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Reliable near-surface soil moisture (θ ) information is crucial for supporting risk

assessment of future water usage, particularly considering the vulnerability of agroforestry

systems of Mediterranean environments to climate change. We propose a simple

empirical model by integrating dual-polarimetric Sentinel-1 (S1) Synthetic Aperture Radar

(SAR) C-band single-look complex data and topographic information together with

in-situ measurements of θ into a random forest (RF) regression approach (10-fold

cross-validation). Firstly, we compare two RF models’ estimation performances using

either 43 SAR parameters (θNov
SAR) or the combination of 43 SAR and 10 terrain

parameters (θNov
SAR+Terrain). Secondly, we analyze the essential parameters in estimating

and mapping θ for S1 overpasses twice a day (at 5 a.m. and 5 p.m.) in a high

spatiotemporal (17 × 17m; 6 days) resolution. The developed site-specific calibration-

dependent model was tested for a short period in November 2018 in a field-scale

agroforestry environment belonging to the “Alento” hydrological observatory in southern

Italy. Our results show that the combined SAR + terrain model slightly outperforms the

SAR-based model (θNov
SAR+Terrain with 0.025 and 0.020 m3 m−3, and 89% compared

to θNov
SAR with 0.028 and 0.022 m3 m−3, and 86% in terms of RMSE, MAE, and

R²). The higher explanatory power for θNov
SAR+Terrain is assessed with time-variant SAR

phase information-dependent elements of the C2 covariance and Kennaugh matrix (i.e.,

K1, K6, and K1S) and with local (e.g., altitude above channel network) and compound

topographic attributes (e.g., wetness index). Our proposed methodological approach

constitutes a simple empirical model aiming at estimating θ for rapid surveys with high

accuracy. It emphasizes potentials for further improvement (e.g., higher spatiotemporal

coverage of ground-truthing) by identifying differences of SAR measurements between

S1 overpasses in the morning and afternoon.
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INTRODUCTION

Globally, experts from diverse applications such as climate,
hydrological, and crop yield modeling agree on the importance of
the near-surface soil moisture (θ) for improving risk assessment
and land and water resources management (Babaeian et al.,
2019). It is mainly due to θ acting as a state variable for
controlling land-atmosphere feedback and thereby controlling
ecosystem dynamics (e.g., Seneviratne et al., 2010; Dorigo et al.,
2017).

At the plot to the field-scale, the direct thermo-gravimetric
method provides reliable in-situ measurements of θ .
Alternatively, indirect methods through the use of portable
devices or stationary sensors (e.g., Time Domain Reflectometry)
measure the soil dielectric properties from which the soil
moisture is inferred through semi-empirical equations (e.g.,
Rowlandson et al., 2018; Babaeian et al., 2019). However, their
applications are rather unfeasible for large-scale operations
due to excessive demand for time (e.g., maintenance) and costs
(e.g., labor) for surveying (e.g., Santi et al., 2016). Moreover,
the significance of ground-based methods is limited to the
represented plot settings, and the risk of generating non-
representative patterns of θ by spatial regionalization prevails
(Chen et al., 2017).

Spaceborne remote sensing (RS) provides spatially explicit
information as satellites sense the same ground trace in regular
time intervals, allowing for continuous monitoring (Babaeian
et al., 2019). Estimates of θ are retrieved from different sensors
measuring optical and thermal spectra (e.g., Rahimzadeh-
Bajgiran et al., 2013; Zhang and Zhou, 2016), by passive and
active microwave sensors (e.g., Schmugge and Jackson, 1997; Das
and Paul, 2015), or the synergistic use of different sensor types
such as using radar and optical data from Sentinel-2, Landsat, and
MODIS (e.g., Attarzadeh et al., 2018; Ayehu et al., 2020; Foucras
et al., 2020; Han et al., 2020; Ma et al., 2020). Synthetic Aperture
Radars (SAR) are among the most effective and flexible active
microwave sensor systems (e.g., Wang and Qu, 2009; Santi et al.,
2016) due to their ability to penetrate the near-surface soil layer
up to a depth of 5 cm (i.e., for C-band), which in turn enables
to observe θ by directly relating the microwave scattering and
emission to the water content of the focused object (e.g., Paloscia
et al., 2013; Santi et al., 2016; Mohanty et al., 2017; Babaeian et al.,
2019).

High spatiotemporal SAR-based retrieval of θ predominantly
focusses on bare land surfaces (e.g., Datta et al., 2020), sparsely
vegetated areas such as grassland and meadows (e.g., Xu et al.,
2020), or agricultural farmland when the vegetation cover is
low such as covered by crop residues (e.g., Ayehu et al., 2020).
This is mainly due to the unique challenge resulting from the
SAR backscatter’s high sensitivity to surface characteristics (e.g.,
roughness) and vegetation properties (e.g., vegetation canopy
architecture). From a physical perspective, this is an inherent
source of uncertainty in deriving θ (Alemohammad et al., 2019),
which can be widely disentangled using backscatter models
of different complexity. Numerical theoretical models such as
the Integral Equation Model (Baghdadi et al., 2006) and the
Kirchhoff Approximation (Gu et al., 2019), and semi-empirical

backscatter models such as the Oh model (Oh et al., 1992)
and the Water Cloud Model (e.g., Baghdadi et al., 2017) relate
the sensor-specific microwave scattering to the target at ground
(e.g., bare soil) by means of physical-based descriptions (e.g,
Paloscia et al., 2013). They intend to be not site-specific and
universally applicable (Paloscia et al., 2013). However, these
pyhsical surface scattering models are not valid for vegetation
surfaces, hence should not be applied for conditions as present
in dense and woody vegetation cover areas (Petropoulos et al.,
2015; MirMazloumi and Sahebi, 2016).

The models above mainly require complex radiative transfer
algorithmic handling to solve the physical equation systems
(e.g., Das and Paul, 2015), thus potentially reducing feasibility
for practitioners as stated by Ezzahar et al. (2019). Empirical
backscatter models present a simplification by investigating
the interaction of microwaves with site-specific surface
characteristics but are limited to the area under investigation
and require the input of high-quality reference data, e.g., surface
roughness (Barrett et al., 2009).

Data-driven machine learning (ML) approaches were
investigated for the operational and systematic mapping and
monitoring of θ (e.g., Santi et al., 2016; Adeyemi et al., 2018;
Cai et al., 2019; Efremova et al., 2019; Datta et al., 2020).
Provided the availability of data sufficiently characterizing the
system for which θ is to be estimated, they present an adequate
alternative (Ezzahar et al., 2019) as they expand the concept of
the above backscatter models and allow integration of additional
environmental covariates (parameters) beyond those defined for
physical modeling.

ML approaches effectively handle large spatial datasets and
break down complexity by extracting representative parameters
(Karpatne et al., 2019). They can account for the non-linearity
of relationships, which is mainly present in RS-based θ retrieval
in vegetated and heterogeneous areas (e.g., Chakrabarti et al.,
2015). Random forest regression and support vector machine
applied on pixels (Hajdu et al., 2018; Datta et al., 2020) or image
objects (Ezzahar et al., 2019) and K-Nearest Neighbors for non-
parametric regression analysis (Datta et al., 2020) are reported
to lead to predictions of increasing accuracy, with even reported
less required data compared to mechanistic models (Adeyemi
et al., 2018), and enhanced readability of results (Attarzadeh et al.,
2018; Ezzahar et al., 2019). ML approaches are increasingly used
to estimate θ in agricultural watersheds across humid to arid
climate regimes and at different scales (e.g., Quesney et al., 2000;
Hachani et al., 2019). They are reported to improve hydrological
modeling in wetlands (Dabrowska-Zielinska et al., 2018) and to
support the monitoring of water tables dynamics (Asmuß et al.,
2019), and the estimation of crop water stress (El-Shirbeny and
Abutaleb, 2017), and the water use efficiency (Efremova et al.,
2019).

