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Estimating the maximum event water fraction, at which the event water contribution

to streamflow reaches its peak value during a precipitation event, gives insight into

runoff generation mechanisms and hydrological response characteristics of a catchment.

Stable isotopes of water are ideal tracers for accurate estimation of maximum event

water fractions using isotopic hydrograph separation techniques. However, sampling

and measuring of stable isotopes of water is laborious, cost intensive, and often not

conceivable under difficult spatiotemporal conditions. Therefore, there is a need for

a proper predictive model to predict maximum event water fractions even at times

when no direct sampling and measurements of stable isotopes of water are available.

The behavior of maximum event water fraction at the event scale is highly dynamic

and its relationships with the catchment drivers are complex and non-linear. In last

two decades, machine learning algorithms have become increasingly popular in the

various branches of hydrology due to their ability to represent complex and non-linear

systems without any a priori assumption about the structure of the data and knowledge

about the underlying physical processes. Despite advantages of machine learning, its

potential in the field of isotope hydrology has rarely been investigated. Present study

investigates the applicability of Artificial Neural Network (ANN) and Support Vector

Machine (SVM) algorithms to predict maximum event water fractions in streamflow

using precipitation, soil moisture, and air temperature as a set of explanatory input

features that are more straightforward and less expensive to measure compared to stable

isotopes of water, in the Schwingbach Environmental Observatory (SEO), Germany.

The influence of hyperparameter configurations on the model performance and the

comparison of prediction performance between optimized ANN and optimized SVM are

further investigated in this study. The performances of the models are evaluated using

mean absolute error (MAE), root mean squared error (RMSE), coefficient of determination

(R2), and Nash-Sutcliffe Efficiency (NSE). For the ANN, the results showed that an

appropriate number of hidden nodes and a proper activation function enhanced the

model performance, whereas changes of the learning rate did not have amajor impact on

the model performance. For the SVM, Polynomial kernel achieved the best performance,

whereas Linear yielded the weakest performance among the kernel functions. The
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result showed that maximum event water fraction could be successfully predicted using

only precipitation, soil moisture, and air temperature. The optimized ANN showed a

satisfactory prediction performance with MAE of 10.27%, RMSE of 12.91%, R2 of

0.70, and NSE of 0.63. The optimized SVM was superior to that of ANN with MAE of

7.89%, RMSE of 9.43%, R2 of 0.83, and NSE of 0.78. SVM could better capture the

dynamics of maximum event water fractions across the events and the predictions were

generally closer to the corresponding observed values. ANN tended to underestimate

the events with high maximum event water fractions and to overestimate the events

with low maximum event water fractions. Machine learning can prove to be a promising

approach to predict variables that are not always possible to be estimated due to the

lack of routine measurements.

Keywords: machine learning, Artificial Neural Network, Support Vector Machine, hyperparameter optimization,

maximum event water fraction, isotopic hydrograph separation

INTRODUCTION

Estimating how runoff reacts to precipitation events is
fundamental to understand the runoff generation mechanisms
and hydrological response characteristics of a catchment
(Klaus and McDonnell, 2013). For this, the total runoff can
be partitioned into event and pre-event water components
during a precipitation event. The event water is referred to the
“new” water from incoming precipitation and pre-event water
is referred to the “old” water stored in the catchment prior to
the onset of precipitation. Stable isotopes of water (δ18O and
δ
2H) are ideal tracers of these water components, since they
are naturally occurring constituents of water, they preserve
hydrological information and they characterize basin-scale
hydrological responses (Stadnyk et al., 2013). Many studies
have utilized stable isotopes of water in hydrograph separation
techniques to differentiate the event and pre-event water
during precipitation events (Kong and Pang, 2010; Klaus and
McDonnell, 2013). Particularly in responsive catchments, the
“maximum event water fraction,” at which the event water
contribution to streamflow reaches its peak value during a
precipitation event, can provide valuable information on the
runoff generation mechanisms and response behavior for
better selection and implementation of water management
strategies. The maximum event water fraction (or vice versa,
the minimum pre-event water fraction) mainly occurs at the
peak streamflow and hence provides information to what extend
the event and pre-event water components dominate the runoff
during the peak streamflow (Buttle, 1994). This fraction can be
used as a proxy to indicate overall contribution of event and
pre-event water during a precipitation event and can be related
to hydroclimatic variables such as precipitation, antecedent
wetness conditions, land use or catchment size (Klaus and
McDonnell, 2013; Fischer et al., 2017a). Many studies have used
the maximum event water fraction to better comprehend runoff
generation mechanisms and catchment hydrological responses
to precipitation events (Sklash et al., 1976; Eshleman et al., 1993;
Buttle, 1994; Genereux and Hooper, 1998; Brown et al., 1999;
Hoeg et al., 2000; Renshaw et al., 2003; Carey and Quinton, 2005;

Brielmann, 2008; Pellerin et al., 2008; Penna et al., 2015, 2016;
Fischer et al., 2017a,b; von Freyberg et al., 2017; Sahraei et al.,
2020).

The most accurate way to separate event water from pre-
event water is to use isotopic hydrograph separation techniques
(Klaus and McDonnell, 2013). If the two end-members (i.e.,
streamflow and precipitation) have a distinct difference in their
isotopic signature, the stormflow hydrograph can be separated
in their contributions based on a mass balance approach.
Unlike the graphical techniques, isotopic hydrograph separation
is measureable, objective, and based on components of the
water itself, rather than the pressure response in the channel
(Klaus and McDonnell, 2013). Isotopic hydrograph separation
techniques have been widely used in previous studies to
accurately differentiate event and pre-event water components
of flow in a wide range of climate, geology, and land use
conditions (Klaus and McDonnell, 2013). However, estimation
of maximum event water fractions derived from isotopic
hydrograph separation techniques is not always conceivable
owing to the fact that sampling and measuring of stable isotopes
of water is laborious, cost intensive, and often not feasible
under difficult spatiotemporal conditions. Although the advent of
laser spectroscopy technology has significantly reduced analytical
costs of these isotopes (Lis et al., 2008), routine measurements are
still far from being common. A proper predictive model based
on a set of hydroclimatic variables would allow the estimation of
maximum event water fractions in streamflow even at times when
no direct sampling and measurements of stable isotopes of water
are available.

In the last two decades, machine learning algorithms have
been widely applied for efficient simulations of non-linear
systems and capturing noise complexity in respective datasets.
The behavior of maximum event water fraction at the event scale
is highly dynamic, which is derived from interaction of various
catchment drivers such as precipitation, antecedent wetness
conditions, topography, land use, and catchment size (Klaus
and McDonnell, 2013). The relationships between maximum
event water fraction and the catchment drivers are complex and
non-linear. It is difficult to model these relationships accurately
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using process-based models. Process-based models are often
limited by strict assumptions of normality, linearity, boundary
conditions, and variable independence (Tapoglou et al., 2014).
One of the main advantages that has increased the application of
machine learning algorithms is their ability to represent complex
and non-linear systems without any a priori assumption about
the structure of the data and knowledge about the underlying
physical processes (Liu and Lu, 2014). Nevertheless, machine
learning is not a substitute for process-based models that
provide valuable insights into the underlying physical processes
(Windhorst et al., 2014; Kuppel et al., 2018; Zhang et al., 2019).
In recent years, machine learning algorithms have been widely
employed for efficient simulations of high dimensional and non-
linear relationships of various hydrological variables in surface
and subsurface hydrology. They have been employed to predict
streamflow (Wu and Chau, 2010; Rasouli et al., 2012; Senthil
Kumar et al., 2013; He et al., 2014; Shortridge et al., 2016;
Abdollahi et al., 2017; Singh et al., 2018; Yuan et al., 2018; Adnan
et al., 2019b, 2021b; Duan et al., 2020), groundwater and lake
water level (Yoon et al., 2011; Tapoglou et al., 2014; Li et al., 2016;
Sahoo et al., 2017; Sattari et al., 2018; Malekzadeh et al., 2019;
Sahu et al., 2020; Yaseen et al., 2020; Kardan Moghaddam et al.,
2021), water quality parameters such as nitrogen, phosphorus,
and dissolved oxygen (Chen et al., 2010; Singh et al., 2011; Liu
and Lu, 2014; Kisi and Parmar, 2016; Granata et al., 2017; Sajedi-
Hosseini et al., 2018; Najah Ahmed et al., 2019; Knoll et al., 2020),
soil hydraulic conductivity (Agyare et al., 2007; Das et al., 2012;
Elbisy, 2015; Sihag, 2018; Araya and Ghezzehei, 2019; Adnan
et al., 2021a), soil moisture (Gill et al., 2006; Ahmad et al., 2010;
Coopersmith et al., 2014; Matei et al., 2017; Adeyemi et al.,
2018), water temperature in rivers (Piotrowski et al., 2015; Zhu
et al., 2018, 2019; Qiu et al., 2020; Quan et al., 2020), and many
other hydrological variables. Comprehensive reviews have been
published for the application of machine learning algorithms in
hydrology and earth system science (Lange and Sippel, 2020;
Zounemat-Kermani et al., 2020).

