamics and
also how intentional wastewater contaminations on filtered water
could be readily detected in the concentration signal (Egli et al.,
2017; Montandon et al., 2019). However, the microbial cell
concentration in drinking water processes can undergo large
fluctuations due to natural and man-made process dynamics
(Besmer and Hammes, 2016; Besmer et al., 2016; Egli et al.,
2017; Buysschaert et al., 2018b; Schleich et al., 2019), which
makes it difficult to assign an increase in concentration to
external or process-related microbial perturbations. Monitoring
studies on operating water treatment plants have revealed
periodic microbial dynamics linked to the water throughput
in the treatment facilities (Besmer and Hammes, 2016; Besmer
et al., 2016; Egli et al., 2017). Stagnation favoring regrowth
followed by high throughput phases, as well as biofilm growth
and detachment were hypothesized to cause these periodic
fluctuations. In addition, operating conditions such as chemical
cleaning and backwashes in membrane filtration processes
cause the cell concentration to vary frequently by an order of
magnitude (Buysschaert et al., 2018b). Seasonal changes such
as increases in temperature during summer were also recently
reported to cause a 1.51- to 5.24-fold increase in the cell
concentration measured by FCM compared to the winter period
(Schleich et al., 2019).

Flow cytometric measurements do not only allow to derive
the cell concentration in water samples, but also reveal
bacteria community patterns which can be described by so-
called cytometric fingerprints (Koch et al., 2014). Fingerprints
summarize the bacteria distribution in the whole flow cytometric
signal space and can be powerful tools to detect changes in the
bacterial communities which are unnoticed when only the cell

concentration is taken into account (Koch et al., 2013; Van Nevel
et al., 2017a; Props et al., 2018; Schleich et al., 2019). An in-
depth analysis of the microbial communities in water processes
could allow to distinguish between periods of high bacterial loads
encountered during normal operating conditions and sudden
bacterial increases caused by unwanted microbial perturbations.

Until recently, work discriminating water samples from
different origins with cytometric fingerprints as well as the
detection of changes in the microbial community was mainly
done offline, meaning that the algorithms designed to identify
intergroup characteristics were only applied after the whole
data collection (De Roy et al., 2012; Koch et al., 2014;
Van Nevel et al., 2017a; Buysschaert et al., 2018a; Props et al.,
2018). De Roy et al. (2012) developed a statistical analysis
pipeline that could distinguish between different brands of
bottled water and even detect microbial community changes
caused by changing environmental factors. Koch et al. (2014)
identified microbial differences in electroactive biofilms grown
under different substrate conditions using multiple fingerprint
calculation approaches, and Props et al. (2018) applied a cluster
analysis on fingerprinting features to differentiate between
natural freshwater microbial communities. In contrast, a recent
study has developed an online processingmethod that was shown
to be effective in drinking water quality monitoring (Favere
et al., 2020). Based on flow cytometric fingerprints, Favere et al.
used the Bray-Curtis dissimilarity to detect drastic microbial
water changes in the incoming and exiting water streams of a
water tower.

Automatic and real-time surveillance of the microbial
population in industrial processes requires data analysis methods
that can integrate with an early warning system and can
determine online whether an abnormal microbial change
has occurred. Beyond showing the microbial community
information through a fingerprint, one needs to further process
this multivariate data into a scalar signal that robustly indicates
unprecedented microbial deviations. This problem relates to
unsupervised online outlier detection in multivariate time-
series which is an active area of research in process control
(Aggarwal, 2017). There exists a multitude of algorithms that
can perform outlier streaming and whose applicability depends
on the data pattern such as its temporal continuity (Aggarwal,
2017). As mentioned earlier, past online monitoring studies
in drinking water processes have revealed large microbial
fluctuations with repeated periodic oscillations, but also irregular
fluctuations. Thus, to be of use in process monitoring with
integrated alarm triggering systems, we need an algorithm that
is robust against such variations while remaining sensitive to
abnormal microbial changes. Figure 1 illustrates the design
of such a surveillance system in an industrial setting: a
water system subjected to large fluctuations could experience
a microbial community change that remains hidden in the
cell concentration signal, but that manifests itself by change
in the flow cytometric pattern. By fitting a computational
model on a reference period representative of normal operating
conditions, an outlier score signal could be calculated that
indicates in real-time abnormal bacterial changes, and that
would, when exceeding a set threshold, automatically trigger
an alarm.
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FIGURE 1 | FCM online monitoring in a water process subjected to daily fluctuations and illustration of the outlier score. Bacterial anomalies that manifest by an

additional cell population might be easily seen in the dot plot by an operator, but not in the reported cell concentration. Our Microbial Community Change Detection

outlier model (MCCD) overcomes this limitation by comparing the event distribution of the online measurements to a reference period and can thus contribute to fast

anomaly detection.