Commonly, studies employ the backscatter intensity Sigma-
naught (σ◦) either in single (VV or VH) polarization (e.g.,
Quesney et al., 2000; Attarzadeh et al., 2018; Xu et al., 2020)
or dual (VV + VH) polarization (e.g., Dabrowska-Zielinska
et al., 2018; Efremova et al., 2019; Datta et al., 2020) from
SAR amplitude information only. The topographic effect on
radar backscatter, i.e., foreshortening, layover, and shadowing
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(Chen and Wang, 2008), is considered in the preprocessing of
SAR data such as by terrain flattening and orthorectification
to remove radiometric distortions (Small, 2011) and to correct
distortions induced by the sensor inclination and topography,
respectively (Filipponi, 2019). Less attention, however, is paid
to the integration of relevant topographic parameters to retrieve
spatial patterns of θ in ML approaches.

Contador et al. (2006) applied Artificial Neural Networks for
modeling θ based on topography in a Mediterranean watershed
in Spain. They stress the strength of topographic variables in
predicting area-wide θ as they contribute to explaining spatial
information spanning from the very vicinity of a point (e.g.,
aspect and slope) reflecting the local position to the entire
terrain. Notably, compound, topographic attributes such as the
contributing area, the flow accumulation, the wetness index,
and the topographic roughness allow for integrating the spatial
coherence and geographical organization between the different
terrain positions (Contador et al., 2006). Subsequently, terrain
features enable approximating of spatial patterns θ from an eco-
hydrological perspective (e.g., Western et al., 2002; Robinson
et al., 2008).

Guevara and Vargas (2019) successfully employed
topographic information in an ML approach to downscale
RS-based soil moisture products over the conterminous USA
and labeled several parameters as “hydrologically meaningful.”
In this way, it was possible to adequately address the landscape’s
capability to physically constrain water inputs (e.g., rain and
irrigation water, overland flow) and support the link between
spatial variability of soil moisture θ and topography (Guevara
and Vargas, 2019).

While the number of studies on Sentinel-1 C-band SAR-based
estimation of θ , either by using physical backscatter models or
ML approaches, is steadily increasing, and the possibilities for
a more accurate analysis under vegetation (e.g., cropland) are
explored, application examples from agroforestry sites are not
known. This is noteworthy as those sites hold a multifunctional
role for a sustainable development model for rural areas (Santoro
et al., 2020). Particularly across European Mediterranean regions
that is home to one of the global hotspots of agroforestry sites
(Gauquelin et al., 2018), they should provide water supply for
multiple uses (e.g., domestic water use, irrigation, ecosystem
functions) during the dry season (e.g., García-Ruiz et al., 2011).
Therefore, θ is crucial for creating scenario-based projections for
supporting specific risk assessments (e.g., Nasta et al., 2020).

Our study aims to estimate and map a reasonable short
time series of θ in a Mediterranean dry sub-humid, field-
scale agroforestry ecosystem in southern Italy using an ML
approach. Our objective is to develop a site-specific simplified
empirical calibration model that provides the capability to
handle SAR backscatters and scarce in-situ information of
topsoil θ for a short observation period in November 2018. For
calibrating θ from SAR measurements, we aim to employ dual-
polarization phase and amplitude information from Sentinel-
1 SAR single-look complex (SLC) data to retrieve additional
parameters beyond the recent scope of physical and semi-
empirical models. To account for the effect of the topography on
spatial patterns of θ , we further test the integration of a set of

so-called ‘hydrological meaningful’ parameters. For evaluating its
estimation performance, we compare the in-situ θ with estimated
θ information when building the model (i) with SAR-based
parameters only and (ii) with the combination of SAR and
terrain parameters. Furthermore, we aim at identifying the most
relevant prediction parameters and their temporal behavior (e.g.,
variability) to enhance understanding of their sensitivity.

STUDY AREA

Our study focuses on a field-scale, predominantly agroforestry
area in the headwater zone of the Upper Alento River Catchment
in southern Italy (Figure 1; Nasta et al., 2017). It is represented
by the rectangular tile (green dashed line) with a size of 1.18
km² in Figure 1A,which comprises the experimental monitoring
site MFC2 (Figure 1B) with a size of about 30 ha (drainage
divide with an area of 8 ha is represented by the solid blue
line; Romano et al., 2018), and its immediate surroundings. The
climate is Mediterranean dry sub-humid with hot-dry summer
and mild-rainy winter. The average annual rainfall measured at
the meteorological station (Figure 1A) amounts to 1,229.3mm,
with 68% (834.9mm) occurring from October to March. With an
average monthly rainfall of 152.2mm, November is the wettest
month (Nasta et al., 2017). The potential evapotranspiration
averages 629mm per year (Nasta et al., 2020).

Our in-situ measurements of θ spatially concentrated over
20 designated locations (Figure 1B) that belong to the wireless
sensor network (SoilNet; Bogena et al., 2010) installed in the
drainage divide of MFC2 in 2016 (Nasta et al., 2020). We
further installed two stationary sensors to include the real-field
condition in terms of vegetation cover and land-use close (station
name VCP; vegetation cover plot represented by the red dot in
Figure 1A) and bare soil conditions without any vegetation cover
(station name BSP; bare soil plot represented by the green dot in
Figure 1A). Later is located about 750m from the VCP sensor
and is represented by a 20 × 20m square with the stationary
sensor located in its center. For the monitoring period, the grass
was frequently cut for maintaining the bare soil conditions,
as exemplarily shown for March 25, 2019 (Figure 1C) using a
hillshade derived from a UAV-based DEM (pixel size∼ 6 mm).

The physical-geographic settings of the moderately steep,
south to west facing survey and sensor locations, with mainly
silty clayey loam to clayey topsoils (Table 1), reflect the general
situation of the study area (Nasta et al., 2019). Vegetation at
the 21 observational points within the drainage divide of MFC2
(Figure 1B) is predominantly characterized by the occurrence of
cherry (Prunus sp.) and walnut (Juglans sp.) trees growing over a
5m regular plantation grid with the presence of dense herbaceous
vegetation. At the time of investigations (Nov. 2018), all trees
showed an indication of progressive abscission. Additionally,
olive trees (Olea europaea) with heights between 3 and 5m grow
over a regular plantation grid in proximity to the observational
points (Figure 1B). Furthermore, smaller plantations (e.g., olives
and vineyards) and agricultural fields allocate in the southern
study area (Figure 1A). In Nov. 2018, the majority of those fields
lay fallow.
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FIGURE 1 | Location of the study area in southern Italy and the soil moisture network. (A) The study area comprises the area of MFC2 with the hydrological divide and

the 20 SoilNet units, and the stationary sensor locations VCP in MFC2 and BSP, and the weather station. (B) The area of MFC2 with 20 SoilNet units and the

stationary sensor VCP. (C) The bare soil plot with the stationary sensor BSP in its center.

MATERIALS AND METHODS

A calibration procedure is necessary to convert SAR-based
measurements into θ values at the ground. Therefore, we based
our in-situ sampling framework on a measurement sequence per
satellite overpasses of Sentinel-1. The constellation of the two

polar-orbiting satellites (Sentinel-1 A/B; after this, S1A and S1B)
allows for a short revisit time of 6 days over Europe. In Nov.
2018, we organized eight sampling campaigns in four satellite
overpass days (c.f., section In-situ Near-Surface Soil Moisture
Measurements). Gridded information derived from the S1 SAR
products and topographic data (c.f., section Data Processing and
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TABLE 1 | Geographical positions (WGS 84/UTM zone 33N), topographic characteristics as derived from a DEM with a cell size of 5m, and topsoil (0–5 cm) properties of

the 20 SoilNet units (01–20) and the stationary sensor locations VCP and BSP.