Artificial Neural Network (ANN) is an extremely popular
algorithm for the prediction of water resources variables (Maier
and Dandy, 2000; Maier et al., 2010). ANN is a parallel-
distributed information processing system, which has been
basically inspired by the biological neural network, consisting of
a myriad of interconnected neurons in the human brain (Haykin,
1994). One of the main advantages of ANN models is that
they are universal function approximators (Khashei and Bijari,
2010). This means that they can automatically approximate a
large class of functions with a high degree of accuracy. Their
power comes from the parallel processing of the information
from the data. Furthermore, ANN is developed through learning
rather than programming. This means that no prior specification
of fitting function is required in the model building process.
Instead, the network function is determined by the patterns
and characteristics of the data through the learning process
(Khashei and Bijari, 2010). Another main advantage of ANNs
is that they possess an inherent generalization ability. This
means that they can identify and respond to patterns that
are similar, but not identical to the ones with which they
have been trained (Benardos and Vosniakos, 2007). Minns

and Hall (1996) successfully applied ANNs in earlier years to
simulate streamflow responses to precipitation inputs. Chen et al.
(2010) used an ANN with backpropagation training algorithm
to forecast concentrations of total nitrogen, total phosphorus,
and dissolved oxygen in response to agricultural non-point
source pollution for any month and location in Changle River,
southeast China. They concluded that ANN is an easy-to-
use modeling tool for managers to obtain rapid preliminary
identification of spatiotemporal water quality variations in
response to natural and artificial modifications of an agricultural
drainage river. Wu and Chau (2010) compared the performance
of ANN with that of Auto-Regressive Moving Average (ARMA)
and K-Nearest-Neighbors (KNN) for predication of monthly
streamflow. The result revealed that ANN outperformed the
two other models. Coopersmith et al. (2014) investigated the
application of ANN, classification trees and KNN in order to
simulate the soil drying and wetting process at a site located
in Urbana, Illinois, the USA. They reported that reasonably
accurate predictions of soil conditions are possible with only
precipitation and potential evaporation data using ANN model.
Tapoglou et al. (2014) tested the performance of an ANN
model using cross-validation technique to predict dynamic
of groundwater level in Bavaria, Germany. They concluded
that ANN can be successfully employed in aquifers where
geological characteristics are obscure, but variety of other, easily
accessible data, such as meteorological data can be easily found.
Piotrowski et al. (2015) examined different types of ANNs
such as Multilayer Perceptron (MLP), product-units, Adaptive
Neuro Fuzzy Inference System (ANFIS) and wavelet neural
networks to predict water temperature in rivers based on
various meteorological and hydrological variables. The result
showed that simple MLP neural networks were in most cases
not outperformed by more complex and advanced models.
Sihag (2018) successfully applied ANN to simulate unsaturated
hydraulic conductivity. Yuan et al. (2018) utilized the long short-
term memory (LSTM) neural network for monthly streamflow
prediction in comparison with backpropagation and Radial
Basis Neural Network (RBNN). They found that the LSTM
neural network performed better than the other ANN models.
Sahu et al. (2020) analyzed the accuracy and variability of
groundwater level predictions obtained from a MLP model
with optimized hyperparameters for different amounts and
types of available training data. Yaseen et al. (2020) developed
a MLP with Whale optimization algorithm for Lake water
level forecasting. The result indicated that the proposed model
was superior to other comparable models such as Cascade-
Correlation Neural Network Model (CCNNM), Self-Organizing
Map (SOM), Decision Tree Regression (DTR), and Random
Forest Regression (RFR). Comprehensive reviews have been
published for the application of ANN (ASCE Task Committee
on Application of Artificial Neural Networks in Hydrology, 2000;
Maier and Dandy, 2000; Dawson and Wilby, 2001; Maier et al.,
2010) in the field of hydrology.

With increased ANN model research, the limitations of
ANN have been highlighted, such as local optimal solutions
and gradient disappearance, which limit the application of the
model (Yang et al., 2017; Zhang et al., 2018). Therefore, SVMs
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were introduced (Cortes and Vapnik, 1995) as a relatively
new structure in the field of machine learning. The main
advantage of SVM is that it is based on the structural risk
minimization principle that aims to minimize an upper bound
to the generalization error instead of the training error, from
which SVM is able to achieve good generalization capability
(Liu and Lu, 2014). Furthermore, for the implementation of
SVM, a convex quadratic constrained optimization problem
must be solved so that its solution is always unique and
globally optimal (Schölkopf et al., 2002). Anothermain advantage
of SVM is that it automatically identifies and incorporates
support vectors during the training process and prevents
the influence of the non-support vectors over the model.
This causes the model to cope well with noisy conditions
(Han et al., 2007). Lin et al. (2006) investigated the potential of
SVM in comparison with ANN and ARMA models to predict
streamflow. They found that prediction performance of SVM
was superior to that of ANN and ARMA models. Ahmad et al.
(2010) explored application of SVM to simulate soil moisture
in the Lower Colorado River Basin, the USA. Results from
the SVM were compared with the estimates obtained from
ANN and Multivariate Linear Regression model (MLR); and
showed that SVM model performed better for soil moisture
estimation than ANN and MLR models. Behzad et al. (2010)
optimized SVM using cross-validation technique and compared
its performance to that of ANN in order to predict transient
groundwater levels in a complex groundwater system under
variable pumping and weather conditions. It was found that
even though modeling performance for both approaches was
generally comparable, SVM outperformed ANN particularly for
longer prediction horizons when fewer data events were available
for model development. They concluded that SVM has the
potential to be a useful and practical tool for cases where less
measured data are available for future prediction. Yoon et al.
(2011) successfully applied SVM to forecast groundwater level
fluctuations at a coastal aquifer in Korea. Das et al. (2012)
examined the application of SVM and ANN for prediction of
field hydraulic conductivity of clay liners. The reported that the
developed SVM model was more efficient compared with the
ANNmodel. Jain (2012) found that SVM is also suitable to model
the relationship between the river stage, discharge, and sediment
concentration. Liu and Lu (2014) compared the optimized SVM
with optimized ANN for forecasting total nitrogen and total
phosphorus concentrations for any location of the river polluted
by agricultural pollution in eastern China. The results revealed
that even for the small sample size, SVM model still achieves
good prediction performance. He et al. (2014) investigated the
potential of ANN, ANFIS, and SVM models to forecast river
flow in the semiarid mountain region, northwestern China. A
detailed comparison of the overall performance indicated that
the SVM performed better than ANN and ANFIS in river
flow forecasting. The results also suggest that ANN, ANFIS,
and SVM method can be successfully applied to establish
river flow with complicated topography forecasting models in
the semiarid mountain regions. Mohammadpour et al. (2015)
employed SVM, ANN, and RBNN to predict the water quality
index. The research highlights that the SVM and ANN can

be successfully applied for the prediction of water quality in
a free surface constructed wetland environment. Adnan et al.
(2019a) compared the prediction accuracy of Optimally Pruned
Extreme Learning Machine (OP-ELM), Least Square Support
Vector Machine (LSSVM), Multivariate Adaptive Regression
Splines (MARS), and M5 model Tree (M5Tree) in modeling
monthly streamflow using precipitation and temperature inputs.
The test results showed that the LSSVM and MARS-based
models provide more accurate prediction results compared to
OP-ELM and M5Tree models. Malik et al. (2020) optimized
SVM by six meta-heuristic algorithms to predict daily streamflow
in Naula watershed, India. They reported that SVM optimized
by Harris Hawks optimization algorithm showed superior
performance to the other optimized SVM models. Quan et al.
(2020) proposed SVM for predicting water temperature in a
reservoir in western China. They found that the prediction
performance of optimized SVM was superior to that of ANN
model. Comprehensive reviews have been published for the
application of SVM (Raghavendra and Deka, 2014) in the field
of hydrology.