Here, we developed such a model. Named MCCD (Microbial
Community Change Detection), it computes an outlier score
in a two-step analysis: first the flow cytometric measurements
containing thousands of bacteria events are transformed into
a simplified fingerprint representation making use of the
Probability Binning (PB) algorithm (Roederer et al., 2001; Rogers
and Holyst, 2009), and in a second step the fingerprints are
fed into an online model that compares the measurement to
a collection of reference measurements in a nearest neighbor
distance calculation (Aggarwal, 2017). To assess its performance
and robustness, we applied the model to long-term flow
cytometric data which contained time-series measurements of
water systems with dynamic microbial behaviors and which,
additionally, were perturbed by external microbial events. First,
historic time-series from an operating water purification plant
were artificially modified to include pathogenic bacteria events
and our algorithm was challenged to distinguish between
high microbial loads caused by either the foreign bacteria or
the process dynamics. Following this numerical experiment,
a small-scale water system was set up in which tap water
was continuously flowed through a vessel and intermittently
spiked with treated sewage effluent water. Finally, the model
was generalized to other fingerprint calculation methods to
demonstrate the effect of the fingerprint features vs. the distance
calculation in the online model.

2. MATERIALS AND METHODS

2.1. Data Acquisition
We used a BactoSense instrument (bNovate) to perform
automated and online flow cytometry measurements. This

automated flow cytometer is equipped with a built-in laser at
a wavelength of 488 nm, a side scatter (SSC) detector and two
fluorescence detectors with bandpass filters for the green-light
emission (FL1, 525/45 nm band pass) and the red-light emission
(FL2, 715 nm long pass). At defined time intervals, 135 µL of
water samples were taken and stained automatically with 15 µL
SYBR Green I 10x (Sigma Aldrich) resuspended in TE Buffer at
pH 8. After incubation for 10 min at 37 ◦C, 90 µL of sample was
measured. To avoid cross-contamination and prevent biofilm
formation, the microfluidic tubing was automatically cleaned
between each measurement with NaClO 0.1% and rinsed with
NaN3 0.05%.

2.2. Data Processing and Analysis
2.2.1. Analysis Software
FCS file processing and data analysis was done with the Python
software (v3.6.8). The libraries we developed for this project are
published on GitHub (github.com/bnovate/bactoml).

2.2.2. FCM Data Preprocessing
The raw FCS files were preprocessed using the
FlowCytometryTools library (v0.5.0). First, the data in the
three channels were logarithmically transformed and truncated
(tlog function). A fixed gate was placed to separate bacteria from
noise and other background sources, as in Prest et al. (2013).
The total cell count (TCC, cells/µL) was extracted by counting
the number of events falling into the gate and the concentration
was derived by dividing this count by the analysis volume. The
high nucleic acid percentage (HNA%) was defined according to
Gasol et al. (1999) and Lebaron et al. (2001) and the cut-off value
between high nucleic acid (HNA) and low nucleic acid (LNA)
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was set at a FL1 value of 4.8. Further data processing was done
on the FL1 and SSC channels.

2.2.3. MCCD Model and Outlier Score Calculation
In order to calculate an outlier score, the MCCD model
is initialized on a reference dataset, then applied to a test
dataset. The model takes as input fingerprinting features and
returns the outlier score as output. The first step thus involves
calculating a fingerprint for each measurement in the reference
and test datasets.