Plot X Y Topographic properties Soil texture Soil classification

Altitude (m a.s.l.) Slope (◦) Aspect (◦) Exposition Sand (%) Silt (%) Clay (%)

01 515685 4468257 434.9 9.0 205 SW 18.57 46.23 35.20 Silty clay loam

02 515653 4468295 436.4 9.4 237 SW 28.20 36.85 34.95 Clay loam

03 515626 4468325 434.9 8.6 240 SW 21.90 37.98 40.12 Clay

04 515600 4468365 432.2 17.8 267 W 15.00 33.80 51.20 Clay

05 515581 4468389 425.8 13.3 285 W 12.67 45.37 41.96 Silty clay

06 515556 4468419 421.0 6.2 229 SW 15.45 39.25 45.30 Clay

07 515669 4468244 432.0 7.4 194 S 34.68 40.06 25.26 Loam

08 515637 4468283 433.6 7.5 241 SW 33.77 36.36 29.87 Clay loam

09 515611 4468313 432.3 8.8 243 SW 22.02 41.50 36.48 Clay loam

10 515578 4468346 427.6 11.5 277 W 38.83 22.65 38.52 Clay loam

11 515557 4468368 423.3 9.1 286 W 15.73 37.51 46.76 Clay

12 515533 4468399 419.7 3.5 261 W 16.62 48.18 35.20 Silty clay loam

13 515646 4468225 429.7 5.3 163 S 24.20 33.64 42.16 Clay

14 515614 4468264 430.4 5.4 279 W 20.00 47.87 32.13 Clay loam

15 515588 4468294 428.4 8.3 254 W 35.10 32.98 31.92 Clay loam

16 515578 4468346 427.6 11.5 277 W 20.05 33.19 46.76 Clay

17 515558 4468369 423.3 9.1 286 W 22.28 39.20 38.52 Clay loam

18 515533 4468399 419.7 3.5 261 W 15.30 48.22 36.48 Silty clay loam

19 515585 4468253 427.4 7.7 278 W 19.02 48.35 32.63 Silty clay loam

20 515521 4468322 417.4 10.3 267 W 19.07 50.08 30.85 Silty clay loam

VCP 515602 4468297 430.6 7.9 242 SW 22.02 41.50 36.48 Clay loam

BSP 515404 4467589 351.9 17.1 172 S 19.70 25.16 55.14 Clay

S, south; SW, southwest; W, west.

Dataset Construction) and in-situmeasurements of θ built up the
dataset for the spatial estimation of θ (c.f., section Near-Surface
Soil Moisture Estimation Using Machine Learning).

In-situ Near-Surface Soil Moisture
Measurements
Throughout the observation period, the sampling campaigns
were repeatedly conducted over the above exact 20 locations
(Figure 1B) to enable fast surveying at the designated and
easy-to-recognize flagged locations without using a GPS device.
Due to logistic reasons (i.e., darkness during the overpass at
5 a.m.), we set the start and end times of surveying to ∼30min
before and after the start and end times of the S1 satellite
overpasses (Table 2). We used a portable, low-cost frequency
Stevens HydraProbe soil sensor (Stevens Water Monitoring
Systems, Inc.) with waveguide lengths of 5.7 cm and inserted it
vertically into the topsoil for measuring point-scale θ . The rugged
HydraProbe uses the principle of coaxial impedance dielectric
reflectometry (Bellingham, 2019) and infers θ in units of water
fraction (wfv) with an accuracy of ±0.03 wfv m3 m−3 for fine-
textured soils and a precision of±0.003 wfv m3 m−3 (Kammerer
et al., 2014).

At the stationary sensor locations VCP and
BSP (Figures 1B,C), further two vertically inserted
HydraProbes, each connected to a GeoPrecision datalogger

TABLE 2 | Dates with start and end time of overpasses of the satellites Sentinel-1

A/B (S1A/B) during the observation period in Nov. 2018.

Date of overpass Start/end time of overpass

GMT/UTC + 1h

Satellite platform

10 Nov 2018 05:04:00–05:04:27 a.m./04:56:14–

04:56:42 p.m.

S1A_d124/S1B_a44

16 Nov 2018 05:03:18–05:03:45 a.m./04:56:58–

04:57:26 p.m.

S1B_d124/S1A_a44

22 Nov 2018 05:03:59–05:04:26 a.m./04:56:14–

04:56:42 p.m.

S1A_d124/S1B_a44

28 Nov 2018 05:03:11–05:03:38 a.m./04:56:57–

04:57:25 p.m.

S1B_d124/S1A_a44

a/d, ascending/descending satellite track. 44/124, relative orbit numbers at the start time

of the data track.

(www.geo-precision.com) and following the exact technical
specification as for the portable probe, continuously recorded
θ in time-steps of 1min. We considered those values recorded
precisely at the time of satellite overpass (Table 2) for further
analyses. Eventually, we compiled a dataset of 176 in-situ
measurements (i.e., measurements recorded during eight
overpasses at 22 position) of θ according to the proposed
calibration procedures.
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Data Processing and Dataset Construction
The SAR backscatter that is composed of a pair of symbols
denoting the polarization–in our study VV (vertical transmit
and vertical receive) and VH (vertical transmit and horizontal
receive)–is determined by soil physical properties (e.g., dielectric
properties and particle size distribution), topography, and
vegetation (plant and canopy structure, vegetation water
content). Physical or semi-empirical models attempt to
disentangle these properties from the SAR measurements
(intensity and phase) that, in turn, are affected by the frequency,
polarization, and incidence angle (El Hajj et al., 2018) interacting
with the surface properties (Wang and Qu, 2009; Das and Paul,
2015). In our modeling approach, we use such parameters
that describe the SAR backscatters and statistically identify the
relevant parameters to predict θ .

SAR-Based Parameters

We processed S1A and S1B C-band (5.405 GHz) Level-1 single-
look complex (SLC) dual-polarization (dual-pol) SAR data using
the Sentinel-1 Toolbox in the Sentinel Application Platform
(SNAP). The SAR images were retrieved with a constant and
identical Interferometric Wide (IW) sub-swath mode from
ascending and descending tracking modes (Table 2). The local
incidence angles of the S1A and S1B satellites over our study
area vary between near and far range for IW2 mode with values
of 36.2–41.9◦ and 30.6–46.1◦, respectively. The look direction
(i.e., antenna pointing) for the S1A/B satellites is constantly right,
concerning the flight direction. The azimuth steering angle in
IW2 mode is±0.6◦.

We first split the swath into desirable sub-swath. Essential
preprocessing steps included geocoding of images to add the orbit
file with the satellite’s exact position and velocity information.
Data was radiometrically calibrated to retrieve complex numbers
from the digital image pixels and backscattering coefficients
(i.e., Beta-naught β◦, Sigma-naught σ◦, Gamma-naught γ◦, and
terrain-flattened Gamma-naught TFγ◦). The deburst function
(Moreira et al., 2013) was applied afterward to remove border
noise between the sub-swaths, thus creating continuous images.
The polarimetric matrix generation function was used to create
the dual-pol covariance matrix, according to Nielsen et al. (2017).
Afterward, the multi-looking approach was applied to reducing
the speckle noise, thus enhancing the radiometric accuracy, the
image quality, and consequently, the interpretability of the SAR
image (Moreira et al., 2013). Speckle noise was reduced by
applying refined Lee speckle filtering (7 × 7 window) according
to Yommy et al. (2015). Due to the topographical effect and
the tilt of the satellite sensor, some distortion takes place in
SAR images. Therefore, the Range Doppler terrain correction
method (Filipponi, 2019) was applied to correct these distortions,
and georeferencing was carried out based on (WGS 84, UTM
Zone 33N).

The resulting gridded SAR parameters had a spatial resolution
of 17 × 17m and contained both polarizations (cross-pol
VH and co-pol VV). To avoid the effects of the different
local incidence angles on the backscatter, hence to enable
the radiometric comparison of multi-temporal SAR images, all
images were normalized to a constant incidence angle of 35◦

using the quadratic cosine correction based on the theoretical
model of Lambert’s law and assuming Lambertian surface as
typical for moderate vegetation (Mladenova et al., 2013). In
addition, we computed mathematical band combinations (MBC)
of both polarization in terms of addition (VH+VV), subtraction
(VH-VV, VV-VH), ratio (VH/VV, VV/VH), and multiplication
(VH∗VV). These MBCs were reported to counteract radiometric
instability and vegetation moisture variations introduced by
using original polarization (e.g., Omar et al., 2017; Ahmadian
et al., 2019) and hence are likely able to improve the performance
of our empirical model. The definition of Kennaugh’s matrix
and its elements for dual-pol S1 data was used based on the
calculation by Schmitt et al. (2015) and Ullmann et al. (2017).
SVH and SVV refer to the complex signal of cross-pol and co-
pol channels, respectively (Table 3). |SVV|² and |SVH|² indicate
the intensity of VV and VH channels, whereas Re and Im hold
the real and the imaginary part of the inter-channel correlation
and ∗ denotes the complex conjugate (Table 3). The Kennaugh
elements can be divided into two intensity-only channels K0 and
K1, and the two channels K5 and K6 containing the real (Re)
and the imaginary (Im) part, respectively (Ullmann et al., 2017).
Since the coefficients of the Kennaugh matrix elements for the
intensities differ slightly in the literature (e.g., Schmitt et al., 2015;
Ullmann et al., 2017), the second version was used according
to Schmitt et al. (2015) and is called K0S and K1S, respectively
(Table 3).

