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The present paper discusses families of Interior Penalty Discontinuous Galerkin (IP)

methods for solving heterogeneous and anisotropic diffusion problems. Specifically, we

focus on distinctive schemes, namely the Hybridized-, Embedded-, and Weighted-IP

schemes, leading to final matrixes of different sizes and sparsities. Both the

Hybridized- and Embedded-IP schemes are eligible for static condensation, and their

degrees of freedom are distributed on the mesh skeleton. In contrast, the unknowns

are located inside the mesh elements for the Weighted-IP variant. For a given mesh,

it is well-known that the number of degrees of freedom related to the standard

Discontinuous Galerkin methods increases more rapidly than those of the skeletal

approaches (Hybridized- and Embedded-IP). We then quantify the impact of the static

condensation procedure on the computational performances of the different IP classes

in terms of robustness, accuracy, and CPU time. To this aim, numerical experiments are

investigated by considering strong heterogeneities and anisotropies. We analyze the fixed

error tolerance versus the run time and mesh size to guide our performance criterion.

We also outlined some relationships between these Interior Penalty schemes. Eventually,

we confirm the superiority of the Hybridized- and Embedded-IP schemes, regardless

of the mesh, the polynomial degree, and the physical properties (homogeneous,

heterogeneous, and/or anisotropic).

Keywords: interior penalty, high-order discontinuous Galerkin methods (DGM), hybridization, heterogeneous and

anisotropic media, numerical experiments, computational performances

1. INTRODUCTION

The Discontinuous Galerkin (DG) methods were firstly introduced by Reed and Hill (1973) for
the neutron transport phenomenon. Since their introduction, the DG methods have become a
relevant class of finite element schemes for modeling physical processes. They provide several
advantages: they are locally conservative and eligible to hp-refinement strategies and they consider
a discontinuous piecewise (polynomial) approximation of the exact solution (Arnold et al., 2002;
Rivière, 2008; Pietro and Ern, 2011). During the 1980s, Arnold proposed the famous Interior
Penalty Discontinuous Galerkin (IP)method for solving the second-order elliptic problem (Arnold,
1982). Even if the stability and robustness of the IP method have been proven for homogeneous
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media (Wheeler, 1978; Rivière, 2008), these benefits are no longer
ensure in the presence of high heterogeneous, and/or anisotropic
ratios (Burman and Zunino, 2006; Ern et al., 2009). To restore the
robustness, these authors replace the standard average operator,
in the IP formalism, with a weighted one accounting for the
diffusivity in the normal direction. The resulting discretization
scheme is well-known as the Weighted-Interior Penalty (WIP)
method. However, despite all these beneficial features, the DG
methods have been recognized to be generally more expensive
than the standard Conforming Finite Element methods such as
the Continuous Galerkin (CG) and the Mixed Finite Element
(Peraire and Persson, 2008). The final matrix system of DG
methods leads to a larger stencil with a higher number of coupled
degrees of freedom (DOFs), which is quite challenging for large-
scale problems (Rivière, 2008). Following these observations,
Cockburn et al. (2009b) introduced a new DG discretization
scheme to overcome these drawbacks called the Hybridized
Discontinuous Galerkin (HDG) methods.

The HDG methods can be considered as a DG methods
that are eligible for static condensation. An additional trace
variable is introduced to approximate the exact solution on the
mesh skeleton. This original unknown also belongs to the set of
piecewise discontinuous functions (Nguyen et al., 2009; Wells,
2011; Cockburn et al., 2012; Fabien et al., 2020). Thus, the global
coupled linear system can be reduced by static condensation
only to the interface-based DOFs located on the mesh skeleton
(Cockburn et al., 2009a; Nguyen et al., 2009; Lehrenfeld and
Schöberl, 2016). Besides, the HDG methods provide a smaller
and sparser matrix system, and they inherit the benefits of the
traditionally DG methods. They have proven to be more robust
and efficient than the standard DG schemes for many situations.
Moreover, superconvergence of discrete variables can be attained
by employing an appropriate local postprocessing technique
(Nguyen et al., 2009; Cockburn et al., 2012; Dijoux et al., 2019).
Recently, an alternative version of the HDG method has been
developed to reduce the size of the final matrix system (Cockburn
et al., 2009c). The corresponding discretization scheme is called
the Embedded Discontinuous Galerkin method (EDG) and
extends the concept of the trace variable to the set of continuous
functions. This alternative approach providing less CPU time
and a tighter stiffness matrix compared to the original HDG
framework (Zhang et al., 2019). However, by enforcing the
continuity of the discrete trace, the EDG method may have to
afford a loss of accuracy for approximating the discrete solution
(Cockburn et al., 2009c; Zhang et al., 2019; Fabien et al., 2020).

Abbreviations: CG, continuous Galerkin; DG, Discontinuous Galerkin; DOFs,

Degrees of freedom; EDG, Embedded Discontinuous Galerkin; EIP, Embedded

Interior Penalty method; HDG, Hybridized Discontinuous Galerkin; HIP,

Hybridized Interior Penalty method; IP, Interior Penalty Discontinuous Galerkin;

I-EIP, Incomplete variant of the EIP method; I-HIP, Incomplete variant of the HIP

method; I-IP, Incomplete variant of the IP method; I-WIP, Incomplete variant of

the WIP method; N-EIP, Non-symmetric variant of the EIP method; N-HIP, Non-

symmetric variant of the HIP method; N-IP, Non-symmetric variant of the IP

method; N-WIP, Non-symmetric variant of the WIP method; S-EIP, Symmetric

variant of the EIP method; S-HIP, Symmetric variant of the HIP method; S-

IP, Symmetric variant of the IP method; S-WIP, Symmetric variant of the WIP

method; WIP, Weighted Interior Penalty method; X, Refers to the Hybridized- or

Embedded-IP method.