So far, the potential of machine learning in the field of
isotope hydrology has rarely been explored. Cerar et al. (2018)
compared the performance of MLP with that of ordinary
kriging, simple and multiple linear regression to predict
isotope composition of oxygen (δ18O) in groundwater in
Slovenia. Based on validation data sets, the MLP model proved
to be the most suitable method for predicting δ

18O in the
groundwater. However, they did not optimize the employed
MLP model to enhance the prediction performance. Most
of the machine learning algorithms have several settings
that govern the entire training process (Goodfellow et al.,
2016). These settings are called “hyperparameters.” The
hyperparameters are external to the model that are not
learned from the data and must be set prior to the training
process (Shahinfar and Kahn, 2018; Géron, 2019). The
performance and computational complexity of ANN and
SVM models are heavily dependent on configuration of their
hyperparameters (Smithson et al., 2016; Zhang et al., 2018).
Hence, it is necessary to optimize the hyperparameters in order
to enhance the model performance. However, investigations of
different hyperparameters and comparison of their influence
on the model performance are rarely reported in the field
of hydrology.

To the best of our knowledge, there is no study that applies
machine learning algorithms for prediction of maximum
event water fractions at the event scale. The novelty of this
research is: (1) to investigate for the first time the applicability
of two widely used machine learning algorithms, namely
ANN and SVM, to predict maximum event water fractions
in streamflow on independent precipitation events using
precipitation, soil moisture and air temperature as a set of
explanatory input features that are more straightforward
and less expensive to measure compared to stable isotopes
of water; (2) to summarize the influence of hyperparameter
configurations on model performance; and (3) to compare
the prediction performance of optimized ANN with
optimized SVM.
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FIGURE 1 | Location of the Schwingbach Environmental Observatory (SEO) in Hesse, Germany (red square, right panel) and a map of the study area in the headwater

catchment of the SEO including the measuring network.

MATERIALS AND METHODS

Study Area and Data Set
The study area is located in the headwater catchment
(Area = 1.03 km2) of the Schwingbach Environmental
Observatory (SEO) (50◦28′40′′N, 8◦32′40′′E) in Hesse, Germany
(Figure 1). The elevation ranges from 310m in the north to
415m a.s.l. in the south. The climate is classified as temperate
oceanic, with a mean annual air temperature of 9.6◦C and
mean annual precipitation of 618mm obtained from the German
Weather Service (Deutscher Wetterdienst, Giessen-Wettenberg
station, period 1969-2019). The catchment area is dominated by
76% of forest that is mainly located in east and south, 15% of
arable land in the north and west, and 7% of meadows along the
stream. The soil is classified as Cambisol mainly covered by forest
and Stagnosols under arable land. The soil texture is dominated
by silt and fine sand with low clay content. For more details refer
to Orlowski et al. (2016).

Precipitation depth and air temperature were recorded
at 5min intervals with an automated climate station (AQ5,
Campbell Scientific Inc., Shepshed, UK) operated with a
CR1000 data logger. Soil moisture was measured at 5, 30,

and 70 cm depths at the toeslope at 5min intervals with a
remote telemetry logger (A753, Adcon, Klosterneuburg, Austria)
equipped with capacitance sensors (ECH2O 5TE, METER
Environment, Pullman, USA). Stream water at the outlet of
the catchment and precipitation were automatically sampled
for stable isotopes of water in situ using an automated
mobile laboratory, the Water Analysis Trailer for Environmental
Research (WATER), from August 8th until December 9th in
2018 and from April 12th until October 10th in 2019. If no
precipitation occurred, stream water was sampled approximately
every 90min. Precipitation was automatically sampled if its depth
exceeded 0.3mm. It should be noticed that the SEO is not a
snow-driven catchment. The precipitation events were all in form
of rainfall with no snow included over the sampling period.
After sampling, the precipitation sampler was blocked for 60min.
Isotopic composition of stream water and precipitation were
measured using a continuous water sampler (CWS) (A0217,
Picarro Inc., Santa Clara, USA), coupled to a wavelength-
scanned cavity ring-down spectrometer (WS-CRDS) (L2130-i,
Picarro Inc., Santa Clara, USA) inside the mobile laboratory. For
detailed description of the WATER and the sampling procedures
see Sahraei et al. (2020). The SEO was chosen in this study
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because of its responsive characteristic to precipitation inputs
as well as the available extensive hydrological knowledge and
data on the catchment (Lauer et al., 2013; Orlowski et al.,
2014, 2016; Aubert et al., 2016; Sahraei et al., 2020). The runoff
generation processes of the Schwingbach are characterized by a
rapid mixing of streamflow with event water through shallow
subsurface flow pathways. The high-resolution sampling of
isotope concentrations and hydroclimatic data employed in this
study allowed the detection of fine-scale, short-term responses,
and mixing processes, which in turn provided the opportunity to
capture a wide range of maximum event water fractions under
different flow regimes and hydroclimatic conditions. The mean,
standard deviation, Kurtosis and Skewness of the maximum
event water fraction data are 32.4%, 24.2%, −0.4, and 0.8,
respectively. These statistical values imply that the maximum
event water fractions are highly dynamic in the SEO, which
in turn provides the opportunity to test the capability and
effectiveness of the ANN and SVM models for the prediction of
maximum event water fractions at the event scale.

In this work, the precipitation events were defined as
independent if the inter-event time exceeded 6 h, similar to the
separation made by Sahraei et al. (2020). The dry period between
two wet periods is known as the inter-event time, and if the dry
period is equal to or longer than the desired inter-event time,
the two wet periods are considered as two independent events
(Balistrocchi and Bacchi, 2011; Chin et al., 2016). In total, 40
events were selected over the sampling period (Figure 2), for
which the application of isotopic hydrograph separation was
possible. The isotopic hydrograph separation was not possible
for other events because either the isotopic compositions of
stream water and precipitation were not available or because the
difference between the isotopic composition of stream water and
precipitation was too small. For the selected events, the beginning
of the event was defined as the onset of precipitation and the
end of the event as the time when either the event water fraction
declined to 5% of its peak value or another precipitation event
began, whichever first occurred.

The event water fractions FE was quantified for each event at
∼90min intervals using a two-component isotopic hydrograph
separation according to Equation (1):

FE =
CS − CP

CE − CP
(1)

where CS, CE, and CP are the isotopic concentrations (δ2H) in the
streamwater, event water (i.e., precipitation) and pre-event water,
respectively. CS was measured at ∼90min intervals. CE is the
incremental weighted mean of precipitation samples (Mcdonnell
et al., 1990), which were measured if the precipitation depth
exceeded 0.3mm. After sampling, the precipitation sampler was
blocked for 60min. CP was calculated as the average of the last
five samples, which were measured at ∼90min intervals before
the onset of precipitation. The maximum event water fraction
FEmax , at which the event water contribution to streamflow
reaches its peak value during the precipitation event, was
obtained from maximum of FE values over each of the 40 events.
The FEmax was the target variable predicted by the ANN and SVM

FIGURE 2 | Time series of (A) precipitation, (B) streamflow, (C) δ
2H in

precipitation and (D) δ
2H in streamflow. The vertical gray bars indicate the 40

events. The numbers on top of panel (A) represent the event ID.

models. Sahraei et al. (2020) reported that higher precipitation
amounts generally lead to an increase of the maximum event
water fraction in the streamflow as can be observed in Figure 3.
This behavior is consistent with previous studies, which also
reported growing maximum event water fractions with rising
precipitation amounts (Pellerin et al., 2008; Penna et al., 2015;
von Freyberg et al., 2017). This suggests that the Schwingbach is
highly responsive to precipitation inputs and precipitation is a
main driver of hydrological response behavior in the stream.