Terrain Parameters

We further incorporated continuous, primary local topographic
attributes (PLTA) and secondary compound topographic
attributes (SCTA) as commonly used environmental proxy-
drivers in θ modeling studies (e.g., Western et al., 2002;
Beaudette et al., 2013). All attributes were derived using the
System for Automated Geoscientific Analyses (Conrad et al.,
2015). Due to the predominant processing of SAR parameters,
we met the need for the exact cell sizes by re-sampling (i.e.,
bilinear interpolation) the DEM with an original cell size of 5m
(Nasta et al., 2017) toward the joint spatial resolution of 17 ×

17m. The gridded PLTAs (Table 4) are the altitude above the
channel network (AAC), aspect, elevation, slope angle, and plan
and profile curvature. Derived SCTAs (Table 4) comprised flow
accumulation, SAGA wetness index (SWI), and topographic
roughness index (TRI).

In total, we derived 43 SAR and 10 steady-state terrain
parameters as spatial gridded datasets. As the SARmeasurements
are time-variant, they were calculated for each S1 overpass,
resulting in 433 single spatial grids.

Near-Surface Soil Moisture Estimation
Using Machine Learning
Our ML approach used is the random forests (RF) regression
analysis. RF is an ensemble of randomized Classification and
Regression Trees (CART), e.g., Breiman (2001). We applied the
“caret” R package for regression analysis (Kuhn et al., 2020) for
the R Project for Statistical Computing and employed our dataset
of 176 in-situ measurements (c.f., section In-situ Near-Surface
Soil Moisture Measurements).
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TABLE 3 | List of 43 SAR-based parameters as used as predictors in θNov
SAR and θNov

SAR+Terrain.

Parameter grid name Parameter (polarization); unit Purpose

B_VH β◦ (VH)

SAR backscatter referring to the radar brightness in the slant range plane (Small, 2011)

B_VV β◦ (VV)

B_VH_div_VV β◦ (VH)/β◦ (VV)

B_VH_min_VV β◦ (VH) – β◦ (VV)

B_VH_multi_VV β◦ (VH) * β◦ (VV)

B_VH_plus_VV β◦ (VH) + β◦ in (VV)

B_VV_div_VH β◦ (VV)/β◦ (VH)

B_VV_min_VH β◦ (VV) – β◦ (VH)

G_VH γ◦ (VH)

SAR backscattering coefficients in the plane perpendicular to the line of sight from sensor

to an ellipsoidal model of the earth surface (Small, 2011)

G_VV γ◦ (VV)

G_VH_div_VV γ◦ (VH)/γ◦ (VV)

G_VH_min_VV γ◦ (VH) – γ◦ (VV)

G_VH_multi_VV γ◦ (VH) * γ◦ (VV)

G_VH_plus_VV γ◦ (VH) + γ◦ (VV)

G_VV_div_VH γ◦ (VV)/γ◦ (VH)

G_VV_min_VH γ◦ (VV) – γ◦ (VH)

S_VH σ◦ (VH)

SAR backscattering coefficients normalized to ground area which locally tangent to an

ellipsoidal model of earth surface (Small, 2011)

S_VV σ◦ (VV)

S_VH_div_VV σ◦ (VH) / σ◦ (VV)

S_VH_min_VV σ◦ (VH) – σ◦ (VV)

S_VH_multi_VV σ◦ (VH) * σ◦ (VV)

S_VH_plus_VV σ◦ (VH) + σ◦ (VV)

S_VV_div_VH σ◦ (VV)/σ◦ (VH)

S_VV_min_VH σ◦ (VV) – σ◦ (VH)

TFG_VH TF γ◦ (VH)

Terrain flattened (TF) SAR backscattering coefficient accounting for the topographic

variations (Small, 2011)

TFG_VV TF γ◦ (VV)

TFG_VH_div_VV TF γ◦ (VH)/TF γ◦ (VV)

TFG_VH_min_VV TF γ◦ (VH) – TF γ◦ (VV)

TFG_VH_multi_VV TF γ◦ (VH) * TF γ◦ (VV)

TFG_VH_plus_VV TF γ◦ (VH) + TF γ◦ (VV)

TFG_VV_div_VH TF γ◦ (VV)/TF γ◦ (VH)

TFG_VV_min_VH TF γ◦ (VV) – TF γ◦ (VH)

C11 1st element of polarimetric C2 matrix; - The 1st and 4th elements (i.e., C11 and C22) refer to ensemble averaging of first (co-pol

VV) and second channel (cross-pol VH), which represents the modulus (amplitude). The

2nd and 3rd elements (i.e., C12imag and C12real) contain the information about the real

and imagery part of the channels (Erten, 2012; Nielsen et al., 2017; Mandal et al., 2019)

C12imag 2nd element of polarimetric C2 matrix; -

C12real 3rd element of polarimetric C2 matrix; -

C22 4th element of polarimetric C2 matrix; -

K0 Kennaugh element K0 = 0.5 (|SVV|² + 2|SVH|²);

Total intensity (sum) can be found in K0 and K0S, The difference between co- and

cross-pol intensity appears in K1 (and K1S). The elements K5 and K6 relates to real (Re)

and imagery (Im) information and consequently hold useful information for

deterministic—usually man-made—targets exclusively (Schmitt et al., 2015; Ullmann et al.,

2017)

K0S Kennaugh element K0S = |SVV|² + |SVH|²; -

K1 Kennaugh element K1 = 0.5 (|SVV|² – 2|SVH|²);

-

K1S Kennaugh element K1S = |SVV|² – |SVH|²; -

K5 Kennaugh element K5 = Re (SVV SVH*); -

K6 Kennaugh element K6 = –Im (SVV SVH*); -

ProjLocIncAngle Projected local incidence angle Local incidence angle projected into the range plane; refers to the angle between the

incoming radiation and the projected surface normal into the range plane (SNAP)

VV, vertical transmit/vertical receive; VH, vertical transmit/horizontal receive; β◦, Beta-naught; σ◦, Sigma-naught; γ◦, Gamma-naught.
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TABLE 4 | Ten terrain parameters as used as predictors in θNov
SAR+Terrain.

Parameter grid name Type of terrain parameter; Parameter; unit Purpose

AAC PLTA; Altitude above channel network; m a.s.l. Vertical distance of the original elevation to the interpolated channel network base level

elevation; proxy on the relative soil gravitational potentials, thus local draining potentials

(Nobre et al., 2011)

Aspect_d PLTA; Aspect; ◦ Key attribute in describing the landscape’s spatial heterogeneity affecting the surface

energy balance and as such the soil water retention capacity and water availability (Geroy

et al., 2011)

Aspect_r PLTA; Aspect; rad

Elevation PLTA; Altitude; m a.s.l. Key attribute in describing the physical landscape properties and their spatial patterns

(Beaudette et al., 2013)

FlowAcc SCTA; Flow accumulation Cumulative count of the pixel number naturally draining toward the outlet, thus a proxy on

the effects of the depth and velocity of flow; in the present study integrating the multiple

flow direction based on the maximum downslope gradient (Top-Down processing; Qin

et al., 2011)

PlanCurvature PLTA; Plan curvature; rad m−1 Curvature of a contour line formed by intersecting a horizontal plane with the surface;

proxy on the convergence or divergence of water during downslope flow (Amatulli et al.,

2018)

ProfileCurvature PLTA; Profile curvature; rad m−1 Curvature of the surface in the direction of the steepest slope affecting the acceleration or

deceleration of surface water and indicating local changes of inflow velocity (Bogaart and

Troch, 2006; Contador et al., 2006)

Slope PLTA; Slope angle; ◦ Key attribute in describing the landscape’s spatial heterogeneity and describing

catchment-related hydrological processes (e.g., Bogaart and Troch, 2006)

SWI SCTA; SAGA Wetness Index; - Measure on the spatial scale effect of the topography on hydrological processes and

identifier in flow paths; based on the modified catchment area for predicting a realistic

terrain-related soil moisture potential (Böhner and Selige, 2006)

TRI SCTA; Topographic Roughness Index; - Descriptor of the terrain profile indicating the surface heterogeneity of the landscape (Riley

et al., 1999)

PLTA, primary, local topographic attribute; SCTA, secondary compound topographic attribute.

