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The present paper discusses families of Interior Penalty Discontinuous Galerkin (IP)

methods for solving heterogeneous and anisotropic diffusion problems. Specifically, we

focus on distinctive schemes, namely the Hybridized-, Embedded-, and Weighted-IP

schemes, leading to final matrixes of different sizes and sparsities. Both the

Hybridized- and Embedded-IP schemes are eligible for static condensation, and their

degrees of freedom are distributed on the mesh skeleton. In contrast, the unknowns

are located inside the mesh elements for the Weighted-IP variant. For a given mesh,

it is well-known that the number of degrees of freedom related to the standard

Discontinuous Galerkin methods increases more rapidly than those of the skeletal

approaches (Hybridized- and Embedded-IP). We then quantify the impact of the static

condensation procedure on the computational performances of the different IP classes

in terms of robustness, accuracy, and CPU time. To this aim, numerical experiments are

investigated by considering strong heterogeneities and anisotropies. We analyze the fixed

error tolerance versus the run time and mesh size to guide our performance criterion.

We also outlined some relationships between these Interior Penalty schemes. Eventually,

we confirm the superiority of the Hybridized- and Embedded-IP schemes, regardless

of the mesh, the polynomial degree, and the physical properties (homogeneous,

heterogeneous, and/or anisotropic).

Keywords: interior penalty, high-order discontinuous Galerkin methods (DGM), hybridization, heterogeneous and

anisotropic media, numerical experiments, computational performances

1. INTRODUCTION

The Discontinuous Galerkin (DG) methods were firstly introduced by Reed and Hill (1973) for
the neutron transport phenomenon. Since their introduction, the DG methods have become a
relevant class of finite element schemes for modeling physical processes. They provide several
advantages: they are locally conservative and eligible to hp-refinement strategies and they consider
a discontinuous piecewise (polynomial) approximation of the exact solution (Arnold et al., 2002;
Rivière, 2008; Pietro and Ern, 2011). During the 1980s, Arnold proposed the famous Interior
Penalty Discontinuous Galerkin (IP)method for solving the second-order elliptic problem (Arnold,
1982). Even if the stability and robustness of the IP method have been proven for homogeneous
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FIGURE 5 | Homogeneous case - History of convergence in the ‖ · ‖Th
-norm (vs. h) of the WIP, HIP, and EIP methods for the Non-Symmetric (A,B), the Incomplete

(C,D) and the Symmetric variant (E,F), respectively. The grid is triangular in the left (A,C,E) and rectangular in the right (B,D,F).
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TABLE 2 | Homogeneous case.

Uniform triangular meshes Uniform rectangular meshes

k N
I-WIP I-HIP I-EIP I-WIP I-HIP I-EIP

‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR

2

4 4.3e− 03 – 4.3e− 03 – 4.5e− 03 2.92 2.5e− 03 – 2.5e− 03 – 2.2e− 03 –

8 8.8e− 04 2.31 8.8e− 04 2.31 6.8e− 04 2.72 5.6e− 04 2.15 5.6e− 04 2.15 4.8e− 04 2.21

16 2.0e− 04 2.11 2.0e− 04 2.11 1.2e− 04 2.54 1.4e− 04 2.04 1.4e− 04 2.04 1.2e− 04 2.07

32 5.0e− 05 2.03 5.0e− 05 2.03 2.5e− 05 2.25 3.4e− 05 2.01 3.4e− 05 2.01 2.9e− 05 2.02

64 1.2e− 05 2.01 1.2e− 05 2.01 5.8e− 06 2.08 8.4e− 06 2.00 8.4e− 06 2.00 7.1e− 06 2.00

3

4 2.8e− 04 2.8e− 04 – 3.1e− 04 – 7.8e− 05 – 7.8e− 05 – 7.7e− 05 –

8 1.8e− 05 3.99 1.8e− 05 3.99 3.1e− 04 3.56 4.9e− 06 3.98 4.9e− 06 3.98 4.9e− 06 3.98