The uncertainty of maximum event water fraction WFEmax

was quantified according to the Gaussian error propagation
technique (Genereux, 1998):

WFEmax
=

{

[

CE − CS

(CE − CP)
2WCP

]2

+

[

CS − CP

(CE − CP)
2WCE

]2

+

[

−1

(CE − CP)
WCS

]2
}1/2

(2)

WCP , the uncertainty in pre-event water, was estimated using
the standard deviation of the last five measurements before
the onset of precipitation. WCE , the uncertainty of the event
water, is the standard deviation of the incremental weighted
mean of precipitation. WCS , the uncertainty of the stream
water measurements, is the measurement precision of the CWS
coupled to the WS-CRDS (0.57‰ for δ

2H), which we derived
from the standard deviation of the measurements during the last
3min of the sampling period of stream water. The uncertainty of
maximum event water fractions ranged from 1.2 to 28.3% with a
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FIGURE 3 | Maximum event water fraction FEmax vs. total event precipitation.

mean of 6.7± 7.2% (mean± standard deviation). The quantified
uncertainty for maximum event water fractions of all 40 events
are reported in Supplementary Table 1.

As the inputs for the models, a set of hydroclimatic
variables representing the precipitation and antecedent wetness
characteristics of the Schwingbach catchment was selected. Total
event precipitation (P, mm), precipitation duration (D, h),
3-day antecedent precipitation defined as the accumulated
precipitation over a 3-day window before the onset of a
precipitation event (AP3, mm), 1 h averaged soil moisture before
onset of precipitation at 5, 30, and 70 cm depths (SM, %), and
mean daily air temperature (T, ◦C) were selected for each of
the 40 events. The selection of input variables was based on the
combination of a priori knowledge obtained from Sahraei et al.
(2020) and expert knowledge. The values of input and output
variables are presented in the Supplementary Table 1.

Machine Learning Algorithms
Artificial Neural Network (ANN) Theoretical

Background
In this study, the Multilayer Perceptron (MLP) feedforward
neural network was applied, which is one of the most widely
used ANNs in hydrology (Tanty and Desmukh, 2015; Oyebode
and Stretch, 2018). The MLP network consists of a set of nodes
organized into three different types of layers, i.e., input, hidden,
and output layers (Figure 4). The input layer includes nodes,
through which the input data is incorporated into the network.
In the hidden layers, the nodes receive signals from the nodes
in the previous layer via weighted connections, at which the
weights determine the strength of the signals. The weighted
values from the previous layer are summed together with a bias
associated with the nodes. The result is then passed through an

FIGURE 4 | Schematic diagram of an Artificial Neural Network (ANN).

TABLE 1 | Hyperparameter set for the ANN model.

Hyperparameters Choices

Number of nodes in two hidden layers [m, n] [3, 1], [5, 3], [7, 5], [9, 7], [11, 9]

Learning rate 0.0001, 0.001, 0.01

Activation functions in hidden layers ReLU, Sigmoid, Tanh

[m, n] refers to m nodes in the first hidden layer and n nodes in the second hidden layer.

activation function to generate a signal (i.e., activation level) for
each node. Next, the signals are transmitted to the subsequent
layer and the process is continued until the information reaches
the output layer. The signals, which are generated in the output
layer are the model outputs. In general, the mathematical
operation of a MLP feedforward neural network is given
by Equation (3):

yj = f

(

n
∑

i=1

(

wijxi
)

+ bj

)

(3)

where xi is the ith nodal value in the previous layer, yj is the jth
nodal value in the present layer, bj is the bias of the jth node
in the present layer, wij is a weight connecting xi and yj, n is
the number of nodes in the previous layer, and f denotes the
activation function in the present layer.

The backpropagation algorithm (Lecun et al., 2015) was used
to train the network, in which the outputs produced in the output
layer for the given inputs, are compared to the target values (i.e.,
observations) and the error is calculated through a loss function.
If the output layer does not produce the desired values, the output
errors are propagated backwards through the network, while the
parameters of nodes (i.e., weights and bias) in each layer are
updated along the way with an optimizer. The learning process
repeats in this way for several rounds (i.e., epochs) until the loss
function reaches an optimal value.

ANN Setup
The performance of the ANN model is strongly dependent
on the configuration of its hyperparameters. Among the
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FIGURE 5 | Schematic diagram of a Support Vector Regression (SVR).

hyperparameters, the number of nodes in hidden layers,
learning rate, and activation functions in hidden layers have the
greatest influence on the model performance and its robustness
(Smithson et al., 2016; Klein and Hutter, 2019). Therefore,
a set of the aforementioned hyperparameters was defined to
evaluate performance of 45 ANN model configurations resulting
from discretizing the hyperparameters shown in Table 1. As
the base architecture, an ANN model with seven nodes in the
input layer, two hidden layers followed by a linear output layer
with one node was defined. Previous studies have reported that
networks with two hidden layers generally outperform those
with a single hidden layer, since they are more stable, flexible,
and also sufficient to approximate complex non-linear functions
(Sontag, 1992; Flood and Kartam, 1994; Heaton, 2015; Thomas
et al., 2017). The most challenging and time consuming aspect
of neural network design is choosing the optimal number of
hidden nodes (Thomas et al., 2016b). Too few hidden nodes
implies that the network does not have enough capacity to solve
the problem. Conversely, too many hidden nodes implies that
the network memorizes noise within training data, leading to
poor generalization capability (Maier and Dandy, 2000; Thomas
et al., 2016b). The number of hidden nodes in the first and
second hidden layers should be kept nearly equal to yield
better generalization capability (Karsoliya, 2012). Given that,
five different configurations shown in Table 1 were used for the
number of hidden nodes according to Equations (4) and (5)
expressed by Thomas et al. (2016a):

nh = n1 + n2 (4)

n1 = int(0.5nh + 1) (5)

where nh represents total number of hidden nodes, n1 and n2
represent number of nodes in the first and second hidden layer,
respectively. The upper bound on the total number of hidden
nodes was considered as half of the total number of samples (i.e.,
nh = 20) suggested by previous studies (Tamura and Tateishi,
1997; Huang, 2003). The “Adam” optimizer was used for the
optimization of the learning process, which is effective for dealing
with non-linear problems, including outliers (Kingma and Ba,
2014). Learning rate is a positive number below 1 that scales

the magnitude of the steps taken in the weight space in order
to minimize the loss function of the network (Maier and Dandy,
2000; Heaton, 2015; Goodfellow et al., 2016). Too small learning
rates slow down the learning process and may cause the learning
to become stuck with a high learning error. On the other hand,
too large learning rates can lead the network to go through
large oscillations during the learning process or that the network
may never converge (Maier and Dandy, 1998; Goodfellow et al.,
2016). The default learning rate of the Adam optimizer is set
to 0.001. The smaller (0.0001) and larger (0.01) learning rates
were also tested. Sigmoid and hyperbolic tangent (Tanh) are
the most common activation functions used in the feedforward
networks (Maier and Dandy, 2000). However, Rectified Linear
Unit (ReLU) is usually a more suitable choice (Heaton, 2015).
Sigmoid, Tanh and ReLU as the activation functions of hidden
layers were therefore tested. Each network was trained for a
maximum of 10,000 epochs to minimize the mean absolute
error (MAE).

Support Vector Machine (SVM) Theoretical

Background
The Support VectorMachine (SVM) was first proposed by Cortes
and Vapnik (1995). It is based on statistical learning theory and
is derived from the structural risk minimization hypothesis to
minimize both empirical risk and the confidence interval of
the learning machine in order to achieve good generalization
capability. In this study, the Support Vector Regression (SVR)
was used, which is an adaptation of the SVM algorithm for
regression problems (Vapnik et al., 1997; Smola and Schölkopf,
2004). The basic concept of the SVR is to non-linearly map
the original data in a higher dimensional feature space and to
solve a linear regression problem in the feature space (Figure 5).
Suppose a series of data points

{

xi, yi
}

n
i
, where n is the data size,

xi is the input vector and yi represents the target value, the SVR
function is as follows:

f (xi) = w · φ (xi) + b (6)

where w is a weight vector and b is a bias. φ (xi) denotes
a non-linear mapping function that maps the inputs vectors

Frontiers in Water | www.frontiersin.org 8 June 2021 | Volume 3 | Article 652100

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Sahraei et al. Event Water Prediction Using ML

to a high-dimensional feature space. w and b are estimated
by minimizing the regularized risk function, as shown in
Equation (7):

R (w) =
1

2
‖w‖2 + C

n
∑

i=1

Lε

(

yi, f (xi)
)