The prediction datasets included (i) SAR parameters only
(after this θNov

SAR) and (ii) the combination of SAR and terrain
parameters (after this θNov

SAR+Terrain). Since 70–30% splitting
for training/testing did not prove successful because of the
limited number of point-observations, we decided for k-fold
cross-validation with k = 10, splitting the randomly shuffled
data into 10 complementary subsets. From those 10 subsets,
nine subsets were used to build and fit the model and one for
testing the model. This step was repeated until each subset was
used for testing once. The total error rate of the model was
then calculated as the average of the individual error rates of
the k = 10 individual runs. For both RF models, we kept the
tuning parameters ntree (number of trees) and mtry (number
of variables randomly sampled at each split) as default values
(ntree = 500, mtry = no. of variables/3), which we considered
as appropriate as RF is insensitive to over-adaption. We chose
the coefficient of determination (R²), the root-mean-square error
(RMSE), and the corresponding mean absolute error (MAE) as
estimation performance indicators.

Additionally, we computed the predictor importance for
θNov

SAR and θNov
SAR+Terrain. It presents the evaluated, scaled

relationship between each predictor and the estimates. We used
the percentage increase in mean squared error (%IncMSE) as
the importance measure for the regression models. It refers
to the MSE of predictions, which is calculated by comparing
the difference in the influence on model accuracy between a
parameter and a randomly permuted version of it at each split in

a tree when it is selected (Breiman, 2001). Subsequent importance
analysis provides a ranking of predictors and information of
how much the model accuracy decreases if we leave out a
particular parameter in estimating θ . A one-way ANOVA test
was conducted on the averaged values of the topmost ranking
parameters as revealed by θNov

SAR to analyze potential differences
between the SAR measurements in the morning (5 a.m.) and
afternoon (5 p.m.) of each overpass day (Table 2).We assume this
step to better identify those parameters sensitive to within-day
variations of θ .

RESULTS

In-situ Soil Moisture
In-situ θ values from all eight sampling campaigns (n = 176)
spanned from 0.14 m3 m−3, measured at position 18 on Nov.
16 (5 a.m.) to ∼0.62 m3 m−3 at the position BSP on Nov. 22 (5
p.m.).With an average of∼0.34m3 m−3 and a standard deviation
(SD) of almost 0.08 m3 m−3, the total measured θ values follow a
distinct positive, right-tailed distribution (Table 5).

On a daily basis, average in-situ θ values ranged between
∼0.30 m3 m−3 in the morning (5 a.m.) and afternoon (5 p.m.)
of Nov. 16 and ∼0.42 m3 m−3 (Nov. 22, 5 p.m.; Table 5). The
highest θ values (0.48–0.62 m3 m−3) were recorded without
exception at the sensor location BSP. For all sampling campaigns,
θ measured at the BSP location (Figure 1C) was twice as high as
at 21 locations within the MFC2 area (Figure 1B). On average,
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TABLE 5 | Descriptive statistics of the in-situ soil moisture (m3 m−3) over the entire 22 locations at the time of satellite overpasses.

Statistics Total 10-Nov. 2018 16-Nov. 2018 22-Nov. 2018 28-Nov. 2018

5a.m. 5 p.m. 5 a.m. 5 p.m. 5 a.m. 5 p.m. 5 a.m. 5 p.m.

Number of observation (n) 176 22 22 22 22 22 22 22 22

Min 0.140 0.290 0.280 0.140 0.200 0.330 0.320 0.338 0.319

Max 0.617 0.571 0.524 0.488 0.479 0.612 0.617 0.596 0.596

1st quartile 0.330 0.358 0.358 0.260 0.251 0.400 0.372 0.393 0.373

Median 0.390 0.395 0.400 0.295 0.305 0.410 0.410 0.410 0.400

3rd quartile 0.410 0.410 0.410 0.308 0.340 0.428 0.460 0.410 0.410

Average 0.377 0.385 0.382 0.297 0.304 0.412 0.423 0.409 0.403

SD 0.075 0.057 0.051 0.068 0.070 0.056 0.064 0.049 0.057

CV % 20.00 14.80 13.40 22.90 23.20 13.70 15.20 12.00 14.20

Skewness* 0.090 1.052 0.155 0.592 0.433 1.711 0.951 2.258 1.605

p-value < 0.001 0.004 0.005 0.043 0.494 0.001 0.111 < 0.001 0.003

*Pearson’s coefficient of skewness. Normality of distribution was tested using the Shapiro-Wilk test with α = 0.05.

the difference amounts to 140%. For all sampling campaigns,
the variation of measured θ values compared to the averages
was distinct, with the lowest coefficient of variation (CV) of
12% in the morning of Nov. 28 and the highest CV of 23.2%
in the afternoon of Nov. 16 (Table 5). The development of
in-situ θ indicated spatiotemporal variations, hence allows us to
distinguish between dry and moist situations.

Performance of the RF Models Over the
Observational Points
Initial θ estimation of the RF models (c.f., sections Near-Surface
Soil Moisture Estimation Using Machine Learning) over the
22 sampling and sensor locations returned very high overall
coefficients of determination with R² = 0.86 for θNov

SAR and
R² = 0.89 for θNov

SAR+Terrain, even though minor systematic
errors in the form of overestimations of low θ (<0.30 m3

m−3) were observed in both models (Figure 2). Compared to
θNov

SAR, the model θNov
SAR+Terrain can reduce this systematic

error slightly. This becomes visible in the corresponding values of
RSME = 0.025 m3 m−3 and MAE = 0.020 m3 m−3 indicating a
higher agreement between observed and predicted θ values when
including topographic information (Figure 2B).

Additional support in understanding the temporal pattern of
θ is gained with the provision of the predictive capability of
θNov

SAR and θNov
SAR+Terrain for the single S1 overpasses in the

morning (5 a.m.) and in the afternoon (5 p.m.; Figure 3). The
model θNov

SAR generally returned high values of R² spanning
from 0.71 (Nov. 16, 5 p.m.) to 0.84 (Nov. 22, 5 p.m.). Except
for Nov. 16, the explained variances are slightly higher in the
afternoon (R² = 0.79 for Nov. 10, R² = 0.84 for Nov. 22) than
in the morning (R² = 0.72 for Nov. 10, R² = 0.82 for Nov. 22).
For Nov. 28, R² nearly equals for both S1A/B overpasses (R²
∼ 0.79 at 5 a.m./5 p.m.). The lowest RMSE values of ∼0.023
m3 m−3 indicate the highest agreement between observed and
estimated at Nov. 10 (5 p.m.) and Nov. 28 (5 a.m.), respectively.
In contrast, the lowest agreements (RMSE ∼0.034 m3 m−3

and ∼0.038 m3 m−3, respectively) were found for Nov. 16
(Figure 3). The same trend of prediction capability applies for

θNov
SAR+Terrain too. Hence, the lowest values of R² were found

for Nov. 16 (R² = 0.71 at 5 a.m., R² = 0.69 at 5 p.m.). The
highest R² values from ∼0.88 to 0.90 were revealed for all other
S1 overpasses (Figure 3). Despite for Nov. 16, the incorporation
of terrain parameters thus increases the prediction accuracy by
the averaged factor of 1.1 and results in a higher agreement
between observed and estimated θ (RMSE from 0.016 m3 m−3 to
0.021 m3 m−3; Figure 3). Again, Nov. 16 remains excluded from
this observation.

Time Series of the Near-Surface Soil
Moisture
Spatial estimates of θ from θNov

SAR and θNov
SAR+Terrain for the

eight S1 overpasses significantly differ with p < 0.001 as revealed
by ANOVA testing (Figure 3).