The fingerprints are calculated with the Probability Binning
(PB) algorithm described in Roederer et al. (2001) and Rogers
and Holyst (2009). Figure 2A illustrates the computation. The
PB algorithm calculates a grid (initialization step) which is then
applied to the FCMmeasurements to count the number of events
that fall into each grid cell or bin (fingerprint generation step).
The grid is calculated on a single aggregated reference data file
that concatenates all the events from the referencemeasurements.
The grid calculation proceeds recursively leading to the final
number of bins nbin = 2k where k is the number of recursions.
At each recursion, the events in the parent bin are distributed
into two equally populated daughter bins, splitting at the median
along the channel dimension with the highest variance. The first
bin in the recursion is the entire event space. In this study, we
only considered the FL1 and SSC channels, but the algorithm is
applicable to higher dimensional spaces. At the end of the grid
calculation process, the event distribution of the initialization file
is discretized into bins with an equal event count but different
sizes; the main result is the position of the bins. The advantage
of having bins with different geometrical sizes but equal counts
is that the algorithm intrinsically adapts to any distribution
such that the signal ranges are well covered. The grid is then
applied to every measurement in the reference and test dataset
to generate the bin count distributions. The final fingerprint
is a vector of bin counts normalized by the total number of
events in the respective measurement. In this study we used
k = 5 which resulted in a fingerprinting feature vector with
32 elements.

In a next step, the outlier score is calculated in the
fingerprinting feature space as illustrated in Figure 2B. This part
of the MCCD model is called the online model and is based
on a nearest neighbor distance method. Distance-based methods
allow to perform unsupervised outlier detection in time-series
that show a weak time dependence, meaning that close-by data
points can have very different values (Aggarwal, 2017). Using
this model, we define the outlier score to be the distance to
the nearest neighbor (NN) in the reference set. Hence, if an
online measurement has a similar fingerprint to a measurement
in the reference set, the outlier score will fall close to zero.
However, if its fingerprint is very different, the distance to
the most similar reference measurement is large and a larger
outlier score is returned. As a consequence, the outlier score
of a reference measurement is zero, since the nearest neighbor
is the measurement itself. The online model is implemented in
Python with the NearestNeighbors model class from the scikit-
learn library (v0.19.1) (Pedregosa et al., 2011) using the Euclidean
distance metric.

2.3. Numerical Experiment–Digital “Mixing”
2.3.1. Data Generation
In the numerical experiment, the original data was obtained
by measuring the treated water in the water treatment plant
in Le Locle (CH) at the CTE8 measurement point (after the
chlorination step) (Egli et al., 2017). Online monitoring was done
between the 29th of May and the 29th of June 2017 besides a 2
days interruption that occurred between the 4th and the 6th of
June. Measurements were made at 2 h intervals which resulted in
a total of 333 measurement files.

We generated a time-series based on this data by digitally
adding pathogenic bacteria events into the existing data files.
This additional bacteria data were obtained by flow cytometry of
pure axenic cultures of the following type: Enterococcus faecalis,
Escherichia coli, Ralstonia pickettii, and Pseudomonas aeruginosa
(dot plots are shown in Supplementary Figure 1). Before the
digital mixing, the bacteria data were preprocessed as described
in the previous paragraph. The FCM events of these four bacteria
types were then concatenated into one dataset to generate a single
bacteria mixture with each type being represented at the same
proportion (Supplementary Figure 2).

The original time-series was then divided into five partitions
and the last three partitions were spiked at a ratio of 10,
25, and 50%, respectively. For each measurement in these
three partitions, the number of bacteria events to be added
was calculated according to Spiking Ratio (%) = Added
events/Original events · 100. The events were then chosen at
random from the bacteriamixture dataset. Dotplots of an original
measurement with the corresponding modified measurement
(spiked at 25%) are shown in Supplementary Figure 3.

2.3.2. Analysis of the Bin Importance
From the 32 bins that were calculated by the PB algorithm,
the 2 bins with the highest discriminative power to distinguish
between the original and contaminated measurements were
determined. For this purpose, a binary response variable was
created with the original measurements (partitions 1 and 2)
forming one category and themodifiedmeasurements (partitions
3–5) the other. Univariate F-tests were performed to calculate
the ANOVA F-value for each feature (bin) with regards to
the feature’s discriminative power to classify between the
original and contaminated measurements (f_classif function
from the feature_selection module in scikit-learn; Pedregosa
et al., 2011). The 2 bins with the highest F-value shown in
Figure 3C are localized in the flow cytometric feature space in
Supplementary Figure 5.