(7)

where 1/2 ‖w‖2 is a regularization term, C is the penalty
coefficient, which is considered to specify the trade-off between
the empirical risk and the model flatness and Lε

(

yi, f (xi)
)

is
called the ε-insensitive loss function, which is defined according
to Equation (8):

Lε

(

yi, f (xi)
)

= max
{

0,
∣

∣yi − f (xi)
∣

∣− ε
}

(8)

where ε denotes the permitted error threshold. ε will be ignored
if the predicted value is within the threshold; otherwise, the
loss equals a value greater than ε. In order to represent the
distance from actual values to the corresponding boundary
values of the ε-tube, two positive slack variables ξ and ξ∗ are
introduced. Then Equation (7) is transformed into the following
constrained form:

min f
(

w, ξ , ξ∗
)

=
1

2
‖w‖2 + C

n
∑

i=1

(

ξ + ξ∗
)

(9)

Subject to:

{

yi − [w · φ (xi)]− b ≤ ε + ξ , ξ ≥ 0
[w · φ (xi)]+ b− yi ≤ ε + ξ∗, ξ∗ ≥ 0

(10)

This constrained optimization problem can be solved by the
following Lagrangian function:

max H
(

∂i, ∂
∗
i

)

= −
1

2

n
∑

i=1

n
∑

j=1

(

∂i − ∂∗i
)

(

∂j − ∂∗j

)

K
(

xi, xj
)

+

n
∑

i=1

yi
(

∂i − ∂∗i
)

− ε

n
∑

i=1

yi
(

∂i + ∂∗i
)

(11)

Subject to:

n
∑

i=1

(

∂i − ∂∗i
)

= 0, ∂i, ∂∗i ∈ [0, C] (12)

Therefore, the regression function is as follows:

f (x) =

n
∑

i=1

(

∂i − ∂
∗

i

)

K
(

xi, xj
)

+ b (13)

where K
(

xi, xj
)

is the kernel function and ∂i and ∂∗i are the
non-negative Lagrangian multipliers, respectively. The kernel
function can non-linearly map the original data into a higher
dimensional feature space in an implicit manner and solve a
linear regression problem in the feature space.

TABLE 2 | Hyperparameter set for the kernel functions of the SVM model.

Hyperparameters Choices

C 1–100

ε 0.01–1

γ 0.01–1

d 2, 3, 4

SVM Setup
The performance of the SVM model is directly related to the
selection of the kernel function (Raghavendra and Deka, 2014;
Zhang et al., 2018). In this study, the performances of four
commonly employed kernels in SVM studies including the
Linear, Sigmoid, Radial Basis Function (RBF), and Polynomial
kernels combined with their optimal hyperparameters were
tested. The Linear kernel has two hyperparameters (C, ε), the
Sigmoid and RBF kernels have three hyperparameters (C, ε,
γ ), and the Polynomial kernel has four hyperparameters (C, ε,
γ , d) to be optimized. The penalty coefficient C, determines
the tolerance of deviations larger than ε from the real value;
i.e., smaller deviations are tolerable for larger values of C. The
permitted error threshold ε, affects the number of support vectors
used in the regression function, i.e., the smaller the value of ε,
the greater the number of support vectors that will be selected.
The kernel coefficient γ , controls the influence radius of the
support vectors, i.e., for high values of gamma, the radius of the
influence area of the support vectors only includes the support
vector itself. The degree of the polynomial function d, is the
largest of the degrees of polynomial’s monomials with non-zero
coefficient. Twenty values for each of C, ε, and γ based on
geometric progression and 3 values for d were tested according
to the set of hyperparameters shown in Table 2. Therefore, 400
configurations for the Linear kernel, 8,000 configurations for
the Sigmoid and RBF kernels and 24,000 configurations for
the Polynomial kernel were tested. Finally, the performances
between the kernel functions in combination with their optimal
hyperparameter configurations were compared.

Model Evaluation
Repeated 10-fold cross-validation was performed to estimate
the performance of the ANN and SVM models with different
hyperparameter configurations. The data was first randomly
shuffled and split into ten folds such that each fold contained
four samples. For the ANN model, eight folds were considered
for train set, one fold for validation set and one fold for test
set. For the SVM model, nine fold were considered for train
set and one fold for test set. The procedure was repeated 10
iterations so that in the end, every instance was used exactly once
in the test set. Within each iteration of the cross-validation, the
train set was normalized to be in the range [0-1]. To avoid data
leakage, the test and validation sets were normalized using the
parameters derived from train set normalization (Hastie et al.,
2009). The train set was used to learn the internal parameters
(i.e., weights and bias) of the network. The validation set was used
for the hyperparameter optimization and the test set was used to
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estimate the generalization capability of the model (Goodfellow
et al., 2016). The ANNmodel was first trained on the train set for
10,000 epochs to minimize the MAE on the validation set. The
number of epochs, at which MAE of the validation set reached its
minimum value, was saved. The validation set was then added to
the train set and the whole data set was used to train the model
for the fixed number of epochs derived from previous step. The
test set was used to estimate the prediction performance of the
ANN and SVM models. The estimation of model performance
via one run of k-fold cross-validation might be noisy. This means
that for each iteration of cross-validation, a different split of data
set into k-folds can be implemented and in turn, the distribution
of performance scores can be different, resulting in a different
mean estimate of model performance (Brownlee, 2020). In order
to reduce the noise and allow a reliable estimate of prediction
performance, it is recommended to repeat the cross-validation
procedure such that the data is re-shuffled before each round
(Refaeilzadeh et al., 2009). The common numbers for repetition
of cross-validation procedure are three, five, and ten (Kuhn
and Johnson, 2013; Brownlee, 2020). To obtain a robust and
reliable estimate for the model performance, the 10-fold cross-
validation was repeated ten times with a different seed for the
random shuffle generator, resulting in 100 iterations for each
configuration. The performance of the ANN and SVM models
were evaluated in terms of the MAE, the root mean squared error
(RMSE), the coefficient of determination (R2), and Nash-Sutcliffe
Efficiency (NSE) according to Equations (14), (15), (16), and (17),
respectively. The optimized (i.e., best) configurations of the ANN
and SVM were selected based on the average performance over
100 iterations. The performance of the optimized configuration
of the ANN was then compared with that of the optimized
configuration of the SVM to choose the final predictive model.

MAE =
1

N

N
∑

i=1

|Oi − Pi| (14)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Oi − Pi)
2 (15)

R2 =







∑N
i=1

(

Oi − O
) (

Pi − P
)

√

∑N
i=1

(

Oi − O
)2
√

∑N
i=1

(

Pi − P
)2







2

(16)

NSE = 1−

∑N
i=1 (Oi − Pi)

2

∑N
i=1

(

Oi − O
)2 (17)

where N is the number of observations (with N = 4 for the test
set in each iteration of the cross-validation), Oi is the observed
value, Pi is the predicted value, O is the mean of observed
values, and P is the mean of predicted values. MAE and RMSE
describe average deviation of predicted from observed values
with smaller values indicating better performance. R2 indicates
correspondence between predicted and observed values with
higher values [0 to 1] indicating stronger correlations. NSE
evaluates the model ability to predict values different from the
mean and gives the proportion of the initial variance accounted

for by the model (Nash and Sutcliffe, 1970). NSE ranges between
[–∞ to 1]. The closer the NSE value is to 1, the better is the
agreement between predicted and observed values. A negative
value of the NSE indicates that the mean of observed values is a
better predictor than the proposed model. According to Moriasi
et al. (2007), model performance can be evaluated as: very good
(0.75<NSE≤ 1.00), good (0.65<NSE≤ 0.75), satisfactory (0.50
< NSE ≤ 0.65) and unsatisfactory (NSE ≤ 0.50).

Model Implementation
In this research, the numerical experiments were conducted with
Python 3.7 programming environment (van Rossum, 1995) on
Ubuntu 20.04 with AMD EPYC 7452 32-core processor, 125 GB
of random access memory (RAM) and NVIDIA GTX 1050 Ti
graphical processing unit (GPU). The ANNmodel was built with
Keras 2.3.1 library (Chollet, 2015) on top of Theano backend
1.0.4 (Al-Rfou et al., 2016). The SVMmodel was built with Scikit-
Learn 0.22.2 library (Pedregosa et al., 2011). Numpy 1.18.1 (Van
Der Walt et al., 2011), Pandas 1.0.1 (McKinney, 2010), and Scipy
1.4.1 libraries (Virtanen et al., 2020) were used for preprocessing
and data management. The Matplotlib 3.1.3 (Hunter, 2007) and
Seaborn 0.9.1 (Waskom et al., 2020) libraries were used for the
data visualization.