The time series derived from θNov
SAR show distinct, scattered

patterns (pixel size of 17m) of θ . At the beginning of our
observation period, the spatial estimates average to 0.380m3 m−3

(CV 9.6%) and 0.394 m3 m−3 (CV 12.6%) on Nov. 10 (at 5 a.m.
and 5 p.m., respectively). For Nov. 16, the modeling resulted in a
slightly lower spatial average of 0.376 m3 m−3 (CV 9.7%) on Nov.
16 (at 5 a.m.; Figure 3). Six days later (Nov. 22), spatial patterns of
estimated θ change to moist conditions at 5 a.m. (average= 0.402
m3 m−3, CV 11.9%) and at 5 p.m. (average = 0.419 m3 m−3,
CV 13.3%). On Nov. 28, the θ situation nearly returns to that
at the start day with similar spatial patterns and average spatial
estimates for the morning and afternoon, respectively (Figures 3,
4). The spatial patterns depict a distinct preference of dry and
wet pixels so that the area of MFC2 (Figures 1A,B) appears as
distinctly drier compared to the very north-eastern and southern
part of the study area (Figure 4). The spatial development of θ

takes the form of narrow wet bands stretching toward the central
study area.

Even though θ estimates obtained from θNov
SAR+Terrain

temporally evolve comparable to those from θNov
SAR (Figure 4),

the predicted spatial patterns characterize as less scattered but
rather smoothed (Figure 5). For the single S1 overpasses, spatial
estimates average from 0.377 (Nov. 16, 5 a.m.) to 0.396 m3 m−3
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FIGURE 2 | Observed vs. predicted near-surface soil moisture (θ , m3 m−3) in Nov. 2018 using the model based on (A) SAR parameters only (θNov
SAR) and (B) SAR

and terrain parameters combined (θNov
SAR+Terrain). The different coloring only serves to visualize the differences between the morning (blue dots) and the afternoon (red

dots). The regression models, however, were run over the entirety of the observation points (n = 176).

(Nov. 22, 5 p.m.) for θNov
SAR+Terrain (Figure 3). The coefficient

of variations depicted (CV 12.0% for Nov. 22, 5 p.m. to CV
13.9% for Nov. 28, 5 a.m.) point at slightly higher dispersion
of spatial estimates around the average when predicted with
θNov

SAR+Terrain as compared to predicting with SAR parameters
only (Figure 3).

Again remarkable is the constantly drier situation in the
central study area, represented by the area of MFC2, and
supplementing to this, the constantly wetter condition in the
southern study area with few very wet spots (∼0.51–0.56 m3

m−3) surrounding the sensor location BSP (Figure 5). A narrow
north-south to the west-east stretching wet band (∼0.44–0.48
m3 m−3) in the very northern study area constantly occurs
throughout the entire time series (Figure 5).

However, the influence of the terrain parameters on the
θNov

SAR+Terrain model becomes visible when comparing spatial
predictions with that of θNov

SAR (Figures 4, 5). While the θ

pattern returned by θNov
SAR+Terrain follows a clear topographical

trend and shows the same patterns over the entire period under
study, θNov

SAR lacks these constants.

Importance of SAR and Terrain Parameters
in Near-Surface Soil Moisture Estimation
The importance of SAR and terrain parameters incorporated
in the ensemble models θNov

SAR and θNov
SAR+Terrain (c.f.,

section Near-Surface Soil Moisture Estimation Using Machine
Learning) are sorted decreasingly from top to bottom in Figure 6.
For θNov

SAR, the topmost 10 positions (%IncMSE > 47) are

predominantly occupied by four out of six Kennaugh elements
(K1, K6, K1S, and K0S) and three out of four elements of
the C2 matrix (C22, C12imag, and C11). This can be due to
information hold by these variables, e.g., the total intensity in
K0S and the difference between co-pol and cross-pol intensity
in K1. Thus, it is likely that changing the dielectric constant of
the target (i.e., soil and vegetation cover) due to the alignment
of water dipoles directly affects the intensities and amplitudes
(i.e., C11 and C22). The VV co-pol SAR backscatters TFγ◦

and β◦, and the mathematical band combination (MBC) of
γ◦VV+γ◦VH (Table 3) further rank amongst the 10 topmost
positions (Figure 6A). Up to position 20 (%IncMSE > 31),
mainly MCBs of the SAR backscatters β◦, γ◦, TFγ◦, and σ◦

either with VH+VV or VH∗VV rank with steadily decreasing
parameter importance (Figure 6A). Below ranking position 20
(%IncMSE < 30), the VH cross-pol SAR backscatters β◦, γ◦, and
σ◦, as well as the remaining 16MBCs of the SAR backscatters (i.e.,
VV-VH or VH-VV), and two elements of the C2 (C12real) and
Kennaugh (K5) matrix indicate minor prediction importance.

The incorporation of terrain parameters into the regression
modeling (θNov

SAR+Terrain) clearly emphasizes the topography
as most crucial in spatially estimating θ (Figure 6B). The 10
topmost ranking positions (%IncMSE > 47) are occupied with
seven out of 10 terrain parameters. They mainly characterize
as PLTA (i.e., AAC, elevation, slope, aspect in degree, and
profile curvature). Among the topmost ranking parameters, the
wetness and topographic roughness indices additionally point
at the topographic heterogeneity as necessary. Plan curvature
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FIGURE 3 | Estimation performance indicators R² (right y axis) and RMSE (left y axis) for the models θNov
SAR and θNov

SAR+Terrain to approximate the in-situ soil moisture

(θ ) at the eight Sentinel-1 overpasses in Nov. 2018. The box plots show the distributions of the predicted spatial estimates (second y axis at the right) of θ in the

morning (blue color) and in the afternoon (red color) for θNov
SAR and θNov

SAR+Terrain (indicated by *).

(%IncMSE ∼38) and flow accumulation (%IncMSE ∼4) show
moderate to hardly any predictive strength. Among the SAR
parameters, the modulus of the polarization channels C11
(%IncMSE ∼63) and C22 (%IncMSE ∼49) and the Kennaugh
element K1 (%IncMSE∼44) are of highest prediction importance
in θNov

SAR+Terrain. Below ranking position 10 (%IncMSE <

40), further C2 and Kennaugh matrix elements and the SAR
backscatters and their MCBs rank in nearly the same order as
revealed for θNov

SAR (Figures 6A,B).

DISCUSSION

Spatiotemporal Dynamics of the
Near-Surface Soil Moisture
We consider the observed temporal pattern of near-surface soil
moisture (θ) to follow the hydrometeorological conditions in the
study area. As shown by Nasta et al. (2019), the absence of rainfall
and hence, concurrent evapotranspiration losses characterize the
first days in November 2018 before starting our observation
period and the days between Nov. 10 and Nov. 16. Thus, a
likely effect of drying up of θ resulting in a distinct dry spatial
pattern in the morning and afternoon of both days is supposed.
This can be depicted from both models, the SAR-only-based RF
(θNov

SAR) and the SAR+terrain-based RF (θNov
SAR+Terrain). Two

comparatively large rainfall events between Nov. 18 and Nov. 22
amounting to a cumulative rainfall of∼79mm (Nasta et al., 2019)

are discussed to have triggered field wetting with an effect on the
spatiotemporal patterns of θ .

When looking at the spatial pattern of the model outputs
(Figures 4, 5), an all-time higher spatial θ becomes apparent for
the direct surrounding of the sensor location BSP, referring to the
bare soil plot (Figure 1C). Compared to the predominantly silty
clay loamy and clay loamy topsoil at MFC2 (Table 1), the bare
soil plot is the richest in clay (55% clay). Only plot 04 presents
a frequently small wet spot in the time series derived from
θNov

SAR+Terrain as to be seen from the mapped estimates in the
center of the hydrological divide (Figure 5), which is interestingly
not apparent from the mapping results when using the SAR
parameters as only predictor ensemble (Figure 4). With 51.2%,
the clay content at plot 04 is nearly comparable to that at BSP.
Specifically, we assume the higher clay content at both positions
and the differences in topsoil textures in general (Table 1) to
explain the spatial patterns of θ . Numerous studies confirm soils
with finer particle sizes (i.e., clay) to retain more soil water,
thus influencing the residual water content, independently from
short-term changes in rainfall patterns (e.g., Amanabadi et al.,
2018; Jiménez-de-Santiago et al., 2019).