This manuscript compares the Hybridized-, Embedded-, and
Weighted-Interior Penalty formalisms in terms of accuracy,
efficiency, and computational cost. Previous works offered
comparisons between the standard CG or DG versus the
HDG methods (see, e.g., Woopen et al., 2014; Fidkowski,
2016, 2019) favoring the latest formalism at different scales.
However, these studies are limited to basic situations that
do not include the high variations of the physical properties
of the medium (i.e., heterogeneity and/or anisotropy). The
present work focuses specifically on the primal class of Interior
Penalty method for heterogeneous and/or anisotropic diffusion
problems. We provide an appropriate stabilization function
inspired by Etangsale et al. (2021), which employs the normal
diffusivity coefficient to improve the robustness of the IP
method. Then, by quantifying the computational cost of the
HIP, EIP, and WIP schemes, we prove the effects of the static
condensation on the global matrix sparsity and CPU time
for the Hybridized- and Embedded-IP methods. Clearly and
without ambiguity, we demonstrate the superiority of both
skeletal methods (Hybridized- and Embedded-IP) over the
traditional DG techniques (standard IP and WIP). Besides, we
established some relationships between the standard IP, WIP,
and HIP schemes, whose results are similar to those discussed
by Fabien et al. (2020) for a homogeneous permeability tensor.
We also emphasize the total equivalence properties between
the Incomplete HIP and WIP schemes assuming a specific
definitions of (i) the weighting function and (ii) the penalization
function. At least, we provided numerical experiments to
corroborate the observations mentioned above, and to prove the
robustness of each schemes considering heterogeneous and/or
anisotropic characteristics.

The material is organized as follows. In section 2, we describe
the model problem and precise our notations and the discrete
settings. In section 3, we briefly describe the Hybridized-,
Embedded-, andWeighted-Interior Penalty formalisms.We then
quantify the number of globally coupled degrees of freedom of
each schemes for a given mesh and a fixed polynomial degree.
In section 5, numerical experiments are investigated using h-
and p-refinement strategies, and we compare the computational
performances of the IPmethods for a wide range of heterogeneity
and anisotropy. We conduct discussions to identify the most
suitable IP formalism in terms of robustness, accuracy and
computing time. Finally, we end with some concluding remarks
and perspectives.

2. PROBLEM STATEMENT AND
NOTATIONS

2.1. Model Problem
Let � be a two-dimensional convex polygonal domain, and we
denote by Ŵ : = ∂� its boundary such that, Ŵ : = ŴD ∪ ŴN and
ŴD ∩ ŴN = ∅. Here, ŴD and ŴN represent the boundary parts of
the domain where Dirichlet and Neumann boundary conditions
are provided, respectively. The governing equation is described
by the second-order elliptic problem

∇ · (−κ∇u) = f in �, (1)
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with the following boundary conditions,

u = gD on ŴD, and (−κ∇u) · n = gN on ŴN ,

where f represents a source or sink term, gD and gN the
prescribed Dirichlet and Neumann boundary data, respectively.
In the context of heterogeneous and anisotropic processes, the
permeability tensor κ is assumed to be a symmetric positive-
definite matrix-valued function.

2.2. Mesh Assumptions
Let us introduce some discrete notations associated to the
partition of the domain. We consider the family Th : = {∪A},
which consists of a collection of polygonal elements. We specify
here that the set Th refers to an affine triangulation of the domain
�. For all A ∈ Th, we denote by |A| its measure and by hA its
diameter such that h = maxA∈Th

hA. Let ∂A be the boundary
of an element of the mesh Th. In the rest of the document, we
will prefer the generic term interface in place of an edge of the
triangulation. Let us denote by F

i
h
and FŴ

h
the set of interior

and boundary interfaces, respectively. We further assume that
FŴ
h

coincides with the Dirichlet and Neumann boundary parts

such that, FŴ
h
: = FD

h
∪ F

N
h

and FD
h

∩ F
N
h
. The subsets FD

h

and F
N
h

refers to the set of all interfaces lying entirely into the
Dirichlet and Neumann boundary parts, respectively. The set of
all interfaces is provided by the mesh skeleton asFh : = F

i
h
∪FŴ

h
.

In the same way, we introduce the collection of all boundary
interfaces for each elements of the triangulation Th such that,
∂Th : = {∪∂A, ∀A ∈ Th}. For any given elements A ∈ Th, and
for any edges F ∈ ∂A, we denote nF,A as the unit normal vector
to F pointing out of A.

2.3. Functional Spaces
We consider the polygonal domain D ⊂ R

2, with boundary ∂D.
We denote by (· , ·)D and 〈·, ·〉∂D the standard L2-inner product in
L2(D) and L2(∂D), respectively. Thus, we introduce the compact
notations related to the discrete L2-inner scalar product :

(· , ·)Th
: =

∑

A∈Th

(· , ·)A , 〈·, ·〉∂Th
: =

∑

A∈Th

〈·, ·〉∂A

and 〈·, ·〉Fh
: =

∑

F∈Fh

〈·, ·〉F , (2)

with ‖ · ‖Th
, ‖ · ‖∂Th

and ‖ · ‖Fh
corresponds to their respective

norms. As usual in families of Discontinuous Galerkin methods,
we consider the following broken space inside the elements for
the discretization:

Vh : = {vh ∈ L2(Th) : vh|A ∈ Pk(A), ∀A ∈ Th}, (3)

where the discrete variable vh ∈ Vh is defined within
each elements of the triangulation Th. For the Hybridized
discretization of the Discontinuous Galerkin methods, the
approximation requires an auxiliary variable v̂h ∈ V̂h,g which
is called the trace variable. The numerical trace is defined on

the skeleton with respect to the imposed Dirichlet boundary
conditions, such that:

V̂h,g : = {v̂h ∈ L2(Fh) : v̂h|F ∈ Pk(F), ∀F ∈ Fh

and v̂h|F = πhgD, ∀F ∈ F
D
h }, (4)

where πh denotes the L
2-orthogonal projection onto P

k
(F). We

refer to V̂h,0 for the set of polynomial functions defined on the
skeleton, and vanishing on the Dirichlet boundary ŴD. Here,
P
k
(X) denotes the space of polynomials at least degree k ≥ 1

on X, where X corresponds to a generic element of Th or Fh.