RESULTS AND DISCUSSION

ANN Prediction Performance
The performance of 45 different ANN configurations were
evaluated based on the number of nodes in hidden layers,
learning rate, and activation functions in hidden layers. Table 3
shows the average prediction performance over 100 iterations
of the cross-validation for each configuration in terms of MAE,
RMSE, R2, and NSE. The best performance was obtained by a
combination of five nodes in the first hidden layer and three
nodes in the second hidden layer [5, 3], a learning rate of 0.0001
and the Tanh activation function in hidden layers (configuration
#12). This configuration resulted in a MAE of 10.27%, RMSE of
12.91%, R2 of 0.70, and NSE of 0.63. Figure 6 shows the boxplots
of statistical measures for prediction performance of 45 ANN
configurations over 100 iterations of the cross-validation. The
average is indicated by a black square and the median by the bar
separating a box. It is clear from Figure 6 that configuration #1,
#4, and #7 with three nodes in the first hidden layer and one
node in the second hidden layer and ReLU activation function
are the least stable networks, whereas the configuration #12 is
the most stable network. Furthermore, it indicates that increasing
the complexity of the network not only declines average model
performance but also decreases the model stability as can be
clearly seen on configurations #43 - #45. Table 3 shows that the
performance of the 45 configurations based on the number of
hidden nodes showed that increasing the number of nodes in
hidden layers from eight [5, 3] to twenty [11, 9] did not have
a major impact on the prediction performance and even the
network with the highest number of hidden nodes [11, 9] did
not yield the best prediction performance, whereas decreasing
the number of hidden nodes to less than eight declined the
model performance, particularly when the ReLU was used as the
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TABLE 3 | Average prediction performance of the ANN model with different hyperparameter configurations over 100 iterations of the cross-validation.

Hidden nodes Learning rate Activation function Config. ID MAE (%) RMSE (%) R2 NSE

[3-1] 0.0001 ReLU 1 15.57 18.78 0.31 0.19

Sigmoid 2 12.72 15.18 0.66 0.53

Tanh 3 10.91 13.55 0.68 0.53

0.001 ReLU 4 15.73 18.85 0.37 0.26

Sigmoid 5 11.57 14.34 0.67 0.55

Tanh 6 10.91 13.74 0.69 0.57

0.01 ReLU 7 17.66 21.00 0.24 0.11

Sigmoid 8 11.77 14.75 0.66 0.32

Tanh 9 11.14 14.18 0.66 0.33

[5-3] 0.0001 ReLU 10 12.82 15.82 0.58 0.45

Sigmoid 11 11.01 13.65 0.66 0.56

Tanh 12 10.27 12.91 0.70 0.63

0.001 ReLU 13 12.71 15.68 0.60 0.50

Sigmoid 14 11.28 14.14 0.67 0.56

Tanh 15 11.47 14.32 0.65 0.57

0.01 ReLU 16 13.80 17.07 0.52 0.41

Sigmoid 17 11.54 14.57 0.66 0.55

Tanh 18 12.69 16.08 0.63 0.51

[7-5] 0.0001 ReLU 19 12.12 14.43 0.61 0.50

Sigmoid 20 10.85 13.39 0.67 0.56

Tanh 21 10.67 13.22 0.65 0.55

0.001 ReLU 22 12.68 15.47 0.62 0.49

Sigmoid 23 10.78 13.45 0.69 0.55

Tanh 24 11.39 14.30 0.63 0.54

0.01 ReLU 25 13.42 15.98 0.60 0.48

Sigmoid 26 12.06 15.10 0.63 0.52

Tanh 27 12.15 15.15 0.65 0.54

[9-7] 0.0001 ReLU 28 11.87 14.60 0.63 0.53

Sigmoid 29 10.90 13.63 0.68 0.57

Tanh 30 10.40 13.00 0.70 0.57

0.001 ReLU 31 13.23 15.96 0.61 0.51

Sigmoid 32 10.87 13.62 0.68 0.56

Tanh 33 11.51 14.34 0.64 0.56

0.01 ReLU 34 12.21 15.38 0.64 0.49

Sigmoid 35 11.71 14.69 0.66 0.52

Tanh 36 12.15 15.34 0.63 0.53

[11-9] 0.0001 ReLU 37 11.12 13.79 0.67 0.52

Sigmoid 38 10.71 13.37 0.67 0.56

Tanh 39 10.39 13.09 0.68 0.56

0.001 ReLU 40 11.38 13.64 0.70 0.57

Sigmoid 41 11.32 14.13 0.66 0.55

Tanh 42 10.69 13.68 0.67 0.55

0.01 ReLU 43 13.06 16.52 0.60 0.45

Sigmoid 44 12.48 15.83 0.65 0.48

Tanh 45 12.87 16.24 0.62 0.49

The best configuration is bolded.

Number of nodes in input and output layers are seven and one, respectively and are kept fixed for all of the 45 ANN configurations.
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FIGURE 6 | Boxplots of the performance criteria for prediction performance of 45 ANN configurations over 100 iterations derived from the ten times 10-fold

cross-validation. The average is indicated by a black square and the median by the bar separating a box.

activation function. This implies that increasing the number of
hidden nodes does not necessarily improve the ability of network
to generalize, whereas decreasing the number of hidden nodes
below a certain threshold may not be sufficient for the network
to learn well. Similar behavior has been reported in the previous
studies (Wilby et al., 2003; Yoon et al., 2011; Liu and Lu, 2014;
Mohammadpour et al., 2015), emphasizing the importance of
choosing an appropriate number of hidden nodes to ensure the
model performance. Although the optimal number of hidden
nodes depends on the essence and complexity of the problem
(Maier and Dandy, 2000), the common challenge is to find
an appropriate number of hidden nodes, which is sufficient to
attain desired generalization capability in a reasonable training
time (Maier and Dandy, 2000; Hagan et al., 2014; Goodfellow
et al., 2016; Thomas et al., 2016b). The Adam optimizer is
generally robust to the choice of its hyperparameters. However,

the learning rate needs to be changed sometimes from the
suggested default to improve the model performance (Kingma
and Ba, 2014; Goodfellow et al., 2016). The smaller (0.0001)
and larger (0.01) learning rates were therefore tested. In general,
a change of the learning rate, while the number of hidden
nodes and activation function were kept fixed, did not have a
remarkable effect on the model performance. Nevertheless, the
default learning rate still did not yield the best performance. An
increase of the learning rate to 0.01 with fixed hidden nodes
and activation function declined the performance, whereas the
smaller learning rates (i.e., 0.0001 and 0.001) achieved slightly
better performance. This implies that increasing the learning rate
may cause the network to converge too quickly to a suboptimal
solution, whereas smaller learning rate causes the network to take
smaller steps toward minimum of the loss function leading to a
better performance (Maier and Dandy, 1998). Smaller learning
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rates usually guarantee the convergence of the neural network;
however, it is a trade-off between the model performance and
the time required for the learning process (Heaton, 2015; Liu
et al., 2019). It may be possible that our network achieves
slightly better performance with the learning rates lower than
0.0001, but too long training time does not justify the use of
smaller learning rates. It is almost impossible to make sure that
the selected learning rate is the optimal learning rate, since
any value falling between 0 and 1 can be considered for the
learning rate (Najah Ahmed et al., 2019). However, it is suggested
that testing the learning rate between 0.00001 and 0.1 by an
order of magnitude usually ensures near-global optimal solution
(Larochelle et al., 2007; Goodfellow et al., 2016; Géron, 2019).
This range is usually shorter between 0.0001 and 0.01 when using
the Adam optimizer (Poornima and Pushpalatha, 2019; Prasetya
and Djamal, 2019; Feng et al., 2020). The Adam optimizer uses an
adaptive learning rate algorithm leading the network to converge
much faster compared to classical stochastic gradient descent
(Kingma and Ba, 2014). Stochastic gradient descent maintains a
single learning rate for all of its weight updates and the learning
rate does not change during the learning process, whereas the
Adam optimizer computes individual adaptive learning rates
for different parameters from estimates of first and second
moments of the gradients (Kingma and Ba, 2014). Among the
activation functions, ReLU achieved the weakest performance
with fixed hidden nodes and learning rate, whereas Sigmoid
and Tanh activation functions yielded better, but nearly similar
performances. The significant limitation of ReLU is that it easily
overfits compared to the Sigmoid and Tanh activation functions
(Nwankpa et al., 2018). ReLU is sometimes fragile during learning
process causing some of the gradients to die. This leads to several
nodes being dead as well, thereby causing the weight updates
not to activate in future data points and hence, hindering a
further learning as dead nodes give zero activation (Goodfellow
et al., 2016; Nwankpa et al., 2018). Sigmoid and Tanh, both
are monotonically increasing functions that asymptote a finite
value as ±∞ is approached (LeCun et al., 2012). The only
difference is that Sigmoid lies between 0 and 1, whereas Tanh
lies between 1 and −1. One of the main advantages of Sigmoid
and Tanh activation functions is that the activations (i.e., the
values in the nodes of the network, not the gradients) may not
explode during the learning process, since their output range
is bounded (Feng and Lu, 2019; Szandała, 2020). However, it
should be pointed out that each activation function has its
own strengths and limitations and its performance may be
different based on the network complexity and data structure
(Nwankpa et al., 2018; Feng and Lu, 2019). Therefore, choosing
a proper activation function should be prioritized to enhance the
model performance. ANN model was trained for a maximum of
10,000 epochs to automatically optimize the number of epoch,
at which the loss function (i.e., MAE) reaches its minimum
on the validation set. Figure 7 shows MAE values over 10,000
training epochs on the normalized train and validation data
over 100 iterations of the cross-validation for the optimized
ANN model. The model converged within 6,000 epochs. The
convergence behavior of the model indicates that the optimized
model was robust and efficient in the learning process and