Although the time series of θ shows a distinct response to
rainfall events (Nasta et al., 2019) and patterns appear plausible,
the estimation of θ is, to a certain extent, questionable. Probably,
the vegetation is constraining the spatial estimation. The reason
might be two-fold. On the one hand, the vegetation considerably
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FIGURE 4 | Spatiotemporal patterns of predicted near-surface soil moisture (θ, m3 m−3) in the morning (upper row) and in the afternoon based on SAR parameters

only (θNov
SAR). The pixel size is 17 × 17m. White pixels refer to no data pixels.

governs θ by interception and evaporation, and root water
uptake (e.g., Guderle and Hildebrandt, 2015). Yet, this effect
cannot be quantified as the survey of such information (i.e.,
root activity) was considered not feasible in this study. However,
we suppose this effect is not distinctly decisive for the present
study as Guderle and Hildebrandt (2015) discuss θ data at
least from measured recordings to already include information
from evapotranspiration and root water uptake patterns. This
might be even more relevant as the mainly two-layer vegetation
with trees and grass cover (c.f., section Study Area) paused in
terms of vegetation activity, and the generally smaller trees at
MFC2 were characterized by ongoing abscission at the time
of surveying, respectively. However, the vegetation cover poses
another uncertainty in our study; The fact that C-band signals
are largely influenced by vegetation cover may attenuate the
soil contribute to the signal (Quesney et al., 2000). It is also
possible that the signals penetrate through vegetation but cannot
penetrate the soil as they would do without vegetation.

Additionally, the higher soil moisture content is reported
to reduce the penetration depths of the SAR beam (Gorrab
et al., 2014). Thus, under- and overestimations in the spatial
patterns of θ may be possible, even though the direction of
their response to rainfall is considered plausible. The L-band
(compared to shorter C-band wavelength) is often recommended
to minimize the influence of vegetation on SAR backscattering
in estimating θ (e.g., Barrett et al., 2009; El Hajj et al., 2018;

Zribi et al., 2019). However, this comes mainly at the cost of
data availability and accessibility, data expenses (e.g., Sinha et al.,
2015), and the reduced spatial resolution (e.g., Babaeian et al.,
2019). Depending on the area of interest and research objective
in terms of feasibility, a suitable wavelength must be selected.

Importance of SAR Backscatters and the
Topography
We chose our terrain parameters (Table 4) for incorporation
into the modeling framework because of their capability
to reflect the site-specific soil hydraulic behavior. Therefore,
the incorporation of the “hydrologically meaningful” terrain
parameters (Guevara and Vargas, 2019) is in line with studies
that employed geomorphometry in empirical approaches, such as
for downscaling RS-based soil moisture estimates (e.g., Guevara
and Vargas, 2019; Mascaro et al., 2019; Zappa et al., 2019). For
instance, the SAGA wetness index (SWI) simulates hydrological
processes based upon the topography. It is thus capable of
reflecting the spatial distribution of soil moisture (Böhner and
Selige, 2006), a fact that is regarded as the reasons for the
explanatory strength of the SWI in our spatiotemporal modeling
of θ (Figure 6A).

Though we did not quantify the effect of the soil as meaningful
properties such as texture, organic matter content, bulk density,
and hydraulic conductivity (e.g., Jiménez-de-Santiago et al.,
2019) were not available as gridded datasets, we ascribe our
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FIGURE 5 | Spatiotemporal patterns of predicted near-surface soil moisture (θ , m3 m−3) in the morning (upper row) and in the afternoon (lower row) based on the

combination of SAR and terrain parameters (θNov
SAR+Terrain). The pixel size is 17 × 17m. White pixels refer to no data pixels.

FIGURE 6 | Importance of SAR (dark gray) and terrain (light gray) parameters in the ensemble models built from (A) 43 SAR parameters for θNov
SAR and (B) 53 SAR

and terrain parameters for θNov
SAR+Terrain.
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θNov
SAR+Terrain approach high capability to approximating more

realistic patterns of θ compared to θNov
SAR. We mainly assume

this to result from the incorporation of “vague proxies” (Behrens
and Viscarra Rossel, 2020) in the form of our DEM derivates
(Table 4). They are primarly discussed to drive spatial soil
property variations and therefore are commonly applied in
soil-landscape modeling and digital soil mapping (e.g., Mulder
et al., 2011; Zhang et al., 2017). Besides this proxy effect, the
topography holds a distinct direct effect; Due to its location in
a topographic depression, i.e., characterized by a larger specific
contributing area (Qin et al., 2011), the southern-most study
area that is represented by the plot location BSP, is found to
be generally wetter compared to the higher allocated and less
inclined area of MFC2 (Figure 5). Against this background, we
assume our choice to incorporate topographic data as crucial
baseline information toward the spatial mapping of θ .

In terms of the employed SAR parameters, the intensity-
based elements K1, K1S, and K6 and C22, C12imag and C11
from the dual-polarized Kennaughmatrix and covariancematrix,
respectively (c.f., section SAR-Based Parameters) were identified
most crucial, in both approaches θNov

SARand θNov
SAR+Terrain

(Figure 6). To facilitate the discussion of SAR parameters,
we tested those topmost important SAR parameters for their
temporal significance during the individual S1 satellite overpasses
(i.e., at 5 a.m./p.m.) using one-way ANOVA. This is as we assume
that they act sensitively to the study area’s hydrometeorological
conditions (c.f., section Spatiotemporal Dynamics of the Near-
Surface Soil Moisture). Figure 7 provides information on their
time-variant distributions in the RF model θNov

SAR. Averaged
values of the Kennaugh elements K1 and K1S range from 0.009
to 0.012 and from 0.033 to 0.041, respectively. On average, they
were measured lowest on Nov. 10 (5 a.m.) and highest on Nov. 22
(5 p.m.). Element K6 was measured lowest (average of −0.001)
on Nov. 16 (5 p.m.) and highest (up to an average of 0.001) at
5 a.m. on Nov. 16, 22, and 28. Averaged values of the C2 elements
vary from 0.045 to 0.058 (C22), from−0.001 to 0.001 (C12imag),
and from 0.012 to 0.017 (C11), respectively. Except for C12imag,
the lowest and highest averages were again revealed for Nov. 16,
5 a.m. and Nov. 22, 5 a.m./5 p.m., respectively (Figure 7). We
not only observe significant differences (p < 0.001 mainly) in
the individual elements between morning and afternoon shots
of the same day, except for C11 on Nov. 22 (Figure 7). We also
observe a qualitative relationship between those days assigned to
drier conditions (Nov. 10 and Nov. 16.) and to wetter conditions
(Nov. 22), respectively (c.f., section Spatiotemporal Dynamics of
the Near-Surface Soil Moisture).

Although empirical models need a significant number of
experimental measurements to establish a useful empirical
relationship for inversion of soil parameter from backscattering
observations (Oh et al., 1992; Walker et al., 2004), and therefore
are site-specific and not recommended applicable for monitoring
special events or trends beyond the domain of calibration, they
are reported to yield accurate results (Wigneron et al., 2003).
For this reason, we developed an empirical ML model using an
RF 10-fold cross-validation to estimate θ . Even if there is a high
correlation between the predictor parameters observed (Table 6),
such as between the second versioned Kennaugh elements K0 and

K0S (Schmitt et al., 2015), their inclusion was regarded essential
to evaluate their effectiveness and importance in terms of their
capability for empirically estimating θ . This consideration is
supported by Schmitt and Brisco (2013), who state the Kennaugh
elements, though derived from dual-co-polarized imaging modes
(HH and VV), to distinctly contribute to the robustness and
reliability in change detection sufficient for wetland monitoring.