2.4. Simulated Water System and
Wastewater Spikes
Chlorinated municipal drinking water (Lausanne, Switzerland)
coming directly from the faucet was continuously flowed through
a 1L magnetically stirred vessel. Pressure variations in the feed
pipe throughout the day caused the flow rate (F) to vary between
150 and 200 mL/min. To simulate wastewater contamination, we
spiked this water with effluent from the wastewater treatment
station of Lausanne (STEP de Vidy). This treated wastewater
had a cell concentration of 2.5e6 cells/mL and a HNA% of
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FIGURE 2 | Workflow of the MCCD model which is composed of a fingerprinting algorithm and the k-nearest neighbor algorithm. (A) Fingerprint calculation by the

Probability Binning (PB) algorithm. A grid with equal event count is computed on an aggregated data set regrouping all the events from the reference period and is

applied to the reference data and to every subsequent online measurement. (B) Distance-based online model where the outlier score is the distance in the

fingerprinting space to the nearest neighbor (NN) in the reference set.

75% (Supplementary Figure 6). The spiking flow (Finj) was
controlled by a syringe pump and the reported wastewater % is
defined by Finj/(F+Finj)·100.

During the laboratory experiment, the flow cytometer was
connected to the inside of a 1 L stirred tank and measurements
were taken at 30-min intervals. Monitoring was maintained
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FIGURE 3 | Model testing in a numerical experiment. Data from an original flow cytometric time series was gradually contaminated in-silico with data from pathogenic

bacteria. (A) Cell concentration, high nucleic acid (HNA) percentage and outlier score are presented for the entire time series. The time series was divided into five

partitions: reference data, original data (0%), spiking at 10, 25, and 50%. (B) Density maps of partitions 2–5 in the flow cytometric signal space, estimated on an

aggregate of all measurements in the partition. A darker color corresponds to a higher density. (C) Two-dimensional projection of the fingerprints calculated by the PB

algorithm. These two dimensions correspond to the bins that allow to discriminate the most between the original and contaminated measurements (highest ANOVA

F-value). One dot corresponds to one FCM measurement, and all the measurements from the displayed time series are plotted. The original measurements (black)

overlap with those from the reference set (green), but the spiked measurements (orange, red and dark red for 10, 25, and 50%, respectively) are increasingly far from

the reference set cluster.

during 7 days which resulted in a total of 343 measurement
files. The data of this experiment, together with the meta data
about the reference and spiking time periods, can be found on
FlowRepository and are publicly available under the repository
ID FR-FCM-Z2DC.

2.5. Generalization of the Online Model
The online model can be generalized to other input features, i.e.,
different fingerprinting techniques. We demonstrate this here
with phenotypic diversity indexes. The original algorithm was
implemented in the statistical software R (Phenoflow_package
from https://github.com/CMET-UGent/Phenoflow_package;
Props et al., 2016); we adapted it to Python. For each pairwise
channel dimension, the bivariate kernel density was estimated
with a Gaussian kernel and a bandwidth of 0.01 (default

kernel and bandwidth value of the Phenoflow_package) using
the KernelDensity model class from the scikit-learn library
(Pedregosa et al., 2011). Prior to the density estimation,
the number of events in each measurement was randomly
downsampled (random seed set to 42). In the simulated
wastewater contamination experiment, 10% of the events were
retained to have at least 1,000 events in each measurement.
Density values were sampled on a regular grid of size 128 ×

128 (default values) and the sampled density values from all
the pairwise density estimations were concatenated into one
vector (this last step does not apply if only two channels were
used). The vector elements were normalized by the maximum
element value, rounded up to four decimals (default value)
and only the non-zero vector elements were retained. If S
is the resulting vector length and pi the vector element i,
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then the diversity indexes D0, D1, and D2 were calculated
as follows:

D0 = S (1)

D1 = e−
∑S

i=1 pi·ln(pi) (2)

D2 =
1

∑S
i=1 p

2
i

(3)

A vector with the element values D0, D1, and D2 was used as the
input fingerprint to the nearest neighbor distance model.

3. RESULTS

3.1. Numerical Experiment—Model Testing
on in silico Data
A water purification plant was monitored with FCM measuring
at two-hour intervals. One month of this data was used as the
basis in a computational experiment. The original data showed
pronounced periodic fluctuations in the cell concentration with
peaks at double the concentration of the valleys (120 vs. 50
cells/µL, Figure 3A) due to the process operation schedule. The
plant operates at night, allowing bacteria to grow on the Layered
Upflow Carbon Adsorption (LUCA) filter and bulk water during
the stagnation phase, then flushing them out when the operation
resumes (Egli et al., 2017).