FIGURE 7 | Loss function (MAE) vs. epoch on the normalized train and

validation sets over 100 iterations derived from the ten times 10-fold

cross-validation for the optimized ANN.

that MAE was a proper loss function for the model to learn
the problem.

SVM Prediction Performance
The prediction performance of SVM was evaluated using
various types of kernel functions in combination with the
optimal hyperparameters of the kernel functions. Table 4 shows
the average prediction performance over 100 iterations of
the cross-validation for each kernel function with its optimal
hyperparameters. The best prediction performance was obtained
by a Polynomial kernel function with kernel hyperparameters of
(C = 8.8587, ε = 0.0162, γ = 0.1833, d = 2). This configuration
achieved aMAE of 7.89%, RMSE of 9.43%, R2 of 0.83, and NSE of
0.78. The RBF kernel ranked second among the kernel functions.
The Linear and Sigmoid kernels performed very similar to each
other but slightly weaker than the RBF kernel. Figure 8 shows
the boxplots of statistical measures for prediction performance
of SVM kernels over 100 iterations of the cross-validation. It is
observed that Linear and Sigmoid are the least stable kernels,
whereas the Polynomial is the most stable kernel. The RBF kernel
is more stable than Linear and Sigmoid kernels but less stable
than Polynomial kernel. Our findings are in line with previous
studies where Polynomial and RBF were found to be the most
appropriate kernel functions that tend to give good performance
for the modeling of the non-linear systems (Raghavendra and
Deka, 2014). However, the RBF kernel is the mostly used kernel
in previous studies (Raghavendra and Deka, 2014), since it has
less hyperparameters than the Polynomial kernel that affect the
complexity of model selection. Unlike the linear kernel, it can
capture the non-linear relation between class labels and attributes
and it tends to exhibit satisfactory performance under general
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TABLE 4 | Average prediction performance of the SVM model using different kernel functions with their optimal hyperparameters (C, ε, γ , d) over 100 iterations of the

cross-validation.

Kernel C ε γ d MAE (%) RMSE (%) R2 NSE

Linear 2.0691 0.0886 - - 9.72 11.61 0.72 0.42

Sigmoid 61.5848 0.0886 0.0336 - 9.71 11.60 0.72 0.51

RBF 1.6238 0.0428 0.2976 - 9.38 11.30 0.73 0.67

Polynomial 8.8587 0.0162 0.1833 2 7.89 9.43 0.83 0.78

The best configuration is bolded.

FIGURE 8 | Boxplots of the performance criteria for prediction performance of

SVM kernels over 100 iterations derived from the ten times 10-fold

cross-validation. The average is indicated by a black square and the median

by the bar separating a box.

smoothness assumptions (Raghavendra and Deka, 2014; Yaseen
et al., 2015). The degree of polynomial function d defines the
smoothness of the function, which gives the polynomial kernel
the advantage of increasing the dimensionality (Raghavendra and
Deka, 2014). For d = 2, the separation surfaces correspond to
conic surfaces (i.e., an ellipse or hyperbola) in the feature space.
Higher degrees can yield more complex decision boundaries,
however, it may increase the risk of overfitting and hence, a
decline in model performance (Yaman et al., 2012). Polynomial

kernel takes the feature combinations implicitly into account
instead of combining the features explicitly. By setting d, different
numbers of feature conjunctions can be implicitly computed. In
this way, Polynomial kernel performs often better than linear
kernels, which do not utilize feature conjunctions (Wu et al.,
2007).

Comparative Performance of Machine
Learning Models
The optimized ANN and SVM models were selected based on
the average performance over 100 iterations derived from ten
times 10-fold cross-validation for an in-depth comparison of
the models’ capability in prediction of maximum event water
fractions in the Schwingbach. Figure 9 shows the distribution of
statistical measures for learning and prediction performance
of the optimized ANN and SVM models over 100 iterations
of the cross-validation. The optimized SVM outperformed the
optimized ANN model in terms of performance and its stability.
In terms of performance capability, the SVM achieved better
performance in the train as well as in the test sets. The average
and median values over the train and test sets were lower in
terms of the MAE and RMSE, and higher in terms of the R2

and NSE for the SVM compared to those of the ANN. In terms
of performance stability, fewer variations were observed for the
performance of the SVM model over the 100 iterations of cross-
validation indicating that the SVM is a more stable model with
respect to different train and test sets.

The 10-fold cross-validation strategy provides the opportunity
for each data point to be predicted exactly once. Repeating
this procedure ten times, results in ten predicted values for
each data point, though over differently shuffled train and
test sets. Figure 10 shows the comparison of observed and
predicted maximum event water fractions of the 40 events by
the optimized ANN and SVM models. The red and blue circles
indicate the average of ten predicted values at each event by the
optimized ANN and optimized SVM, respectively. The red and
blue bands depict the range of all ten predicted values at each
event by the optimized ANN and optimized SVM, respectively.
Both models were able to reproduce the overall dynamic of
maximum event water fractions across the events quite well.
However, the optimized SVM model showed superiority over
the optimized ANN model for predicting of the maximum event
water fractions. Good match between observed and predicted
maximum event water fractions was found using SVM model
and generally, the predictions were closer to the corresponding
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FIGURE 9 | Boxplots of the performance criteria of the optimized ANN and

optimized SVM for the train and test sets of 100 iterations derived from the ten

times 10-fold cross-validation. The average is indicated by a black square and

the median by the bar separating a box.

observed values than those of the ANN model. The ANN tended
to underestimate the events with high maximum event water
fractions (e.g., events 4, 19, 32, and 37) and to overestimate the
events with low maximum event water fractions (e.g., events 3,
6, 7, and 36). The main reason that the ANN may not be able to
capture extreme values is the unavailability of the high number of
extreme values in the training data, and hence the ANN cannot
adequately learn the process in respect of extremes (Adnan et al.,
2019a). The other main reason may be the fact that the ranges
of extreme values in the training data are lower than those of
the validation and/or test data (Adnan et al., 2019a; Malik et al.,
2020). This leads to extrapolation difficulties in machine learning
models (Kisi and Aytek, 2013; Kisi and Parmar, 2016). Several
researchers have also reported this constraint in the application
of the ANN in previous studies (Karunanithi et al., 1994; Minns
and Hall, 1996; Dawson and Wilby, 1998; Campolo et al., 1999;
Jimeno-Sáez et al., 2018; Singh et al., 2018; Najah Ahmed et al.,
2019). It is evident that the range of all ten predicted values at
each event was relatively high for the ANNmodel, particularly for
the events with high maximum event water fractions. In contrast,
this range was relatively low for the SVM model. It indicates

that the performance of the SVM model for the prediction of
maximum event water fraction is more reliable under randomly
shuffled data compared to that of the ANNmodel.