16 1.1e− 06 4.00 1.1e− 06 4.00 1.2e− 06 4.01 3.1e− 07 4.00 3.1e− 07 4.00 3.1e− 07 4.00

32 6.9e− 08 4.00 6.9e− 08 4.00 7.4e− 08 4.00 1.9e− 08 4.00 1.9e− 08 4.00 1.9e− 08 4.00

64 4.3e− 09 4.00 4.3e− 09 4.00 4.6e− 09 4.00 1.2e− 09 4.00 1.2e− 09 4.00 1.2e− 09 4.00

History of convergence ‖u− uh‖Th
of the I-WIP, I-HIP, and I-EIP methods on uniform triangular and square meshes for k = {2,3}.

we must notice the behavior of the N-EIP, N-HIP, and N-
WIP that are quite similar to those established in section 4.1.
Here again, we wish to outline the total equivalence between
the I-HIP and I-WIP that is always verified in presence of
heterogeneity and anisotropy, and for any values of λ. These
results are in agreement with the homogeneous case, where the
convergence rate depending on the parity of the polynomial
degree k.

4.3. Discussion
The numerical results reported in sections 4.1 and 4.2 reveal a
series of similarities, which connects the three Interior Penalty
methods (i.e., the Hybridized-, Embedded-, and Weighted-IP).
First, for both test cases, all IP schemes converge optimally for
(i) the Symmetric variant and (ii) the Incomplete and Non-
symmetric variants, according to the parity of the polynomial
degree k. Moreover, it has been proven that by forcing the
continuity of the discrete trace, the EIP scheme can suffer from
a loss of accuracy (see Cockburn et al., 2009c; Fabien et al.,
2020 for more details). However, thanks to the specific definition
of the stabilization function (7), we obtain a very high level
of error estimates as well as for the Embedded-IP method.
Indeed, this enriched penalization function provides substantial
benefits for the Hybridized-, Embedded-, and Weighted-IP
schemes (i.e., strong robustness, accuracy, and efficiency) that
restrict the different results in a very closed area. Especially,
these properties are still valid for highly heterogeneous and/or
anisotropic variations of the medium. Secondly, we highlight
the total equivalence property between the I-WIP and I-HIP
methods that bridges the gap between these two approaches.
This characteristic is valid whether the medium is homogeneous
or heterogeneous and/or anisotropic. To the best of our
knowledge, this is the first attempt to establish a Weighted-
IP scheme as efficient as a Hybridized-IP scheme for highly
perturbated materials properties. Since their introduction, the
HDG methods have demonstrated their superiority over the
traditionally DG frameworks in terms of efficiency, accuracy,

and robustness (Cockburn et al., 2009b). Nevertheless, the
Weighted-IP scheme, described in this manuscript, exhibits
the ability to recover some performances comparable to those
of traces formalism (i.e., Hybridized- and/or Embedded) at
most. Finally, there is a significant contrast between all IP
approaches, which is undeniable when focusing on CPU time.
Owing to the static condensation, we measured running times,
which are almost reduced by half and quarter for the HIP
and EIP methods, respectively. This latest point enables us to
recognize the leadership of the Hybridized- and Embedded-IP
schemes for all numerical aspects. Even if the EIP approach
is faster than its HIP counterpart, we prefer to outline the
accuracy and the robustness of the HIP schemes, which
surpasses those of the EIP and WIP methods with heterogeneity
and/or anisotropy.