The time-series was partitioned into five periods. The first
served as reference set to initialize the MCCD model. The
following were used as test set after digital spiking with
pathogenic bacteria: none in period 2, 1:10 (added:original) in
period 3, 1:4 in period 4, and 1:2 in period 5 (section 2.3).
The fitted MCCD model computed an outlier score for each
measurement in the test set.

While the pathogenic bacteria events increase the cell
concentration, this increment is obscured by the strong daily
fluctuations (Figure 3A). In contrast, the outlier score effectively
distinguishes between original and perturbed measurements.
Where there is no artificial microbial change, the score is close to
zero, andwhere there is an artificially induced community change
a linear increase dependent on the number of added pathogens
is observed (linear regression: outlier score = 2.19 · 10−3

·

spiking ratio+ 1.98· 10−2, R2 = 0.98, Supplementary Figure 4).
The change in the bacterial community pattern can be well
noticed when displaying density maps of each of the partitions
(Figure 3B). Two clusters are observed in the original bacterial
community and a third cluster appears more and more densely at
increased spiking ratios.

To illustrate the inner workings of the model, we represent a
scatterplot of the two dimensions with the highest discriminative
power to distinguish between the original and contaminated
measurements (Figure 3C, Supplementary Figure 5, section
2.3.2). This projection revealed a clustered pattern that clearly
separates the original from the modified measurements. The
original measurements for which an outlier score close to zero
was obtained overlap with the reference measurements, while
those with a higher outlier score cluster further away.

3.2. Laboratory Experiment—Model Testing
on in vitro Data
To validate the model on real data, a laboratory experiment was
designed in which tap water was continuously flowed through a 1
L stirred tank. An automated flow cytometer was connected to
the inside of the vessel and took measurements every 30 min.
The natural drinking water community was contaminated by
injections of wastewater that was collected from the effluent of a
wastewater treatment plant (Figure 4). The set-up was operated
during 1 week, and seven wastewater spikes as well as a control
spike (tap water injection) were performed. The first two and a
half days were defined as the reference period that represent the
normal tap water bacteria community, and the outlier score was
calculated for every subsequent measurement.

The monitoring signals, cell concentration and HNA%,
showed pronounced irregular fluctuations with the
concentration varying between 200 and 600 cells/µL. On
the contrary, the outlier score was unaffected by the changing
tap water microbiome and yet largely exceeded its baseline
during spikes (Figure 5). The wastewater injections also caused
increases in the microbial load and HNA% signals, but these
were too slight to determine the spiking times with confidence.
A spike with tap water originating from the same faucet was
conducted at the end of the experiment to ascertain that the
microbial changes were caused by the wastewater fluid and not
by any parts related to the set-up. During this control spike no
noticeable change was observed in the cell concentration and
HNA% signals, nor in the outlier score.

The wastewater injection flow was very low compared to the
tap water flow (the percentage of wastewater to the total flow
was kept below 3%). Since the wastewater had a much higher
bacteria concentration than the tap water (concentration of 2.5e6
cells/mL for the wastewater), small volumes were sufficient to
cause a change in the bacteria community (dot plots of the

FIGURE 4 | Set-up of a water tank simulating a continuously operating water

system. Tap water flows through a 1L stirred flask connected to an automated

flow cytometer. Intermittently wastewater is injected to induce microbial

perturbations.
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FIGURE 5 | Flow cytometric quality parameters and outlier score after a monitoring time of 1 week. A reference period over 2 and half days was defined, shown as a

green shaded area, on which the MCCD model was initialized. Four days of intermittent wastewater spiking were performed, shown here as red shaded areas. During

the wastewater spikes, the outlier score signal peaks due to the change in the microbial community. One blank spike with tap water was performed at the end of the

online monitoring period and is shown by the blue shaded areas. The blank spike did not affect the amplitude of the outlier score signal.

changing bacterial community at low and high TCC values are
shown in Supplementary Figure 7). The wastewater percentage
was slightly varied from one spike to the other (between 1.45 and
2.64%), and as in the previous experiment a linear relationship
between the outlier score and the wastewater percentage was
observed (outlier score = 2.52 · 10−2

· wastewater% + 1.15·
10−2, R2 = 0.92, Supplementary Figure 8). However, this
linear relationship is less apparent than in the digital spiking
experiment, where the difference in the degree of contamination
was more pronounced and where the number of added events
was a function of the present bacteria. While more data would be
needed to establish robust relationships between the outlier score
and a microbial perturbation quantity, it should be noted that if a
perturbation is more similar to reference measurements, outlier
score variations will be less pronounced.