2.4. Trace Operators
We denote by vh : = (vh, v̂h) the composite variable associated
to the pair of discrete spaces Vh × V̂h,g . For all A ∈ Th and
F ∈ ∂A, we define the HDG-jump operator of the composite
variable vh ∈ Vh×V̂h,g acrossF as [[[vh]]]F,A : = (vh|F−v̂h|F)nF,A.
Since no confusions can arise, we omit the subscripts A and F
from the definition, and we simply write [[[vh]]] : = (vh − v̂h)n.
For any scalar- v ∈ H1(Th) and vector- σ ∈ [H1(Th)]

2 valued
function, we introduce the standard DG-jump and weighted-
average operators for each faces F ∈ Fh as follows,

[[v]] : =

{

v1n1 + v2n2, if F ∈ F
i
h

vn, if F ∈ FŴ
h

, (5a)

{σ }ω : =

{

ω1σ 1 + ω2σ 2, if F ∈ F
i
h

σ if F ∈ FŴ
h

, (5b)

where ω : = (ω1,ω2) is a weighting function verifying that
the weights satisfy ω1 + ω2 = 1. Similarly, we introduce the
conjugate weighting function ω : = (ω2,ω1) associated with
ω. In particular, for the case ω = (1/2, 1/2), we recover the
classical average operator, and we will omit the subscript ω in
its definition.

3. DISCRETIZATION OF THE INTERIOR
PENALTY METHODS

This section describes three primal DG schemes, namely,
the Hybridized-, Embedded-, and Weighted-Interior
Penalty methods. We provide a compact formulation of
the corresponding discrete bilinear forms and evaluates the
computational cost of the schemes. For readers unfamiliar
with the Discontinuous Galerkin approach, we recommend
the studies proposed by Arnold et al. (2002) and Cockburn
et al. (2009b), which outline the concepts and ideas behind the
standard and Hybridized DG methods in a unified framework.

3.1. Hybridized and Embedded IP
Formulations
The HDG formalism as proposed in Cockburn et al. (2009b) and
Cockburn et al. (2009a) supposes that the discrete trace ûh ∈ V̂h,g

is evaluated distinctly with a piecewise polynomial functions on
the boundaries of the elements. This specific definition of the
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discrete trace will produce a significant number of degrees of
freedom, due to the discontinuous nature of its approximation
on the mesh skeleton. To reduce the trace-based degrees of
freedom, an alternative possibility consists of the restriction of
the trace space to the set of continuous functions on the skeleton
(Cockburn et al., 2009c). By considering the approximation ûh ∈
Ṽh,g with the continuous space Ṽh,g = V̂h,g ∩ C0(Fh), then
the discretization corresponds to the Embedded Discontinuous
Galerkin method (Cockburn et al., 2009c; Fabien et al., 2020). For
approximating the problem (1), we introduce the two discrete
composite spaces VH

h,g
= Vh × V̂h,g and VE

h,g
= Vh × Ṽh,g

associated to the composite discrete variable uh. For clarity,
Figure 1 gives an illustration of the distribution of degrees of
freedom for the Hybridized- and Embedded-IP method with
polynomial degree k = 1. Notice that the only difference between
the Hybridized and Embedded scheme lies in the selection of
the discrete trace space. Thus, the discretization consists to seek
uh ∈ VX

h,g
such that

A
ǫ
h(uh, vh) =

(

f , v
)

Th
+

〈

gN , v̂h
〉

FN
h

for all vh ∈ V
X
h,0, (6)

where the upperscript X corresponds to the Hybridized—(H) or
Embedded—(E) IP method, according to the discrete composite
space selected (i.e., discontinuous or continuous). The bilinear
formA

ǫ
h
(·, ·) can be linearly decomposed as:

A
ǫ
h(uh, vh) : = (κ∇huh ,∇hvh)Th

− 〈κ∇huh, [[[vh]]]〉∂Th

− ǫ 〈κ∇hvh, [[[uh]]]〉∂Th
+

〈

τF,A[[[uh]]], [[[vh]]]
〉

∂Th
.

Here, we reported the parameter ǫ, which is associated to the
variations of the XIP discretization, as mentioned in Rivière
(2008) and Fabien et al. (2020). For ǫ = 1, we retrieve
the Symmetric scheme (S-XIP), and the cases ǫ = {−1, 0}
corresponds to both non-symmetric schemes, where ǫ = −1
(resp. ǫ = 0) denotes the Non-Symmetric (N-XIP) [respectively,
incomplete (I-XIP)] variants. In particular, the last contribution
of the bilinear form A

ǫ
h
(·, ·) refers to the penalization term with

the penalization function τF,A. Naturally, the selection of the
parameter τF,A is quite delicate, since it affects strongly the
stability and the accuracy of the method (see Etangsale et al., 2021
for the investigation of the well-posedness and error estimates of
the HIP method). In the following, we give a specific definition
of the stabilization function that is influenced by the diffusivity
parameter κ such that:

τF,A : =
ακF,A(k+ 1)(k+ 2)

hA
, ∀ F ∈ ∂A, (7)

where κF,A = n
T
F,A·κA·nF,A is the normal diffusivity coefficient for

any element A ∈ Th, and α a positive user-dependent constant.
It is important to note that the penalization function is piecewise
constant on ∂Th and double-valued for any interfaces F ∈ F

i
h

(τF,A1 6= τF,A2 ).

Remark 1 (Links with Continuous Galerkin). Assuming ûE
h

corresponds to the approximation of the discrete trace of

TABLE 1 | Summary of the equivalence between the EIP and CG methods for

various polynomial degrees k and different values of ǫ = {0,±1}.

Degree N-EIP I-EIP S-EIP

k = 1 ✗ ✗ ✓

k ≥ 2 ✗ ✗ ✗

the EIP method, and uCG
h

is the solution provided by the
Continuous Galerkin method. Then, only for k = 1 and ǫ = 1,
the equivalence ûE

h
= uCG

h
on Fh is verified for all data g and

f , independently from the penalization function τF,A and the
physical properties of the media κ (see Appendix in Cockburn
et al., 2009c for more details). The equivalence is not valid
anymore for both non-symmetric variants N-EIP and I-EIP, as
listed in Table 1.