The overall prediction ability of the SVM model was superior
to that of the ANN model in this study. SVM implements the
structural risk minimization principle, which gives it superior
generalization ability in the situation of small sample size,
whereas the ANN implements empirical risk minimization
principle, which makes it more vulnerable to overfitting and
susceptible to consider noise in the data as a pattern (Wu et al.,
2008; Behzad et al., 2010; Yoon et al., 2011; Liu and Lu, 2014).

Application of Machine Learning on Small
Data Set: Challenges and Strategies
Generally, the performance of machine learning models excels
when having more training data available (Schmidhuber, 2015).
Machine learning has exhibited promising performance in many
fields such as natural language processing and image recognition
where big data set is employed in training procedure (Feng et al.,
2019). However, collecting training data set that is large enough
is a challenge for some research fields such as medical, material,
and natural sciences due to the complexity and high costs of data
collection (Feng et al., 2019; Brigato and Iocchi, 2020). Compared
to other areas of hydrological research, the available data is still
limited in the field of isotope hydrology likely due to the laborious
and cost intensive measurements of water isotopes. This lack of
data is even more pronounced in case of high-resolution isotopic
hydrographs at the event scale.

The key challenge on the application of machine learning
on small data sets is that the model generalizes patterns in
training data such that it correctly predicts unseen data on the
test data set. The other main challenge is to ensure a reliable
estimation for the generalization ability of the machine learning
model. With the advance of machine learning during recent
years, several strategies have been established to tackle data
limitations that may affect the performance of the machine
learningmodels. Resampling strategies like repeated k-fold cross-
validation are the most appropriate for a small sample size (Kim,
2009; Refaeilzadeh et al., 2009; Beleites et al., 2013; Goodfellow
et al., 2016). This strategy estimates the model performance
by repeating the k-fold cross-validation procedure for number
of times, where each time the data is shuffled randomly and
subsequently the average performance over all iterations is
reported. This is not only an unbiased estimate of model
performance but also a reliable estimate of model performance
and its stability with respect to different train and test sets
(Kohavi, 1995; Beleites et al., 2013; Géron, 2019). Previous studies
have successfully utilized cross-validation technique on small
sample size ranging from 35 to 60 instances using SVM and ANN
models (Behzad et al., 2010; Das et al., 2012; Khovanova et al.,
2015; Shaikhina et al., 2015).

Model complexity is a critical factor when only limited data set
is available. Using too complex models increases the likelihood
of overfitting (Maier et al., 2010). Overfitting occurs when the
model learns the details and noises in the training data to the
extent that it fails to generalize on new data. On the other hand,
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FIGURE 10 | Comparison of observed and predicted maximum event water fractions FEmax of the 40 events predicted by the optimized ANN and optimized SVM

models. The red and blue circles indicate the average of ten predicted values at each event derived from ten times 10-fold cross-validation by the optimized ANN and

SVM models, respectively. The red and blue bands indicate the range of all ten predicted values (i.e., all runs) at each event derived from ten times 10-fold

cross-validation by the optimized ANN and SVM models, respectively.

using too simple models may lead to underfitting. Underfitting
occurs when the model is too simple and does not have enough
capacity to learn the patterns in the training data set. Ideally, it is
desired to select a model at the sweet spot between underfitting
and overfitting. In order to reduce the risk of underfitting and
overfitting, a validation set was used to optimize the complexity
of the models. Figure 6 shows that increasing the complexity of
the ANN architecture does not enhance the performance of the
model, whereas using too simple architectures does not lead to
a promising performance too. This implies the importance and
necessity of model complexity optimization in order to enhance
the model performance especially in situation of small data set,
for which the risk of underfitting and overfitting is even higher
compared to larger data sets.

The choice of machine learning algorithm is another
important factor that needs additional attention when dealing
with limited data sets. SVM has shown to be a more suitable
algorithm compared to ANN in the case of small sample
sizes (Wu et al., 2008; Behzad et al., 2010; Das et al., 2012;
Liu and Lu, 2014). Structural risk minimization and statistical
machine learning process are the bases of SVM. The structural
risk minimization aims to minimize the upper bound to the
generalization error instead of traditional local training error.
Moreover, SVM offers a unique and globally optimal solution
towing to the convex characteristic of the ideal problem and
employs high-dimensional spaced set of kernel functions that
subtly includes non-linear transformation. Therefore, it has
no hypothesis in functional transformation, which makes it
essential to have linearly divisible data. At the same time,
overfitting is unlikely to occur with the SVM, if the parameters
are properly selected. Contrasting, ANN implements empirical
risk minimization principle, which makes it more vulnerable to

overfitting and falling into a local solution. The results showed
that ANN was less stable compared to SVM (Figure 9). This
might be due to the sensitivity of ANN to the initialization
parameter values and training order (Bowden et al., 2002).
ANN initialization and backpropagation training algorithms
commonly contain deliberate degrees of randomness in order
to improve convergence to the global optimal of the associated
loss function (Wasserman, 1989; LeBaron and Weigend, 1998).
Moreover, the order with which the training data is fed to
the ANN may affect the level of convergence and produce
erratic outcomes (LeBaron and Weigend, 1998). Such ANN
volatilities limit the reproducibility of the results. The success
of k-fold cross-validation to reduce the stability problems in
ANNs has been discussed in previous studies (Maier and
Dandy, 1998, 2000; Bowden et al., 2002). Nevertheless, additional
care for optimization of hyperparameters and complexity of
network needs to be taken when applying ANN to small
sample size.

CONCLUSION

Estimating maximum event water fractions in streamflow based
on the isotopic hydrograph separation gives valuable insight
into runoff generation mechanisms and hydrological response
characteristics of a catchment. However, such estimation is not
always possible due to the spatiotemporal difficulties in sampling
and measuring of stable isotopes of water. Therefore, there is a
need for a proper predictive model to predict maximum event
water fractions in streamflow even at times when no direct
sampling and measurements of stable isotopes of water are
available. As the relationships between the maximum event water
fraction and its drivers are complex and non-linear, predictions
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using process-based models are difficult. Recently, machine
learning algorithms have become increasingly popular in the
field of hydrology due to their ability in representing complex
and non-linear systems without any a priori assumption about
the structure of the data and knowledge about the underlying
physical processes. However, the potential of machine learning in
the field of isotope hydrology has rarely been investigated. This
study investigates the applicability of ANN and SVM algorithms
to predict maximum event water fractions on independent
events in the Schwingbach Environmental Observatory (SEO),
Germany. The result showed that maximum event water fraction
could be successfully predicted using only precipitation, soil
moisture, and air temperature. This is very important in practice
because sampling and measuring of stable isotopes of water
are cost intensive, laborious, and often not feasible under
difficult spatiotemporal conditions. It is concluded that SVM
is superior to the ANN in the prediction of maximum event
water fractions on independent precipitation events. SVM could
better capture the dynamics of maximum event water fractions
across the events and the predictions were generally closer to the
corresponding observed values. ANN tended to underestimate
the events with high maximum event water fractions and to
overestimate the events with lowmaximum event water fractions.
Detailed discussion is provided with respect to the influence of
hyperparameters on the model performance.

Directions of future research include benchmarking the
performance of the proposed machine learning models against
process-based models in the field of isotope hydrology. Applying
the proposed machine learning models with more training data
and to other catchments in other parts of the world would allow
assessing how well our method is transferable to catchments
with different characteristics (e.g., weather patterns, topography,
land use, and catchment size). Further, the proposed algorithms
could be compared to other machine learning algorithms using
different input scenarios of hydroclimatic data.

Using machine learning algorithms for the prediction of target
variables that are difficult, expensive, or cumbersome to measure
provides a valuable tool for future applications. Such algorithms
can also be of great value for gap filling procedures. Our study
focuses onmachine learning in the field of isotope hydrology, but
further applications in hydro-chemistry, e.g., for the prediction of
pesticides or antibiotics have great potential for future research.

Machine learning does not substitute monitoring efforts as
the model development is based on the robust data that covers
diverse flow situations. However, machine learning is seen as
a promising supplement for the establishment of long-term
monitoring strategies of hydrological systems.
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