5. CONCLUSION

In the present paper, we compare the computational
performances of several variations of the IP methods, namely,
the Hybridized-, Embedded-, and Weighted-Interior Penalty
schemes for solving heterogeneous and anisotropic diffusion
problems. Specifically, they lead to a final matrix systems
of different sizes and sparsities, which strongly impacts the
computing time of each methods. We then quantify their
total numbers of degrees of freedom for a given mesh and
a fixed polynomial degree. This comparative analysis clearly
indicated that both the EIP and the HIP methods led to
smaller and sparser final matrix systems requiring less CPU
time to compute. Due to the regularity requirement of the
discrete trace approximation, the EIP method is slightly
more favorable since it generates fewer DOFs than its HIP
counterpart. Particularly, for the Symmetric EIP variant, it
produces more accurate results for the homogeneous case,
with a trace approximation as robust as the Continuous
Galerkin method. Moreover, we recovered some well-known
error estimates in the L2-norm of IP methods: for both
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FIGURE 6 | Heterogeneous and anisotropic case - History of convergence in the ‖ · ‖Th
-norm (vs. h) of the S-WIP, S-HIP and S-EIP methods for λ = 101 (A,B),

λ = 103 (C,D) and λ = 106 (E,F), respectively. The grid is triangular in the left (A,C,E) and rectangular in the right (B,D,F).
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TABLE 3 | Heterogeneous and anisotropic case.

Uniform triangular meshes Uniform rectangular meshes

k N
I-WIP I-HIP I-EIP I-WIP I-HIP I-EIP

‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR ‖u− uh‖Th
ECR ‖u− uh‖Th

ECR

λ = 101

2

4 4.2e− 03 – 4.2e− 03 – 4.4e− 03 – 2.5e− 03 – 2.5e− 03 – 2.4e− 03 –

8 8.8e− 04 2.25 8.8e− 04 2.25 6.4e− 04 2.77 5.6e− 04 2.14 5.6e− 04 2.14 5.3e− 04 2.19

16 2.1e− 04 2.07 2.1e− 04 2.07 1.0e− 04 2.62 1.4e− 04 2.04 1.4e− 04 2.04 1.3e− 04 2.06

32 5.2e− 05 2.02 5.2e− 05 2.02 2.1e− 05 2.33 3.4e− 05 2.01 3.4e− 05 2.01 3.1e− 05 2.02

64 1.3e− 05 2.00 1.3e− 05 2.00 4.8e− 06 2.11 8.4e− 06 2.00 8.4e− 06 2.00 7.8e− 06 2.00

3

4 2.8e− 04 – 2.8e− 04 – 3.3e− 04 – 7.6e− 05 – 7.6e− 05 – 7.5e− 05 –

8 1.7e− 05 4.06 1.7e− 05 4.06 1.9e− 05 4.13 4.9e− 06 3.95 4.9e− 06 3.95 4.9e− 06 3.95

16 1.0e− 06 4.02 1.0e− 06 4.02 1.1e− 06 4.06 3.1e− 07 3.99 3.1e− 07 3.99 3.1e− 07 3.99

32 6.4e− 08 4.01 6.4e− 08 4.01 7.1e− 08 4.02 1.9e− 08 4.00 1.9e− 08 4.00 1.9e− 08 4.00

64 4.0e− 09 4.00 4.0e− 09 4.00 4.4e− 09 4.01 1.2e− 09 4.00 1.2e− 09 4.00 1.2e− 09 4.00

λ = 103

2

4 6.7e− 03 – 6.7e− 03 – 8.4e− 03 – 2.4e− 03 – 2.4e− 03 – 2.6e− 03 –

8 1.5e− 03 2.19 1.5e− 03 2.19 1.9e− 03 2.11 5.5e− 04 2.10 5.5e− 04 2.10 5.7e− 04 2.17

16 2.8e− 04 2.39 2.8e− 04 2.39 3.6e− 04 2.45 1.4e− 04 2.03 1.4e− 04 2.03 1.4e− 04 2.06

32 5.5e− 05 2.36 5.5e− 05 2.36 4.6e− 05 2.94 3.4e− 05 2.01 3.4e− 05 2.01 3.4e− 05 2.02

64 1.3e− 05 2.06 1.3e− 05 2.06 6.5e− 06 2.83 8.4e− 06 2.00 8.4e− 06 2.00 8.4e− 06 2.00