Since both the Hybridized- and the Embedded-IPmethods are
described identically through the definition (6), these schemes
comprise the same benefit by applying the well-known static
condensation technique (Cockburn et al., 2009b, 2012). This
procedure was introduced for reducing the size of the global
problem (6) to the only trace unknowns. Let us denote by Uh and
Ûh the vector of DOFs associated to the element- and trace-based
unknowns, respectively. Thus, the following global matrix system
is obtained from the linear system (6):

[

Auu Auû

Aûu Aûû

]

·

[

Uh

Ûh

]

=

[

Fu
Gû

]

, (8)

where the vectors Fu and Gû are directly related to the source
term and boundary conditions, respectively. Owing to the
discontinuous nature of the space Vh, the matrix Auu have a
block-diagonal structure that allows its inversion. We are now
able to substitute the global coupled matrix system (8) in terms
of trace unknowns Ûh, in a such way that:

[Aûû −AûuA
−1
uuAuû]Ûh = Gû −AûuA

−1
uu Fu. (9)

We notice that the left-hand side of the reduced linear system
(9) is called the Shur complement of Auu. Finally, the last step
consists in the reconstruction of the discrete variable Uh element-
by-element with the use of the relation:

Uh = A
−1
uu (Fu −AuûÛh).

The reduced version (9) leads to a smaller and symmetric matrix
system easing the resolution.

3.2. Weighted IP Formulation
The Weighted-Interior Penalty (WIP) method were firstly
introduced by Burman and Zunino (2006) in the context of
advection-diffusion-reaction problems. The principal difference
with the classical S-IP discretization proposed by Arnold Arnold
(1982) resides in the use of a weighted average operators. In
the WIP formulation proposed in Burman and Zunino (2006),
Pietro and Ern (2011), and Dryja (2003), the weighting function

Frontiers in Water | www.frontiersin.org 4 October 2021 | Volume 3 | Article 716459

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Etangsale et al. Performances of Interior Penalty Methods

FIGURE 1 | Stencil for a generic element (triangle or edge in blue) for the Embedded—(A), Hybridized—(B), and Weighted—(C). Interior Penalty discretization with

polynomial order k = 1. For all methods, the nodes corresponding to degrees of freedom for the generic element are marked as solid red dots.

only accounts for the variations of the diffusivity tensor κ from
both sides of the mesh interfaces. In the following, we will
favor a modified version of the weighting function depending
on the penalization function of the Hybridized- or Embedded-
IP methods as stated in Equation (7). Thus, the discretization of
the WIP method consists to seek uh ∈ Vh such that

B
ǫ
h(uh, vh) = lh(vh) for all vh ∈ Vh, (10)

where the WIP bilinear form B
ǫ
h
(·, ·) is given by:

B
ǫ
h(uh, vh) : = (κ∇huh ,∇hvh)Th

− 〈{κ∇huh}ω, [[vh]]〉F i
h
∪FD

h

− ǫ 〈{κ∇hvh}ω, [[uh]]〉F i
h
∪FD

h

+ 〈ηF [[uh]], [[vh]]〉F i
h
∪FD

h
,

and the linear form

lh(vh) : =
(

f , v
)

Th
+

〈

ηF gD, vh
〉

FD
h
− ǫ

〈

gDn, κ∇hvh
〉

FD
h

+
〈

gN , vh
〉

FN
h
,

contains the weakly imposed Dirichlet and Neumann boundary
data. In Figure 1C, we depict the stencil of the WIP method,
which is similar to the standard IP method. As in section 3.1, the
parameter ǫ is used to control the introduction of the consistent
symmetry term. Following its values, these methods are referred
to as the Symmetric (ǫ = 1), the Non-Symmetric (ǫ = −1),
and the Incomplete (ǫ = 0) schemes and are denoted S-
WIP, N-WIP, and I-WIP, respectively. Let us now introduce the
corresponding weighting function taking into account the values
of the penalization from both sides of the interface F as:

ω : =

(

τ1

τ1 + τ2
,

τ2

τ1 + τ2

)

∀ F ∈ F
i
h, (11)

where the stabilization function τi = τF,Ai , for i = 1, 2, is defined
by Equation (7). For all A ∈ Th and F ∈ ∂A, we give the
penalization function ηF as:

ηF : =

{ τ1τ2

τ1 + τ2
∀ F ∈ F

i
h
,

τF,A ∀ F ∈ FŴ
h
.

(12)

Remark 2 (Equivalence between the Hybridized- and

Weighted-IP schemes). The numerical experiments performed
in section 4 provided evidences for the total equivalence between
the I-WIP and the I-HIP schemes, and for any values of τF,A
satisfying the weighting (11) and the penalization function (12).
Consequently, the Incomplete variations of the WIP and HIP
methods conduct to the same robustness, accuracy, and stability.
We would mention that these observations will be reported in
a forthcoming work, where the total equivalence property will
be mathematically demonstrated. Similar results can be found
in Fabien et al. (2020) for the homogeneous case, where the
I-HIP scheme coincides with the I-IP scheme (see Remark 3 for
the characteristics of the corresponding IP scheme). However,
this equivalence is not valid anymore for both Symmetric and
Non-Symmetric IP variants.

Remark 3 (Relations with the standard IP method). Assuming
now τ1 = τ2 for any interior interfaces F ∈ F

i
h
, we then observe

that ω = (1/2, 1/2) and the penalty function is simplified as
ηF = τF,A/2. In this case, the WIP method B

ǫ
h
(·, ·) is reduced

to the standard IP method, where the well-known S-IP scheme
was analyzed by Arnold (1982) and the N-IP scheme in Rivière
(2008). From the definition (7) of the stabilization function, the
WIP formulation is simplified to the standard IP method, if and
only if the media is homogeneous and the partition Th is uniform
(composed of geometrically identical elements).