From Liao et al. (2018), who tested the performance of
different polarimetric parameter sets from RADARSAT2 quad-
pol data for cropland classification in humid southwestern
Ontario, we see that specific elements of the coherency matrix
performed best and largely contributed to an overall classification
accuracy of 90%. Yet, only a little information is available in
such context of θ estimation, with no available information for
agroforestry systems in the Mediterranean. Hence, we assume
our approach in which we implemented a similar S1 SAR-based
predictor set for regression analysis and identified elements of the
Kennaugh and covariance matrices to be essential as currently
best feasible to retrieving θ in a high spatiotemporal resolution.
However, against this background, we aim to omit such highly
correlated parameters with respect to their parameter importance
in future research to gain optimum parameters.

Transferability and Constraints of the
Modeling Framework
Our modeling framework comprises a standardized survey
scheme for measuring point-scale θ in accordance with S1
satellite overpasses and RF-based spatial regression analysis to
derive a reasonable short time series of θ in November 2018 in
a Mediterranean agroforestry environment.

At this point, it should be briefly mentioned that both the
measuring instrument (Stevens HydraProbe) and the timing of
the field observations in tune with the overpasses of S1 are
directly comparable to several recently published studies (Ayehu
et al., 2020; Datta et al., 2020; Han et al., 2020; Ma et al.,
2020), and thus are regarded as reliable from a technical point
of view.

Our framework considers the spatial heterogeneity of the
terrain and time-variant backscatter and polarization variables
from S1 SLC SAR C-band products (Tables 3, 4) and improves
our knowledge of the spatiotemporal dynamics of θ and
controlling parameters. Yet, our approach is capable of
improvements, most importantly the increase in data availability
in terms of higher spatial coverage and a more extended
period to optimize the modeling scheme (e.g., testing on unseen
data) and to enable more generalized statements, e.g., accurate
differentiation of the meteorological forcing (i.e., rainfall) and its
response on θ . Of course, this would require more calibration
data at the 22 sensor locations considered (Figures 1B,C) and
beyond to gather more spatially distributed information. Later
is particularly true as zones outside MFC2 show remarkable
differences between the SAR-only-based and the SAR+terrain-
based RF models and between the SAR measurements for the
S1 overpasses in the morning and afternoon. We remind that
our empirical calibration models were trained over 22 specific
locations at the precise time of eight satellite overpasses for
a short observation period of 4 days only. As we trained
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FIGURE 7 | Box plots for the topmost ranking SAR parameters in the RF model θNovSAR for the Sentinel-1 overpasses in the morning (blue color) and in the

afternoon (red color). Significant variances of the distributions of parameter values are provided for each day. The asterisks indicate the level of significance (***p <

0.001, **p < 0.01, *p < 0.05). Parameters are displayed according to their order of importance (Figure 6A) from upper left to lower right.

our site-specific RF model with in-situ data representing the
wettest period in the year, we must assume that for the wet-
to-dry transition zone, as well as for the dry period and dry-
to-wet transition zone (Nasta et al., 2020), it will come up
against its limits of what is meaningful. Thus, a final statement
on the transferability of the model(s) is only qualitatively
feasible at present when considering the same physio-geographic
and hydrological settings (e.g., soil texture, slope, vegetation
cover) and incidence angle (e.g., Walker et al., 2004). In this
context, we consider our approach as best affordable at the
given time.

We are aware that both soil moisture and the SAR backscatter
are influenced by more factors than addressed in our study. For
instance, the soil surface roughness was not considered, although
it is reported a major limiting factor for active microwave soil
moisture RS (e.g., Sahebi et al., 2002; Schuler et al., 2002; Walker
et al., 2004; Wang et al., 2016; El-Shirbeny and Abutaleb, 2017).
As no tillage and storm events, commonly known to largely
influence the backscatter (e.g., Baghdadi et al., 2008; Dalla Rosa
et al., 2012), were notice and recorded, respectively, during our

short observation period (i.e., 18 days), we assumed that the
surface roughness did not vary and ignored it, particularly as its
field survey was considered not feasible.

Furthermore, the occurrence of clouds caught by the close-
by mountain ridge (Romano et al., 2018) did not allow for
embedding optical (e.g., Sentinel-2) vegetation indices as proxies
on the moisture contained in the vegetation and the vegetation
activity, such as the leaf area index, the (green) normalized
difference vegetation and normalized difference water index, and
the fractional vegetation cover (e.g., Attarzadeh et al., 2018; Han
et al., 2020; Xu et al., 2020). Here, our model framework offers
an open structure toward their gridded integration to account for
the potential attenuation of the SAR signal caused by vegetation
and enhanced representation of the landscape.

However, we consider our RF approach (θNov
SAR+Terrain

in particular) to compensate for numerous effects and return
plausible results despite the neglected factors. This encourages
us to continue this kind of empirical assessment by augmenting
the in-situ sampling for capturing the entire annual course of
hydrometeorological and vegetation conditions. Our achieved
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TABLE 6 | Spearman’s correlation coefficients ρ (α = 0.05), of the topmost

important SAR parameters represented by each three elements of the covariance

and Kennaugh matrices.

Element K1 C22 K6 K1S C12imag C11

K1 1.00 0.83 −0.09 0.93 0.09 0.24

C22 0.83 1.00 −0.14 0.97 0.14 0.70

K6 −0.09 −0.14 1.00 −0.12 −1.00 −0.05

K1S 0.93 0.97 −0.12 1.00 0.12 0.53

C12imag 0.09 0.14 −1.00 0.12 1.00 0.05

C11 0.24 0.70 −0.05 0.53 0.05 1.00

The structure of elements follows their parameter importance (from left to right) in the

model θNov
SAR.

results show that although the SAR backscatter is composed
of different factors, our site-specific calibration-dependent
empirical model is capable of disentangling such effects on the
backscatter. Thus, our methodological approach is promising for
using and optimizing simplified empirical models over universal
and complex physically-based models to spatiotemporally
estimate θ .This is particularly encouraging as practitionersmight
be interested in feasible (e.g., fast surveys for ground-truthing
and set-up of predictor sets composed of meaningful parameters)
and reliable approaches of high accuracy (Attarzadeh et al.,
2018), but at the same time have a limited understanding
of the complex theoretical physical properties (Ezzahar et al.,
2019).

CONCLUSIONS AND OUTLOOK

We present a simplified, site-specific calibrationmodel to explore
the potentials of Sentinel-1 A/B dual-pol SAR-based phase and
amplitude information and in-situ near-surface soil moisture
(θ) measured at times of satellite overpasses for the empirical
inversion of SAR measurements to gridded estimates of θ . The
addition of hydrological meaningful terrain parameters supports
capturing the spatial variability of θ by linking the topography
at the immediate, surveyed locations to their spatial coherence at
the field-scale. We thus not only spatially approximate θ from a
technical perspective in terms of physical-numerical interactions
of SAR backscatters with surface properties, but rather from a
combined approach allowing an eco-hydrological perspective on
the spatial patterns of θ . Beyond the predominantly statistical
approach, we developed a short-term reasonable time series of
θ for a Mediterranean agroforestry ecosystem in southern Italy
for November 2018.

Although our proposed model gained high accuracy, we
anticipate that its general information value and significance
can be enhanced by incorporating more observational data and
environmental covariates such as soil (e.g., soil texture and
structure) and vegetation properties (e.g., leaf area index and
canopy structure), and land use to enable for a more holistic
approach. Here, our proposed ML model framework offers an
open structure for integrating relevant gridded data. We consider
our framework to provide impulses for improvements to address
current constraints (i.e., a limited number of in-situ data in space

and time). Future research will focus on increasing the number
of in-situ observations at times of satellite overpasses over the
investigated locations and beyond to optimize the modeling and
testing, hence enhancing the mapping accuracy. Subsequently,
more robust statements on the spatial heterogeneity and its effect
on θ pattern by less over- and underestimations are envisaged.
By identifying relevant SAR measurements and topographic
information to efficiently parameterize the empirical calibration
model to the situation on-site, we attempted to reduce the
predictor space toward an optimum of sensitive parameters. The
reduction of the computational efforts (e.g., processing time and
data storage capacity) is concluded to be of specific relevance
for practitioners interested in reliable and feasible approaches to
monitoring θ .

Eventually, we consider coupling our model framework and
results to hydrological models to support the assessment of
surface water fluxes and water balance components, e.g., in
groundwater recharge modeling for deriving scenarios of water
usage in the Mediterranean agroforestry ecosystems.
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