3.3. Generalization of the Model to Other
Input Features
The outlier score derivation relies on the calculation of a
fingerprint which is then used as an input in the nearest
neighbor distance model. However, instead of using the
Probability Binning (PB) algorithm, other fingerprinting
methods were considered. Multiple fingerprint calculation
methods reported in literature are able to transform the complex
event distribution from a flow cytometric measurement into
a simpler representation (Koch et al., 2014; Props et al., 2016;
Amalfitano et al., 2018). Here, we chose to follow the approach
of Props et al. to calculate phenotypic diversity indexes with
PhenoFlow (Props et al., 2016) in order to test the generalization

of the online model to other input features. The PhenoFlow
algorithm characterizes the cell density on a finely spaced grid
(FCM fingerprint) from which one-dimensional Hill diversity
indices are derived. These were used as input features in the
nearest neighbor distance model.

We tested this different model on the data collected from the
previous laboratory experiment. The outlier score calculated with
the PhenoFlow features identified the spikes as reliably as the one
using the PB features (Figure 6). As in the signal derived from
the PB algorithm, a linear relationship between the outlier score
and the wastewater percentage could be observed (outlier score=
220 ·% wastewater+ 20.4, R2 = 0.90, Supplementary Figure 9).

4. DISCUSSION

4.1. Bacterial Anomalies Better Detected
by the Outlier Score Than by the Cell
Concentration and HNA%
The numerical and laboratory experiment demonstrated that
the outlier score was more performant in detecting the induced
bacterial community changes than the classical FCMmonitoring
signals such as cell concentration and HNA% (Figures 3, 5).
While cyclic as well as irregular variations in the standardmetrics
obscured the intentional microbial contaminations, the outlier
score was robust against the variations. The nearest neighbor
distance model does not assume any temporal continuity, and
thus measurements with an abrupt increase or decrease in the
microbial load compared to the previous data point yield the
same outlier score as any other measurements with the same
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FIGURE 6 | Generalization of the MCCD outlier score to Hill diversity indices derived from PhenoFlow fingerprints, applied to the simulated water system experiment

with wastewater spikes. The outlier score signal calculated with PhenoFlow features is very similar to the outlier score signal calculated through the PB features shown

in Figure 5.

microbial populations. Outlier scores are only determined by the
shape of the microbial distribution, i.e., by the fingerprint.

The spike microbes used in the digital and laboratory
experiments had higher SSC and FL1 intensity than the base
microbes, and thus appear obvious in the dotplots (Figure 3B).
Despite this, the increase in fluorescence is not sufficient to
identify the microbial perturbations using cell count or HNA%
(Figure 3A). HNA%, which describes the proportion of high-
fluorescence cells, correlates closely with cell concentration in
these samples, and thus fluctuates too much to identify small
perturbations. This observation again highlights the necessity to
analyze flow cytometric measurements in more detail and the
fact that fingerprints can extract useful information (Koch et al.,
2014).

4.2. The MCCD Model Is Adapted to
Irregular Changes in Microbial
Communities
The numerical experiment used data collected from a water
treatment plant which operates at night and experiences a peak
in bacteria concentration at the start of each operation cycle.
This cyclical behavior has been reported for other industrial
water plants (Besmer and Hammes, 2016; Besmer et al., 2016)
and presents a major obstacle when it comes to setting a fixed
threshold on the cell concentration. A sudden concentration peak
during the day would clearly break the periodic patterns, but
would not necessarily be noticed if a threshold with a value
higher than the recurring peaks was set. In the simulated water
system experiment, wastewater spikes were performed during
periods where the microbial load was at a plateau, but also
during increases and decreases in cell concentration (Figure 5).
Irrespective of the microbial load evolution, the outlier score
remained close to zero and only returned higher values during
contaminations, and this with a wastewater injection percentage
of <3%. In the laboratory set-up, tap water coming directly
from the distribution network, without intermediate storage, was
analyzed. Typically a drop in bacteria concentration was seen
during the night which then again increased in the morning.
The exact origin of this daily fluctuations is not known. The
additional challenge of differentiating between the normal and

intentional concentration increases was new compared to similar
experiments where tap water wasmonitored by FCM in an online
fashion and contaminated with axenic cultures and natural
microbial communities (Besmer et al., 2017; Props et al., 2018).