3.3. Computational Cost
The purpose of this section is to illustrate the computational cost
of the Hybridized- and Embedded-IP compared to theWeighted-
IP method. By applying the static condensation procedure, the
total number of degrees of freedom (DOFs) is reduced to the trace
unknowns for both the HIP and EIP discretization. It appears
that this quantity is proportional to the number of interfaces of
the skeleton. For the WIP method, the global number of degrees
of freedom is proportional to the number of elements of the
partition Th. In order to ease the description, we consider a
regular Cartesian domain � = [0, 1]2 partitioned into N × N
squares. We distinguish two cases:

Frontiers in Water | www.frontiersin.org 5 October 2021 | Volume 3 | Article 716459

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Etangsale et al. Performances of Interior Penalty Methods

• The triangulation consists of a uniform rectangular grid made
of N2 elements.

• The triangulation consists of a uniform triangular gridmade of
2N2 elements, which is generated by divided each square into
two triangles.

Now, we are able to compute the number of DOFs related to the
methods under consideration. LetRH andRE be the ratio of DOFs
of the HIP and EIP method versus the WIP method, such that:

RH =
DOFHIP

DOFWIP
=

NeNdof/e

NANdof/A
, and

RE =
DOFEIP

DOFWIP
=

Nv + Ne(Ndof/e − 2)

NANdof/A
,

whereNv,Ne, andNA refers to the number of vertices, edges, and
elements (triangular/quadrilateral), respectively. The number of
DOFs associated to the local reference element (interface or
polygonal) can be defined by

Ndof/e = (k+ 1), Ndof/trigs =
1

2
(k+ 1)(k+ 2),

and Ndof/quads = (k+ 1)2.

In Figure 2, we display the computed ratios RH and RE for
various polynomial degrees k and element sizes. Figures 2A,C
show the decrease of these two ratios for each values of N
and for any given polynomial degrees k ≥ 2. These results
are considerably stressed by Figures 2B,D, which emphasize the
reduction of both ratios with the increase of k. Globally, the
WIP method contains a larger number of degrees of freedom
compared to the HIP and EIP schemes, and for any values of
k ≥ 2.We note that for k ≥ 3 and k ≥ 4, the number of degrees of
freedom of the HIP method is reduced by half compared to those
of the WIP method for the rectangular and triangular meshes,
respectively. For a given polynomial degree 1 ≤ k ≤ 8, the
calculated ratioRE always promotes the EIPmethod that contains
fewer degrees of freedom than the WIP method, as well as the
HIP method. This is particularly true for the first polynomial
degrees smaller than k = 4. However, for any polynomial degree
k sufficiently large, both ratios RH and RE appear to converge on
the same value making both HIP and EIP methods identical in
terms of degrees of freedom.

Remark 4 (Global DOFs of the HDG method). Without the
static condensation technique, the total number of DOFs of
the HDG method is significantly higher than the classical
DG scheme. Indeed, the global linear system comprises the
unknowns of the state variable increased by those of the
discrete trace.

Remark 5 (CPU time). The size of the global matrix system is
strongly influenced by the number of elements, inter-element
connectivities, and polynomial degree k. These parameters play
a fundamental role in the running time of the simulations. To
understand this purpose, we give an illustration of the computed
CPU time for both I-HIP and I-WIP schemes in Figure 3. By
choosing the Incomplete variants, the dependence on the error

estimate is disabled since the Hybridized- and Weighted-IP
methods are fully equivalent (see Remark 2). Due to the number
of degrees of freedom involved in the resolution, we observe that
the HIP method is always faster than its WIP counterpart.

4. NUMERICAL RESULTS AND
DISCUSSION

This section provided several numerical experiments, which
aims to investigate the performances of the EIP, HIP and WIP
methods in terms of stability, accuracy, and efficiency. The ability
of the IP schemes to handle heterogeneity and anisotropy is
also evaluated. For this reason, we measured the CPU time
that requires the approximation of the discrete variable uh,
and computed the error following the L2-norm estimates ‖u −

uh‖Th
. The numerical experiments are performed using the high-

performance multiphysics finite element library called NGSolve
(Schöberl, 2014). Then, we consider the homogeneous Dirichlet
boundary problem in the unit square� = [0, 1]2, where the exact
solution is given by u(x, y) = sin(πx) sin(πy) and the right hand
side is chosen such that the exact solution is verified. Thereafter,
the domain� is split into four subdomains�1 = [0, 1/2]2,�2 =

[1/2, 1]× [0, 1/2], �3 = [1/2, 1]2, and �4 = [0, 1/2]× [1/2, 1],
i.e., � : = ∪4

i=1�i (see Figure 4A), and the diffusivity tensor is
defined separately for each subregions:

κ =

[

1 0
0 λ

]

for (x, y) ∈ �1,�3,

and κ =

[

1/λ 0
0 1

]

for (x, y) ∈ �2,�4.

Here λ represents the strongest anisotropy ratio, which controls
both the heterogeneity and anisotropy of the media. In the
following, we consider two families of structured meshes
(triangular/rectangular) respecting the discontinuity of κ , as
illustrated in Figure 4. For instance, the rectangular grid is
achieved by discretizing the unit domain into N × N uniform
quadrilaterals, with length h = 1/N. The triangular grid is
obtained by divided each quadrilateral of the regular rectangular
meshes into two triangles. Notice that, the parameter N refers
to the employed mesh refinement. Moreover, we established
some discussions (i) to summarize the main results that arise
immediately from the numerical experiments, and (ii) to identify
the most appropriate schemes according to the characteristics of
the problem.