3

4 6.5e− 04 – 6.5e− 04 – 8.6e− 04 – 6.1e− 05 – 6.1e− 05 – 6.2e− 05 –

8 6.4e− 05 3.34 6.4e− 05 3.34 8.4e− 05 3.35 3.9e− 06 3.96 3.9e− 06 3.96 3.9e− 06 3.97

16 5.2e− 06 3.63 5.2e− 06 3.63 6.9e− 06 3.61 2.7e− 07 3.87 2.7e− 07 3.87 2.7e− 07 3.88

32 2.7e− 07 4.24 2.7e− 07 4.24 3.8e− 07 4.20 1.8e− 08 3.87 1.8e− 08 3.87 1.8e− 08 3.87

64 1.1e− 08 4.66 1.1e− 08 4.66 1.5e− 08 4.65 1.2e− 09 3.94 1.2e− 09 3.94 1.2e− 09 3.95

λ = 106

2

4 7.1e− 03 – 7.1e− 03 – 8.7e− 03 – 2.4e− 03 – 2.4e− 03 – 2.6e− 03 –

8 1.7e− 03 2.05 1.7e− 03 2.05 2.2e− 03 1.96 5.5e− 04 2.10 5.5e− 04 2.10 5.7e− 04 2.17

16 4.3e− 04 2.01 4.3e− 04 2.01 5.6e− 04 1.99 1.3e− 04 2.03 1.3e− 04 2.03 1.4e− 04 2.06

32 1.1e− 04 2.01 1.1e− 04 2.01 1.4e− 04 2.00 3.4e− 05 2.01 3.4e− 05 2.01 3.4e− 05 2.02

64 2.6e− 05 2.01 2.6e− 05 2.01 3.5e− 05 2.01 8.4e− 06 2.00 8.4e− 06 2.00 8.4e− 06 2.00

3

4 7.3e− 04 – 7.3e− 04 – 9.1e− 04 – 6.1e− 05 – 6.1e− 05 – 6.2e− 05 –

8 8.8e− 05 3.06 8.8e− 05 3.06 1.0e− 04 3.17 3.8e− 06 3.99 3.8e− 06 3.99 3.8e− 06 4.01

16 1.1e− 05 3.02 1.1e− 05 3.02 1.2e− 05 3.05 2.4e− 07 4.00 2.4e− 07 4.00 2.4e− 07 4.00

32 1.3e− 06 3.02 1.3e− 06 3.02 1.5e− 06 3.02 1.5e− 08 4.00 1.5e− 08 4.00 1.5e− 08 4.00

64 1.6e− 07 3.07 1.6e− 07 3.07 1.9e− 07 3.02 9.3e− 10 4.00 9.3e− 10 4.00 9.3e− 10 4.00

History of convergence ‖u− uh‖Th
of the I-WIP, I-HIP, and I-EIP methods on uniform triangular and square meshes for k = {2,3} and various diffusivity parameter λ = {101, 103, 106}.

non-symmetric variants obtained by selecting ǫ = 0 or
−1, the estimated convergence rates are influenced by the
parity of the polynomial degree k (suboptimally for even
k and optimally for odd k). The situation is quite different
for Symmetric variants (ǫ = 1) since they always converge
optimally. Nevertheless, we must recognize the robustness of
the Hybridized- and Embedded-IP methods, which exceeds
that of the Weighted-IP schemes independently of the mesh,
the polynomial degree, and physical properties (homogeneity,
heterogeneity, and/or anisotropy). To conclude, let us emphasize
on the numerical equivalence between the Incomplete HIP
and WIP methods, which is achieved by applying a specific

definition of the weighting function and the penalty parameter.
In a forthcoming paper, we will discussed and theoretically
proved this property for the Incomplete, Non-Incomplete, and
Symmetric variants to recover a Weighted-IP scheme as accurate
as the Hybridized-IP method.
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