In a water treatment process, irregular changes that are
considered safe could be taught to the model by adding the
corresponding FCM measurements to the reference set. In this
way, the outlier score would remain low if this anomaly is
encountered again.

4.3. Microbial Community Pattern
Integrated Into a Process Control Signal
Transforming multivariate fingerprinting features into a process
control signal is a new area of research, with contributions
from Props et al. (2018) and Favere et al. (2020). In this
work, our FP algorithm of choice was PB since it is fast to
compute, it intrinsically adapts to any FCM distribution, and it
is applicable to dimensions higher than 2. However, as shown
in section 3.3 other FP algorithms are equally valid, although
we noticed slightly longer computation times for PhenoFlow.
Deriving a process control signal to detect abnormal changes
in an unsupervised manner usually comes with a trade-off
between false positives and false negatives. Given that online flow
cytometery is a recent technology, more research is needed to
assess the degree of sensitivity and robustness of different process
control signals for microbial community changes.

In addition, care must be taken when linking deviations
in the outlier score to the underlying water microbiome.
Fingerprints have frequently been used to characterize the
richness of bacterial communities and to monitor changes
within identified subcommunities (Koch et al., 2013; Props
et al., 2016; Amalfitano et al., 2018). The difference between
these analyses and the presented work is that here we do not
track the biological evolution of the water microbiome. The
goal of the process control signal is to quantify disturbances
in microbial communities as part of a quality surveillance
system. Following the detection of an abnormal change, further
microbiological analyses such as heterotrophic plate count or
pathogen detection would then be necessary to determine the
impact on water quality. We could also imagine to trigger a
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programmed autosampler to collect water for further analysis
(Stadler et al., 2008; Mayer et al., 2015; Owens et al., 2019).

4.4. Automatic Analysis Pipeline for Online
FCM Data Processing
In this study, a water system was monitored during 1 week at
30-min intervals which resulted in a large dataset with almost
350 measurement files. In addition to the cell concentration
and HNA% which were calculated from a fixed gate, the
outlier score was fully automatically calculated. Hence, the
method could be integrated into the software of a flow
cytometer, to compute the outlier score online. The algorithm,
since it is written in Python and compatible with the scikit-
learn machine learning library, can readily be integrated in
new or existing machine learning pipelines. These properties
bring enormous advantages in microbiological monitoring
through FCM in an industrial setting: (1) often the time
between treatment and distribution is very short, and thus
microbial changes that could hint at contamination should
be identified as fast as possible, (2) monitoring over long
periods of time generates a volume of data that is slow to
process offline, and (3) the operator does not need to be
familiar with FCM analysis to take actions on the outlier score
metrics.

Even though the outlier score calculation is automated, the
model itself and its parameters could be further tuned. The
model was shown to perform well with different fingerprinting
features (Figure 6). Other fingerprinting methods may perform
equally well or even better. Instead of using PB or PhenoFlow
features, one could imagine using fingerprints that are derived
from the automatic calculation of subcommunity clusters
by using for instance a deconvolution model (Amalfitano
et al., 2018), parametric models such as a Gaussian mixture
models (Hastie et al., 2009), or non-parametric models
based on kernel density estimates (Mallapragada et al.,
2010).

While there might be potential to further explore the data
resulting from FCM measurements and extract information
useful in process monitoring, the MCCD model could already
be employable in its current state. Existing automated flow
cytometers could integrate the analysis pipeline into their data
processing software. An area requiring more research and further
testing would be how long the reference period should be, and
whether it should be a fixed time period, a sliding time window

or a set of measurements collected throughout a whole year
to include seasonal fluctuations (Angiulli and Fassetti, 2007;
Schleich et al., 2019). In addition, further work would be required
to set an alarm level on the outlier score with a good trade-off
between sensitivity and false positives.
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