4.1. Homogeneous Isotropic Flow
In the first experiment, we evaluate the performances of
the Embedded-, Hybridized- and Weighted-Interior Penalty
methods for the simplest model problem, i.e., the Poisson’s
equation. In this context, the material is supposed to be
homogeneous and isotropic κ = I2 on the whole domain
(λ = 1), where I2 refers to the 2 × 2 identity tensor. Since
the solution is smooth enough, we begin with the analysis of
the convergence of the EIP, HIP, and WIP discretizations for
its respective variants: Non-Symmetric (ǫ = −1), Incomplete
(ǫ = 0), and Symmetric (ǫ = 1). To this aim, we computed
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FIGURE 2 | Total degrees of freedom of the Weighted-IP compared to Hybridized- and Embedded-IP methods for both uniform triangular (A,B) and rectangular (C,D)

grids.

all methods for both triangular and rectangular regular meshes
with N = {4, 8, 16, 32, 64} and various polynomial degrees
k = {2, 3}. In this context, the WIP scheme is reduced to the
standard IP method for both grid representations (see Remark
2), and the penalization function is supposed to be constant
for each interfaces of the skeleton: τF,A = α(k + 1)(k +

2)/h, ∀ A ∈ Th, and ∀ F ∈ ∂A, with the positive constant
α = 2. In Figure 5, we plot the history of convergence of the
L2-error for all variations of the IP methods as a function of
the CPU time. Through these results, we observe the benefits
of the static condensation procedure with the Hybridized- and
Embedded-IP discretizations in terms of CPU time. This can
be easily explained by the values of the ratios RH and RE (see
Figure 2) that are globally smaller than one for each polynomial
degrees k ≥ 2. Owing to the restriction of the discrete trace
to the set of continuous functions, the EIP method is always
faster than the HIP and WIP methods for any given refined
meshes (triangular or rectangular). Additionally, we observe the

similar behavior of the Embedded-, Hybridized-, and Weighted-
IP schemes, and we recover some well-known estimates from
the standard IP method. On one side, the L2-norm estimate
confirm its dependence to the parity of the polynomial degree k.
Indeed, the Symmetric variant of the EIP, HIP, andWIP methods
converge optimally with order k+1 for each values of k, while this
optimal convergence rate is achieved for both non-symmetric
variants (ǫ = {−1, 0}) and for each even degree k. As a contrast,
there is a loss of accuracy of the non-symmetric variants with odd
degree k, where the convergence rate decreases to k. We point
out the advantage of the stabilization function as stated earlier,
which ensures the preservation of the accuracy and efficiency
of the EIP method that has the same error magnitude as its
counterpart Hybridized.We should recognize the main benefit of
the Embedded-IP scheme, which is more accurate than both HIP
and WIP schemes for any fixed number of DOFs. On the other
hand, we retrieve here the total equivalence between the I-WIP
and I-HIP scheme as stated in section 3.2. In order to support this
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FIGURE 3 | Computed CPU time (s) for the H-IIP and W-IIP methods with a triangular (A) and rectangular (B) uniform meshes for different polynomial degree

k = {1, 2, 3, 4}.

FIGURE 4 | Description of the test case with genuine anisotropy and heterogeneity properties with the four subdomains (A). Uniform triangular (B) and rectangular (C)

meshes with h = 1/16.

property, we listed inTable 2 the L2-norm error estimation for all
I-WIP, I-HIP, and I-EIP schemes. Both I-WIP and I-HIPmethods
coincide, while this assumption is no longer verified for the I-
EIP method. Due to the reduction of the WIP to the standard
IP scheme, we highlight the equivalence between the I-HIP and
standard I-IP methods that appears instantaneously.

4.2. Heterogeneous Anisotropic Flow
For the second test case, we analyze the capability of
the Embedded-, Hybridized-, and Weighted-Interior Penalty
methods to capture strong heterogeneity and anisotropy. For
illustrating the benefits of the penalization function (7), we
first focus on the Symmetric variant of the EIP, HIP, and
HIP methods. For the simulation, we consider both structured
triangular and rectangular meshes with N = {4, 8, 16, 32, 64}.
We summarized in Figure 6 the history of convergence of
all schemes for various polynomial degrees k = {2, 3} and
different values of λ = {101, 103, 106}. Despite the presence

of heterogeneity and anisotropy, all conclusions established
for the homogeneous test case (section 4.1) are verified. In
most situations, the Embedded-, Hybridized-, and Weighted-
IP methods converge optimally with order k + 1 for each
polynomial degrees k and for any values of λ. Particularly,
the S-EIP, S-HIP, and S-WIP schemes are more sensitive with
the triangular grid, which affects the convergence rate of the
scheme for high values of λ. For λ = 106, all Symmetric
methods are sub-optimal with order k for each polynomial
degrees k. We place emphasis on the normal diffusivity parameter
κF,A, which plays a fundamental role in the robustness of the
respective schemes. It appears that without the use of κF,A
the discrete solution may exhibit spurious oscillations and
the performances of the methods should decrease. Afterwards,
we carry out an analysis of the I-EIP, I-HIP, and I-WIP
methods. In Table 3, we listed a history of convergence of
the Incomplete variation of the three IP schemes. Even if
the results of the Non-Symmetric variant are not presented,
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FIGURE 5 | Homogeneous case - History of convergence in the ‖ · ‖Th
-norm (vs. h) of the WIP, HIP, and EIP methods for the Non-Symmetric (A,B), the Incomplete

(C,D) and the Symmetric variant (E,F), respectively. The grid is triangular in the left (A,C,E) and rectangular in the right (B,D,F).
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TABLE 2 | Homogeneous case.

Uniform triangular meshes Uniform rectangular meshes

k N
I-WIP I-HIP I-EIP I-WIP I-HIP I-EIP

‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR

2

4 4.3e− 03 – 4.3e− 03 – 4.5e− 03 2.92 2.5e− 03 – 2.5e− 03 – 2.2e− 03 –

8 8.8e− 04 2.31 8.8e− 04 2.31 6.8e− 04 2.72 5.6e− 04 2.15 5.6e− 04 2.15 4.8e− 04 2.21

16 2.0e− 04 2.11 2.0e− 04 2.11 1.2e− 04 2.54 1.4e− 04 2.04 1.4e− 04 2.04 1.2e− 04 2.07

32 5.0e− 05 2.03 5.0e− 05 2.03 2.5e− 05 2.25 3.4e− 05 2.01 3.4e− 05 2.01 2.9e− 05 2.02

64 1.2e− 05 2.01 1.2e− 05 2.01 5.8e− 06 2.08 8.4e− 06 2.00 8.4e− 06 2.00 7.1e− 06 2.00

3

4 2.8e− 04 2.8e− 04 – 3.1e− 04 – 7.8e− 05 – 7.8e− 05 – 7.7e− 05 –

8 1.8e− 05 3.99 1.8e− 05 3.99 3.1e− 04 3.56 4.9e− 06 3.98 4.9e− 06 3.98 4.9e− 06 3.98

16 1.1e− 06 4.00 1.1e− 06 4.00 1.2e− 06 4.01 3.1e− 07 4.00 3.1e− 07 4.00 3.1e− 07 4.00

32 6.9e− 08 4.00 6.9e− 08 4.00 7.4e− 08 4.00 1.9e− 08 4.00 1.9e− 08 4.00 1.9e− 08 4.00

64 4.3e− 09 4.00 4.3e− 09 4.00 4.6e− 09 4.00 1.2e− 09 4.00 1.2e− 09 4.00 1.2e− 09 4.00

History of convergence ‖u− uh‖Th
of the I-WIP, I-HIP, and I-EIP methods on uniform triangular and square meshes for k = {2,3}.

we must notice the behavior of the N-EIP, N-HIP, and N-
WIP that are quite similar to those established in section 4.1.
Here again, we wish to outline the total equivalence between
the I-HIP and I-WIP that is always verified in presence of
heterogeneity and anisotropy, and for any values of λ. These
results are in agreement with the homogeneous case, where the
convergence rate depending on the parity of the polynomial
degree k.

4.3. Discussion
The numerical results reported in sections 4.1 and 4.2 reveal a
series of similarities, which connects the three Interior Penalty
methods (i.e., the Hybridized-, Embedded-, and Weighted-IP).
First, for both test cases, all IP schemes converge optimally for
(i) the Symmetric variant and (ii) the Incomplete and Non-
symmetric variants, according to the parity of the polynomial
degree k. Moreover, it has been proven that by forcing the
continuity of the discrete trace, the EIP scheme can suffer from
a loss of accuracy (see Cockburn et al., 2009c; Fabien et al.,
2020 for more details). However, thanks to the specific definition
of the stabilization function (7), we obtain a very high level
of error estimates as well as for the Embedded-IP method.
Indeed, this enriched penalization function provides substantial
benefits for the Hybridized-, Embedded-, and Weighted-IP
schemes (i.e., strong robustness, accuracy, and efficiency) that
restrict the different results in a very closed area. Especially,
these properties are still valid for highly heterogeneous and/or
anisotropic variations of the medium. Secondly, we highlight
the total equivalence property between the I-WIP and I-HIP
methods that bridges the gap between these two approaches.
This characteristic is valid whether the medium is homogeneous
or heterogeneous and/or anisotropic. To the best of our
knowledge, this is the first attempt to establish a Weighted-
IP scheme as efficient as a Hybridized-IP scheme for highly
perturbated materials properties. Since their introduction, the
HDG methods have demonstrated their superiority over the
traditionally DG frameworks in terms of efficiency, accuracy,

and robustness (Cockburn et al., 2009b). Nevertheless, the
Weighted-IP scheme, described in this manuscript, exhibits
the ability to recover some performances comparable to those
of traces formalism (i.e., Hybridized- and/or Embedded) at
most. Finally, there is a significant contrast between all IP
approaches, which is undeniable when focusing on CPU time.
Owing to the static condensation, we measured running times,
which are almost reduced by half and quarter for the HIP
and EIP methods, respectively. This latest point enables us to
recognize the leadership of the Hybridized- and Embedded-IP
schemes for all numerical aspects. Even if the EIP approach
is faster than its HIP counterpart, we prefer to outline the
accuracy and the robustness of the HIP schemes, which
surpasses those of the EIP and WIP methods with heterogeneity
and/or anisotropy.

5. CONCLUSION

In the present paper, we compare the computational
performances of several variations of the IP methods, namely,
the Hybridized-, Embedded-, and Weighted-Interior Penalty
schemes for solving heterogeneous and anisotropic diffusion
problems. Specifically, they lead to a final matrix systems
of different sizes and sparsities, which strongly impacts the
computing time of each methods. We then quantify their
total numbers of degrees of freedom for a given mesh and
a fixed polynomial degree. This comparative analysis clearly
indicated that both the EIP and the HIP methods led to
smaller and sparser final matrix systems requiring less CPU
time to compute. Due to the regularity requirement of the
discrete trace approximation, the EIP method is slightly
more favorable since it generates fewer DOFs than its HIP
counterpart. Particularly, for the Symmetric EIP variant, it
produces more accurate results for the homogeneous case,
with a trace approximation as robust as the Continuous
Galerkin method. Moreover, we recovered some well-known
error estimates in the L2-norm of IP methods: for both
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FIGURE 6 | Heterogeneous and anisotropic case - History of convergence in the ‖ · ‖Th
-norm (vs. h) of the S-WIP, S-HIP and S-EIP methods for λ = 101 (A,B),

λ = 103 (C,D) and λ = 106 (E,F), respectively. The grid is triangular in the left (A,C,E) and rectangular in the right (B,D,F).
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TABLE 3 | Heterogeneous and anisotropic case.

Uniform triangular meshes Uniform rectangular meshes

k N
I-WIP I-HIP I-EIP I-WIP I-HIP I-EIP

‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR

λ = 101

2

4 4.2e− 03 – 4.2e− 03 – 4.4e− 03 – 2.5e− 03 – 2.5e− 03 – 2.4e− 03 –

8 8.8e− 04 2.25 8.8e− 04 2.25 6.4e− 04 2.77 5.6e− 04 2.14 5.6e− 04 2.14 5.3e− 04 2.19

16 2.1e− 04 2.07 2.1e− 04 2.07 1.0e− 04 2.62 1.4e− 04 2.04 1.4e− 04 2.04 1.3e− 04 2.06

32 5.2e− 05 2.02 5.2e− 05 2.02 2.1e− 05 2.33 3.4e− 05 2.01 3.4e− 05 2.01 3.1e− 05 2.02

64 1.3e− 05 2.00 1.3e− 05 2.00 4.8e− 06 2.11 8.4e− 06 2.00 8.4e− 06 2.00 7.8e− 06 2.00

3

4 2.8e− 04 – 2.8e− 04 – 3.3e− 04 – 7.6e− 05 – 7.6e− 05 – 7.5e− 05 –

8 1.7e− 05 4.06 1.7e− 05 4.06 1.9e− 05 4.13 4.9e− 06 3.95 4.9e− 06 3.95 4.9e− 06 3.95

16 1.0e− 06 4.02 1.0e− 06 4.02 1.1e− 06 4.06 3.1e− 07 3.99 3.1e− 07 3.99 3.1e− 07 3.99

32 6.4e− 08 4.01 6.4e− 08 4.01 7.1e− 08 4.02 1.9e− 08 4.00 1.9e− 08 4.00 1.9e− 08 4.00

64 4.0e− 09 4.00 4.0e− 09 4.00 4.4e− 09 4.01 1.2e− 09 4.00 1.2e− 09 4.00 1.2e− 09 4.00

λ = 103

2

4 6.7e− 03 – 6.7e− 03 – 8.4e− 03 – 2.4e− 03 – 2.4e− 03 – 2.6e− 03 –

8 1.5e− 03 2.19 1.5e− 03 2.19 1.9e− 03 2.11 5.5e− 04 2.10 5.5e− 04 2.10 5.7e− 04 2.17

16 2.8e− 04 2.39 2.8e− 04 2.39 3.6e− 04 2.45 1.4e− 04 2.03 1.4e− 04 2.03 1.4e− 04 2.06

32 5.5e− 05 2.36 5.5e− 05 2.36 4.6e− 05 2.94 3.4e− 05 2.01 3.4e− 05 2.01 3.4e− 05 2.02

64 1.3e− 05 2.06 1.3e− 05 2.06 6.5e− 06 2.83 8.4e− 06 2.00 8.4e− 06 2.00 8.4e− 06 2.00

3

4 6.5e− 04 – 6.5e− 04 – 8.6e− 04 – 6.1e− 05 – 6.1e− 05 – 6.2e− 05 –

8 6.4e− 05 3.34 6.4e− 05 3.34 8.4e− 05 3.35 3.9e− 06 3.96 3.9e− 06 3.96 3.9e− 06 3.97

16 5.2e− 06 3.63 5.2e− 06 3.63 6.9e− 06 3.61 2.7e− 07 3.87 2.7e− 07 3.87 2.7e− 07 3.88

32 2.7e− 07 4.24 2.7e− 07 4.24 3.8e− 07 4.20 1.8e− 08 3.87 1.8e− 08 3.87 1.8e− 08 3.87

64 1.1e− 08 4.66 1.1e− 08 4.66 1.5e− 08 4.65 1.2e− 09 3.94 1.2e− 09 3.94 1.2e− 09 3.95

λ = 106

2

4 7.1e− 03 – 7.1e− 03 – 8.7e− 03 – 2.4e− 03 – 2.4e− 03 – 2.6e− 03 –

8 1.7e− 03 2.05 1.7e− 03 2.05 2.2e− 03 1.96 5.5e− 04 2.10 5.5e− 04 2.10 5.7e− 04 2.17

16 4.3e− 04 2.01 4.3e− 04 2.01 5.6e− 04 1.99 1.3e− 04 2.03 1.3e− 04 2.03 1.4e− 04 2.06

32 1.1e− 04 2.01 1.1e− 04 2.01 1.4e− 04 2.00 3.4e− 05 2.01 3.4e− 05 2.01 3.4e− 05 2.02

64 2.6e− 05 2.01 2.6e− 05 2.01 3.5e− 05 2.01 8.4e− 06 2.00 8.4e− 06 2.00 8.4e− 06 2.00

3

4 7.3e− 04 – 7.3e− 04 – 9.1e− 04 – 6.1e− 05 – 6.1e− 05 – 6.2e− 05 –

8 8.8e− 05 3.06 8.8e− 05 3.06 1.0e− 04 3.17 3.8e− 06 3.99 3.8e− 06 3.99 3.8e− 06 4.01

16 1.1e− 05 3.02 1.1e− 05 3.02 1.2e− 05 3.05 2.4e− 07 4.00 2.4e− 07 4.00 2.4e− 07 4.00

32 1.3e− 06 3.02 1.3e− 06 3.02 1.5e− 06 3.02 1.5e− 08 4.00 1.5e− 08 4.00 1.5e− 08 4.00

64 1.6e− 07 3.07 1.6e− 07 3.07 1.9e− 07 3.02 9.3e− 10 4.00 9.3e− 10 4.00 9.3e− 10 4.00

History of convergence ‖u− uh‖Th
of the I-WIP, I-HIP, and I-EIP methods on uniform triangular and square meshes for k = {2,3} and various diffusivity parameter λ = {101, 103, 106}.

non-symmetric variants obtained by selecting ǫ = 0 or
−1, the estimated convergence rates are influenced by the
parity of the polynomial degree k (suboptimally for even
k and optimally for odd k). The situation is quite different
for Symmetric variants (ǫ = 1) since they always converge
optimally. Nevertheless, we must recognize the robustness of
the Hybridized- and Embedded-IP methods, which exceeds
that of the Weighted-IP schemes independently of the mesh,
the polynomial degree, and physical properties (homogeneity,
heterogeneity, and/or anisotropy). To conclude, let us emphasize
on the numerical equivalence between the Incomplete HIP
and WIP methods, which is achieved by applying a specific

definition of the weighting function and the penalty parameter.
In a forthcoming paper, we will discussed and theoretically
proved this property for the Incomplete, Non-Incomplete, and
Symmetric variants to recover a Weighted-IP scheme as accurate
as the Hybridized-IP method.
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